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ABSTRACT
We aim at generating summary from structured data (i.e. tables,
entity-relation triplets, ...). Most previous approaches relies on an
encoder-decoder architecture in which data are linearized into a
sequence of elements. In contrast, we propose to take into account
entities forming the data structure in a hierarchical model. More-
over, we introduce the Transformer encoder in data-to-text models
to ensure robust encoding of each element/entities in comparison to
all others, no matter their initial positioning. Our model is evaluated
on the RotoWire benchmark (statistical tables of NBA basketball
games). This paper has been accepted at ECIR 2020.
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1 CONTEXT AND MOTIVATION
Understanding data structure is an emerging challenge to enhance
textual tasks, such as question answering [11, 18] or table retrieval
[4, 17]. One emerging research field, referred to as “data-to-text"
[5], consists in transcribing data-structures into natural language in
order to ease their understandablity and their usablity. Numerous
examples of applications can be cited: journalism [10], medical diag-
nosis [12], weather reports [16], or sport broadcasting [2, 21]. Figure
1 depicts a data-structure containing statistics on NBA basketball
games, paired with its corresponding journalistic description.

Until recently, efforts to bring out semantics from structured-
data relied heavily on expert knowledge (e.g. rules) [3, 16]. Modern
data-to-text models [1, 6, 21] leverage deep learning advances and
are generally designed using two connected components: 1) an en-
coder aiming at understanding the structured data and 2) a decoder
generating associated descriptions. This standard architecture is
often augmented with 1) the attention mechanism which computes
a context focused on important elements from the input at each
decoding step and, 2) the copy mechanism to deal with unknown
or rare words. However, most of work [1, 6, 21] represent the data
records as a single sequence of facts to be fed to the encoder. These
models reach their limitations on large structured-data composed
of several entities (e.g. row in tables) and multiple attributes (e.g.
column in tables) and fail to accurately extract salient elements.

To improve these models, a number of work [7, 13] proposed
innovating decoding modules based on planning and templates,
to ensure factual and coherent mentions of records in generated
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descriptions. Closer to our work, very recent work [8, 9, 14] have
proposed to take into account the data structure. For instance,
Puduppully et al. [13] design a more complex two-step decoder:
they first generate a plan of elements to be mentioned, and then
condition text generation on this plan.

2 CONTRIBUTION AND MAIN RESULTS
In this paper, we focus on the encoding step of data-to-text mod-
els since we assume that a large amount of work is done in lan-
guage generation and summary. We believe that the most important
challenge relies here on the data structure encoding. Therefor, we
identify two limitations of previous work :

(1) Linearization of the data-structure. In practice, most works
focus on introducing innovating decoding modules, and still
represent data as a unique sequence of elements to be en-
coded, effectively losing distinction between rows, and there-
fore entities. To the best of our knowledge, only Liu et al.
[8, 9] propose encoders constrained by the structure but
these approaches are designed for single-entity structures.

(2) Arbitrary ordering of unordered collections in recurrent net-
works (RNN). Most data-to-text systems use RNNs as en-
coders (such as LSTMs), which require in practice their in-
put to be fed sequentially. This way of encoding unordered
sequences (i.e. collections of entities) implicitly assumes an
arbitrary order within the collection which, as in Vinyals et
al. [20], significantly impacts the learning performance.

To address these shortcomings, we propose a new structured-
data encoder assuming that structures should be hierarchically
captured. Our contribution focuses on the encoding of the data-
structure, thus the decoder is chosen to be a classical module as used
in [13, 21]. Our contribution, illustrated in Figure 2, is threefold:

• We model the general structure of the data using a two-level
architecture, first encoding all entities on the basis of their
elements, then encoding the data structure on the basis of
its entities;

• We introduce the Transformer encoder [19] in data-to-text
models to ensure robust encoding of each element/entities in
comparison to all others, no matter their initial positioning;

• We integrate a hierarchical attention mechanism to compute
the hierarchical context fed into the decoder.

As shown in Figure 2, our model relies on two encoders:
• the Low-level encoder encodes each entity 𝑒𝑖 on the basis of

its record embeddings r𝑖, 𝑗 . Each record embedding r𝑖, 𝑗 is compared
to other record embeddings to learn its final hidden representation
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Figure 1: Example of structured data from the RotoWire dataset. Rows are entities (a team or a player) and each cell a record,
its key being the column label and its value the cell content. Factual mentions from the table are boldfaced in the description.

Figure 2: Our proposed hierarchical encoder. Once the records are
embedded, the low-level encoder works on each entity indepen-
dently (A); then the high-level encoder encodes the collection of en-
tities (B). In circles, we represent the hierarchical attention scores:
the 𝛼 scores at the entity level and the 𝛽 scores at the record level.

h𝑖, 𝑗 . We also add a special record [ENT] for each entity, illustrated
in Figure 2 as the last record. Since entities might have a variable
number of records, this token allows to aggregate final hidden
record representations {h𝑖, 𝑗 }𝐽𝑖𝑗=1 in a fixed-sized representation
vector h𝑖 .

• the High-level encoder encodes the data-structure on the
basis of its entity representation h𝑖 . Similarly to the Low-level
encoder, the final hidden state ei of an entity is computed
by comparing entity representation h𝑖 with each others. The
data-structure representation z is computed as the mean of these
entity representations, and is used for the decoder initialization.

We report experiments on the RotoWire benchmark [21] which
contains around 5𝐾 statistical tables of NBA basketball games
paired with human-written descriptions. Comparisons against base-
lines show that introducing the Transformer architecture is a
promising way to implicitly account for data structure, and leads
to better content selection even before introducing hierarchical
encoding. Furthermore, our hierarchical model outperforms all
baselines on content selection, showing that capturing structure in
the encoding process is more effective that predicting a structure
in the decoder (e.g., planning or templating). We show via ablation
studies that further constraining the encoder on structure (through
hierarchical attention) leads to even better performances.

For a more in-depth understanding of our contribution, please
read our ECIR paper [15].
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