
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0). IntelITSIS-2020

Formation of the Interval Stego Key for the Digital
Watermark Used in Integrity Monitoring of FPGA-based

Systems

Kostiantyn Zashcholkin1[0000-0003-0427-9005], Oleksandr Drozd1[0000-0003-2191-6758],
Olena Ivanova1[0000-0002-4743-6931] and Pavlo Bykovyy2[0000-0002-5705-5702]

1Odessa National Polytechnic University, Odessa, Ukraine
2Ternopil National Economic University, Ternopil, Ukraine

const-z@te.net.ua
drozd@ukr.net

en.ivanova.ua@gmail.com
pb@tneu.edu.ua

Abstract. The operation of programmable computer systems is determined by
their program code. Possibilities of maliciously changing program code poten-
tially pose a security risk. Therefore, monitoring the program code integrity is
one of the main components of security for programmable systems. This paper
is devoted to program code integrity monitoring of computer systems built on
the FPGA chips. Integrity monitoring methods are considered, within which
monitoring data are embedded into the program code in the form of a digital
watermark. Such digital watermark does not affect the operation of the FPGA
and does not change the characteristics of the system. The advantages of this
approach are that the fact of the presence of monitoring data in the program
code and the fact of performing integrity monitoring is hidden from an outside
observer. The paper notes the problem of the need to recovery the initial state of
program code when performing integrity monitoring. To perform this proce-
dure, the digital watermark must contain the data necessary for recovery. The
effective volume of a digital watermark depends on the size and structure of the
FPGA program code, as well as on the limitations defined by the watermark
embedding key (stego key). Most of this volume is occupied by the data neces-
sary to recovery the initial state. Under these conditions, there is often a short-
age of the effective volume of a digital watermark for storing monitoring data.

The paper proposes a solution to this problem due to a new approach to the
formation of a stego key for embedding a digital watermark in the FPGA program
code. An experimental assessment of the approach proposed in the paper is per-
formed. The advantages of the proposed approach are shown in comparison with the
existing methods of embedding the digital watermark in the FPGA program code.

Keywords: Integrity Monitoring, Digital Watermarks, FPGA-Based Systems,
LUT-Oriented Architecture, Program Code of FPGA

mailto:const-z@te.net.ua
mailto:drozd@ukr.net
mailto:en.ivanova.ua@gmail.com

1 Introduction

Most modern computer systems contain programmable components: microprocessors,
microcontrollers, programmable logic integrated circuits [1, 2]. The operation of sys-
tems of this kind is ensured both by the physical links of the components, and by a set
of software codes that configure the components. Changing the program code of pro-
grammable components leads to a change in the operation of systems built on the
basis of such components. Therefore, an important constituent of computer systems
security is to ensure the integrity of the program code for programmable components
[3]. In this paper, we consider the problem of ensuring the integrity of the program
code of FPGA (Field Programmable Gate Arrays) chips [4, 5]. FPGA is a two-
dimensional matrix of elementary programmable units of several types [6].
The program code of the FPGA chips determines the configuration of each of the
units in the matrix to perform a specific function, and also forms a system of links
between the units. FPGA structure provides natural parallel computing processes. The
calculations within this structure are distributed in the space of the chip [7, 8]. Because
of this, FPGAs differ from microprocessors in significantly greater performance.

High performance is the reason for the frequent use of FPGA in safety-critical sys-
tems – systems that control high-risk technical objects [9-11]. Under these conditions,
the integrity of the FPGA program code is one of the safety factors of this kind of
system.

2 Literature Review and Goal of the Paper

The most commonly used approaches to monitoring the integrity of program code are
based on the use of a hash sums [12]. Hash sums for these purposes are calculated
using cryptographic hash functions [13]. The disadvantage of traditional methods for
monitoring the integrity of program codes is that the hash sums is stored either openly
or can be detected in the structure of the information object as a result of its analysis.
So, an approach is known [14] in which the hash sum is placed in memory next to the
program code. Another frequently used approach [15] is the inclusion of a hash sum
in the information object of the program code as one of its fields. These approaches
do not make it possible to hide the fact that integrity monitoring is performed, and do
not make it possible to hide the monitoring information.

There is also an approach [16], in the framework of which, the hash sum is at-
tached to the information object of the program code not in open but in encrypted
form. This approach hides monitoring information, but makes open to the outside
observer the very fact that integrity monitoring is performed. This leads to the possi-
bility of using a sufficiently wide range of techniques to discover and falsify the hash
sum.

There is an advanced approach to storing a hash sum that eliminates the above dis-
advantages. This approach consists in the fact that the hash sum is not attached to the
information object of the program code, but is embedded in it in the form of a digital
watermark (DWM) [17, 18]. DWM is embedded in an information object using digi-

tal steganography methods [19]. Several methods [20, 21] have been developed for
embedding DWM into FPGA program code. These methods are based on the use of
LUT (Look Up Table) units program codes for embedding the DWM bits. The im-
plementation of these methods is performed using equivalent transformations. These
transformations do not change the logic functions implemented by the LUT units, and
do not affect the operation of the FPGA.

In DWM-based methods for integrity monitoring, there is a need to recovery of ini-
tial state for the information object of the program code at the time of monitoring. In
order to recovery the initial state, in addition to the monitoring data, DWM must con-
tain data on which recovery can be performed. The effective volume of DWM de-
pends on the size and structure of the FPGA program code, as well as on the re-
strictions determined by the DWM embedding stego key. Most of this volume is oc-
cupied by data, necessary to recovery the initial state. Under these conditions, there is
often a shortage of the effective volume of a digital watermark for storing monitoring
data.

The goal of this paper is to increase the effective volume of DWM used in integrity
monitoring of FPGA program code.

3 Analysis of Factors that Affect the Effective Volume of a
Monitoring Digital Watermark

Factor of the embedding path length. Within the framework of the monitoring
methods under consideration, the DWM contains three fields: MISRec – information
necessary to recovery the initial state of the FPGA program code at the time the integ-
rity monitoring was performed; Hash – hash sum; S – is the service field needed to
define the boundaries of the MISRec and Hash fields.
DWM is located in the FPGA code space along the embedding path. The amount of
bits of the embedding path depends on the size of the FPGA program code and on the
stego key.
The effective volume of DWM is the volume available in it to store the monitoring
hash sum:

 LHash = LEmbPath – LISRec – LS; (1)

where LHash – effective volume of DWM, expressed in amount of bits; LEmbPath –
amount of LUT units, which are along the embedding path (the amount of bits that are
available for DWM embedding); LISRec and LS – the lengths of fields MISRec and S,
respectively.

In the process of embedding DWM, the program code of only part of the LUT
FPGA units undergoes a change. These LUT units form an embedding path. To re-
covery the initial state of the program code, it is necessary to recovery only the initial
state of the LUT units, which are along the embedding path.

The main approach used to recovery the initial state: 1) lossless compression
[22, 23] of the target bits of program code in the LUT units, which are along the em-

bedding path; 2) putting the compression results in the MISRec DWM field. When
using this approach, expression (1) takes the following form:

 LHash = LEmbPath – LCom(EmbPath) – LS; (2)

where LCom(EmbPath) – target bits compression result length.
The effective volume of DWM required to perform integrity monitoring must be at
least 128 (160 or 256) bits – the size of the most widely used hash sums. As a result:

 LEmbPath – LCom(EmbPath) – LS ≥ (128 or 160 or 256). (3)

The feasibility of relation (3) depends on two factors: the length of field LEmbPath
and the compression ratio provided by the selected lossless compression method. The
compression ratio also depends on the length of field LEmbPath, and in addition it
depends on the data in this field and on the compression method used. An approach to
the use of multi-method compression was proposed in [24]. This approach gives an
increase in the compression ratio in this situation, however, it is applicable only in the
case when a unique stego key is generated for each act of successful embedding of
control data into the FPGA program code. In the case when it is necessary to use a
universal stego key for many containers, this approach cannot be applied. In addition,
with a low LEmbPath value, even this approach does not allow us to obtain the feasi-
bility of relation (3).

Thus, when using effective compression methods, the main reserve for increasing
the difference LEmbPath – LCom(EmbPath) for the feasibility of relation (3) is to
increase the length of the embedding path (LEmbPath). However, an increase in the
length of the embedding path leads to an increase in the amount of LUT units whose
program code changes. Such an increase could potentially reduce the resistance of the
monitoring system to attacks on monitoring data. This reduces the advantages of a
steganographic approach to storing monitoring data.

Conclusion: an increase in the length of the embedding path is a positive factor
for increasing the effective volume of DWM, but it is a potentially negative factor for
the resistance of the monitoring system to attacks. Therefore, the length of the em-
bedding path should be chosen exactly so as to ensure relation (3), but no more.
Factor of the stego key. The length of the embedding path depends on the stego key
and on the structure of the links between the LUT units. The basic version of a stego
key for a LUT-container (FPGA program code) is a set of the following components:

 Skey = <EnumRule, DThreshold, AddrRule> (4)

where EnumRule – rule that determines the order of the enumeration for units in the
LUT container to obtain an ordered set of units that are part of the embedding path;
DThreshold – parameter that determines the limit on the number of connections to the
outputs of the LUT units included in the embedding path; AddrRule – rule that determines
the address of target bit in program code for each LUT unit of the embedding path.

The length of the embedding path depends on the parameters EnumRule and
DThreshold. The EnumRule parameter can be described as a fixed value, an iterative
rule, or a template. This parameter determines the numbering distance between the

https://www.multitran.com/m.exe?s=as+a+result&l1=1&l2=2

LUT units that are included in the embedding path. The DThreshold parameter is a
numeric threshold that is used when deciding whether to include the LUT units in the
embedding path. This threshold sets the allowable amount of LUT units connected to
the output of the units, regarding which such a decision is made. Reducing the
EnumRule and the DThreshold leads to an increase in the length of the embedding
path, as well as to an increase in the volume of modifiable FPGA program code.

Factor of stego key usage mode. Two modes of stego key use are possible.
1. Specialized stego key mode. In this mode, a stego key is generated for each indi-
vidual FPGA container and DWM. If this mode is used, the stego key must be trans-
ferred to the integrity monitoring system for each monitored object via some reliable
communication channel. When using this mode, you can select the key parameters that
provide the most suitable length of the embedding path. However, for integrity moni-
toring, this mode is not practical to use because of the complexity of key distribution.
2. Universal stego key mode. In this mode, the stego key is generated once, after
which it is used by the DWM embedding modules and integrity monitoring modules.
This mode is the most commonly used in integrity monitoring systems. The problem
of stego key formation in this mode is as follows. A situation is possible in which,
when using the universal key for the next container, it will not be possible to ensure
the feasibility of condition (3). In this case, it is possible to reduce the size of the hash
sum, but this reduces the resistance of the monitoring system to attacks on monitoring
information.

Thus, we can state that the effective DWM volume and the feasibility of condition
(3) depend on the length of the embedding path. This length depends on the values of
the stego key components. When using the universal stego key mode, there is a con-
tradiction between the effective DWM volume and the fraction of LUT units included
in the embedding path.

4 The Proposed Approach to Increase the Effective Volume of
DWM by Using Interval Stego Key

We propose a method for formation a stego key that allows to adapt the effective
DWM volume to the structure of the LUT container.
The first principle of the method is that instead of the point values of the components
of the universal stego key, it is proposed to use value intervals. It is proposed to use
interval values for components on whose value the length of the embedding path de-
pends. For each such parami component, an interval of paramimin … paramimax values
is formed. Moreover, smaller values from these intervals correspond to a shorter em-
bedding path and a smaller fraction of the target LUTs.

At the first attempt to embedding, the minimum value from the interval is selected
as the corresponding component of the stego key. If in this case relation (3) is not
true, then the next greater value is selected from the interval. The component priority
of the key determines the order of increasing interval components.
If relation (3) is not true when the maximum values paramimax of all interval compo-
nents are reached, then the actions regulated by the second principle of the method are

applied. For the basic method of embedding DWM, the following components are
proposed as interval components of the stego key: EnumRule and DThreshold (4).

The second principle of the method is that for the embedding and extraction of
DWM, a sequence of methods Methods = <m1, m2, … mn> is used (this sequence is a
component of the stego key). The first time you try to embedding, the first method of
sequence is used. If the result of the embedding (taking into account the first principle
of the proposed method) does not lead to the truth of relation (3), then we proceed to
the next method of the sequence Methods. If using this procedure the last method of
the sequence Methods is reached and relation (3) is still not true, then the decision on
further actions is applied based on the third principle of the method.

The third principle of the method determines the way of deciding on further actions
if the use of any of the methods in Methods did not lead to the truth of relation (3).
Special component mfinal of the stego key indicates whether to apply the method of
preliminary preparation of the information object [20]. Thus, the mfinal parameter de-
termines the admissibility of losing the initial state of an information object by
switching to the functional equivalent of this state. If the mfinal parameter is equal to
zero, then the use of the preliminary preparation method is invalid. In this case, the tra-
ditional approach is used, which consists in reducing the size of the hash sum.
In accordance with the first three principles of the method, an interval stego key is
defined as a tuple of the following form:

 Skey = <EnumRule, DThreshold, priority, Methods, mfinal, AddrRule> (5)

where EnumRule = (EnumRulemin … EnumRulemax); DThreshold = (DThresholdmin …
DThresholdmax); Methods = <m1, m2, … , mn>; mi = <MethodIdi, MethodParamsi>.
The fourth principle of the method determines how the Methods sequence is formed.
The methods of this sequence should be arranged in order of potential increase in the
embedding path length or the DWM effective volume.
The fifth principle of the method determines the way of extraction DWM in the case
of the use of the interval stego key. When extraction, the procedure of searching for
specific values (which were used during the embedding) from the intervals is per-
formed. The selection of these values is carried out in accordance with the procedure
defined by the first principle of the method. After that, DWM extraction is performed.
Further, based on the information contained in the service field S, DWM is divided
into three fields: S, MISRec and Hash. Next, the MISRec field is decompressed. After this,
the truth of the relation is checked:

 LDecom(MISRec) = LEmbPath = LS + LISRec + LHash (6)

where LDecom(MISRec) – length of field MISRec decompression result; LEmbPath – length
of embedding path; LS, LISRec, LHash – lengths of the respective fields of DWM.
In fig. 1 shows a flowchart for the implementation of the proposed embedding meth-
od. The flowchart is shown for the case of using two methods included in the Meth-
ods component: the basic DWM embedding method and the embedding method
adapted to FPGAs containing Adaptive Logic Modules (ALM).

5 Experimental Assessment of the Proposed Method

The method proposed in the work was implemented as a software application. For
this, software modules were used that implement: a) the basic DWM embedding
method; b) the embedding method adapted to FPGAs containing ALM; c) the method
of embedding DWM with the preliminary preparation of the information object of the
FPGA program code. The functioning procedure of the developed software applica-
tion is as follows. The application receives the interval stego key. After that, values
are sequentially selected from the interval components and transferred to the corre-
sponding DWM embedding modules. In the process of embedding, condition (3) is
checked. In general, the functioning of the developed application corresponds to the
flowchart shown in Fig. 1.

mfinal

Hash size
reduction

(3)

Embedding with the
preliminary preparation

of the information object

0

1

0

End

1

(3)

E=EnumRulemin…EnumRulemax

T=DThresholdmin…DThresholdmax

Start

E = EnumRulemax &
T = DThresholdmax

1

0

0 1

(3)

P1=Param1min…Param1max
… … … … … …
Pk=Paramkmin…Paramkmax

P1 = Param1max &
Pk = Paramkmax

1

0

0 1

Embedding method
adapted to FPGAs
containing ALM

Basic DWM
embedding method

End End

Fig. 1. Flowchart for the implementation of the proposed method

In the environment of the developed software, an experiment was carried out neces-
sary to assessment the proposed method. The initial data of the experiment were 6
FPGA projects. These projects have a different amount of FPGA hardware resources
used and different design missions. The synthesis of the projects was carried out in
the CAD Intel Quartus Prime [25]. As target FPGA chips Intel Cyclone IV [26, 27]
and Cyclone V [28] were applied. The experiment process was as follows. Two stego
keys were formed: point key and interval key. As parameters of the point key, the
minimum values of the corresponding interval components of the interval key were
used. Next, DWM was formed using both keys. After that, the effective DWM vol-
ume was calculated. If the volume turned out to be sufficient to store the hash sum,
then DWM was embedding in the container. After that, DWM extraction was per-
formed and the possibility of dividing it into separate fields was checked.

Table 1 shows that when using the traditional approach for projects 1, 2, the size of
the Hash field is insufficient to store the hash amount. When using an interval stego
key with the parameter mfinal = 0 (the method of preliminary preparation of the infor-
mation object is not applied), the size of the Hash field increases, but is still insuffi-
cient. This is due to too few LUT units in the project. However, with the value of the
parameter mfinal = 1 (the method of preliminary preparation of the information object
is allowed), the size of the Hash field allows you to store the hash sum in DWM. For
projects 3–6 mfinal = 0, because a sufficient size of the Hash field is provided without
using the method of preliminary preparation of the information object.
Project 3 shows that the Hash field is not large enough when using the point stego
key. When switching to the interval stego key, this field is enough to store the MD5
hash sum (the size is 128 bits). Projects 5 and 6 show an increase in the length of the
Hash field when switching to the interval stego key. Due to this, it becomes possible
to store a hash of a larger length: SHA1 (the size is 160 bits) for project 5 and SHA2
(the size is 256 bits) for project 6. Thus, the results of experimental assessment of the
proposed method show that the method allows to increase the effective volume of
DWM. For projects with a very small amount of LUT units, an increase is achieved
by switching to the method of preliminary preparation of the information object. For
other projects, an increase in effective volume is provided by using interval parame-
ters of the stego key instead of point parameters.

Table 1. Experiment Results

Project
No

Total
amount
of LUT

units

Traditional approach Proposed method
Amount of
LUT units,

which are along
the embedding

path

Maximum
possible

amount of
hash sum

bits

Possibility
to use hash
functions

(size)

Amount of
LUT units,

which are along
the embedding

path

mfinal Maximum
possible

amount of
hash sum

bits

Possibility
to use hash
functions

(size)

1 780 143
(18,3%) 6 — 176

(22,5%)
0 7 —
1 143 MD5 (128)

2 4212 904
(21,4%) 35 — 1011

(24,1%)

0 43 —

1 904
SHA2(256) or
SHA1(160) or

MD5 (128)

3 9856 2620
(26,5%) 119 — 3371

(34,2%) 0 130 MD5 (128)

4 10074 2851
(28,3%) 133 MD5 (128) 3275

(32,5%) 0 138 MD5 (128)

5 11839 3179
(26,8%) 141 MD5 (128) 3932

(33,2%) 0 181 SHA1(160) or
MD5 (128)

6 15043 4811
(31,9%) 168

SHA1(160)
or

MD5(128)

6155
(40,9%) 0 262

SHA2(256) or
SHA1(160) or

MD5 (128)

6 Conclusions and Directions of the Further Research

The paper proposes a method that increases the effective volume of DWM used in
FPGA program code integrity monitoring tasks. If the effective volume is small, the

hash sum cannot be stored in the DWM. The proposed method eliminates this disad-
vantage.

The proposed method differs from existing methods in that instead of the point
components of the stego key, interval components are used. This allows the use of a
universal stego key for many containers. However, the key components in each case
are adapted to obtain the most suitable effective DWM volume. When you embedding
DWM, the values of the interval components are iterated sequentially. At the same
time, on each iteration, the sufficiency of the effective DWM volume is checked to
store the hash sum. When extracting DWM, the values of the interval components of
the key are sequentially enumerated. The paper proposes a relation that allows you to
make a decision about the interval element that was used when DWM embedding.
An experimental evaluation of the proposed method showed its effectiveness in com-
parison with existing methods. Namely, the method provides an effective volume of
DWM sufficient to store hash sums (in integrity monitoring tasks). For FPGA projects
that were used in the experiment, the average increase in the effective volume of the
DWM was 22.8%. This, in most experimental cases, made it possible to use a hash
sum with greater cryptographic strength than before applying the proposed method.

Application of the proposed method simultaneously with an increase in the effec-
tive volume of DWM increases the amount of LUT units, the program code of which
changes during the embedding of DWM. We assume that this could potentially reduce
the resistance of such an embedding to steganalysis. At the moment, there are no
well-developed methods of steganalysis for FPGA containers. Conventional steganal-
ysis methods are not effective for containers of this kind. Because of this, a decrease
in resistance to traditional stegoanalysis can be considered insignificant. However,
with the development of stegoanalysis methods oriented to FPGA containers, the
problem of reducing resistance when applying the proposed method will become rele-
vant. We consider that this question creates the direction for further research.

References

1. Andina, J.: FPGAs: Fundamentals, Advanced Features, and Applications in Industrial
Electronics. CRC Press, Boca Raton, USA (2017). doi: 10.1201/9781315162133

2. Raj, A.: FPGA-Based Embedded System Developer's Guide. CRC Press, Boca Raton,
USA (2018). doi: 10.1201/9781315156200

3. Lysenko, S., Bobrovnikova, K., Savenko, O.: A Botnet Detection Approach Based on the
Clonal Selection Algorithm. In: DESSERT 2018 – 9th IEEE International Conference on
Dependable Systems, Services and Technologies, pp. 449-453. Kyiv, Ukraine (2018)
doi: 10.1109/DESSERT.2019.8770035

4. Vanderbauwhede, W., Benkrid, K. (Eds.): High-performance computing using FPGAs.
Springer, New-York, USA (2016)

5. Unsalan, C., Tar, B.: Digital System Design with FPGA. New-York, McGraw-Hill (2017)
6. Tyurin, S.: LUTs Sliding Backup. IEEE Transactions on Device and Materials Reliability.

19, No 1, 221–225 (2019). doi: 10.1109/TDMR.2019.2898724
7. Amano, H.: Principles and Structures of FPGAs. Springer, Singapore (2018). doi:

10.1007/978-981-13-0824-6

8. Waidyasooriya, H., Hariyama, M., Uchiyama, K.: Design of FPGA-Based Computing Sys-
tems with OpenCL. Springer, Cham, Switzerland (2018). doi: 10.1007/978-3-319-68161-0

9. Drozd, O., Kuznietsov, M., Martynyuk, O., Drozd, M.: A method of the hidden faults
elimination in FPGA projects for the critical applications. In: DESSERT 2018 – 9th IEEE
International Conference on Dependable Systems, Services and Technologies, pp. 231-
234. Kyiv, Ukraine (2018). doi: 10.1109/DESSERT.2018.8409131.

10. Drozd, O., Kharchenko, V., Rucinski, A. et. al.: Development of Models in Resilient
Computing. In: DESSERT 2019 – 10th IEEE International Conference on Dependable
Systems, Services and Technologies, pp. 2-7. Leeds, UK (2019) doi:
10.1109/DESSERT.2019.8770035.

11. Hovorushchenko, T, Pomorova, O.: Ontological approach to the assessment of information
sufficiency for software quality determination. SEUR-WS, 1614, 332–348 (2016)

12. Vacca, J.: Computer and information security handbook, 3rd edition. Morgan Kaufmann,
Waltham, Mass (2017).

13. Bishop, M.: Computer Security. 2nd edition. Addison-Wesley, Boston, USA (2018).
14. Katz, J.: Introduction to Modern Cryptography, 2nd edition. CRC Press, USA (2018).
15. Conklin, W. et al.: Principles of Computer Security, 4th edition. McGraw-Hill, (2015).
16. Stallings, W.: Cryptography and Network Security: Principles and Practice, 7th edition.

Pearson Education, UK, Harlow (2017)
17. Shih, F.: Digital Watermarking and Steganography: Fundamentals and Techniques. 2nd

edition. CRC Press, Boca Raton, USA (2017)
18. Nematollahi, M., Vorakulpipat, C., Rosales, H.: Digital Watermarking: Techniques and

Trends. Springer, Singapore (2017).
19. Yahya, A.: Steganography Techniques for Digital Images. Springer (2018)
20. Zashcholkin, K., Ivanova, O.: LUT-object Integrity Monitoring Methods Based on Low

Impact Embedding of Digital Watermark. In: 14th International Conference on Advanced
Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET-
2018), pp. 519–523. Lviv-Slavske, Ukraine (2018). doi: 10.1109/TCSET.2018.8336255

21. Zashcholkin, K., Drozd, O.: The Detection Method of Probable Areas of Hardware Trojans
Location in FPGA-based Components of Safety-Critical Systems. In: DESSERT-2018 –
9th IEEE International Conference on Dependable Systems, Services and Technologies,
pp. 220–225. Kiev, Ukraine (2018). doi: 10.1109/DESSERT.2018.8409130

22. McAnlis, C., Haecky, A.: Understanding Compression: Data Compression for Modern
Developers. O’Reilly Media, USA (2016).

23. Sayood, K. Introduction to Data Compression, 5th edition. Morgan Kaufmann (2018).
24. Drozd, A., Antoshchuk, S., Drozd, J., Zashcholkin, K. et. al.: Checkable FPGA Design:

Energy Consumption, Throughput and Trustworthiness. In: Green IT Engineering: Social,
Business and Industrial Applications, Studies in Systems, Decision and Control,
V. Kharchenko, Y. Kondratenko, J. Kacprzyk (edits), vol. 171, pp. 73-94, Springer, Berlin,
Heidelberg (2019). doi: 10.1007/978-3-030-00253-4_4.

25. Intel Quartus Prime. https://www.intel.com/content/www/us/en/software/programmable
/quartus-prime/overview.html.

26. Intel Cyclone FPGA series. https://www.intel.com/content/www/us/en/products/programmable
/cyclone-series.html.

27. Intel Cyclone IV Device Handbook, https://www.intel.com/content/dam/www
/programmable /us/en/pdfs/ literature/hb/cyclone-iv/cyclone4-handbook.pdf.

28. Intel Cyclone V Device Handbook, https://www.intel.com/content/dam/www
/programmable/us/en/pdfs/ literature/hb/cyclone-iv/cyclone5-handbook.pdf.

https://www.intel.com/content/www/us/en/software/
https://www.intel.com/content/www/us/%20en/products

	1 Introduction
	2 Literature Review and Goal of the Paper
	3 Analysis of Factors that Affect the Effective Volume of a Monitoring Digital Watermark
	DWM is located in the FPGA code space along the embedding path. The amount of bits of the embedding path depends on the size of the FPGA program code and on the stego key.
	The effective volume of DWM is the volume available in it to store the monitoring hash sum:

	4 The Proposed Approach to Increase the Effective Volume of DWM by Using Interval Stego Key
	5 Experimental Assessment of the Proposed Method
	6 Conclusions and Directions of the Further Research
	References

