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ABSTRACT
Motivated by clinical tasks where acquiring certain features such
as FMRI or blood tests can be expensive, we address the problem of
test-time elicitation of features. We formulate the problem of cost-
aware feature elicitation as an optimization problem with trade-off
between performance and feature acquisition cost. Our experiments
on three real-world medical tasks demonstrate the efficacy and
effectiveness of our proposed approach in minimizing costs and
maximizing performance.
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1 INTRODUCTION
In supervised classification setting, every instance has a fixed fea-
ture vector and a discriminative function is learnt on such fixed-
length feature vector and it’s corresponding class variable. However,
a lot of practical problems like healthcare, network domains, de-
signing survey questionnaire [19, 20] etc has an associated feature
acquisition cost. In such domains, there is a cost budget and get-
ting all the features of an instance can be very costly. As a result,
many cost sensitive classifier models [2, 8, 24] have been proposed
in literature to incorporate the cost of acquisition into the model
objective during training and prediction.

Our problem is motivated by such a cost-aware setting where the
assumption is that prediction time features have an acquisition cost
and adheres to a strict budget. Consider a patient visiting a doctor
for some potential diagnosis of a disease. For such a patient, infor-
mation like age, gender, ethnicity and other demographic features
are easily available at zero cost. However, various lab tests that the
patient needs to undergo incurs cost. So, a training model should be
able to identify the most relevant (i.e. those which are most infor-
mative, yet least costly) lab tests that are required for each specific
patient. The intuition of this work is that different patients, depend-
ing on their history, ethnicity, age and gender, may require different
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tests for reasonably accurate prediction. We build on the intuition
that given certain observed features like one’s demographic details,
the most important features for a patient depends on the important
features for similar patients. Based on this intuition, we find out
similar data points in the observed feature space and identify the
important feature subsets of these similar instances by employing
a greedy information theoretic feature selector objective.

Our contributions in this work are as follows: (1) formalize the
problem as a joint optimization problem of selecting the best feature
subset for similar data points and optimizing the loss function using
the important feature subsets. (2) account for acquisition cost in
both the feature selector objective and classifier objective to balance
the trade-off between acquisition cost and model performance. (3)
empirically demonstrate the effectiveness of the proposed approach
on three real-world medical data sets.

2 RELATEDWORK
The related work on cost-sensitive feature selection and learning
can be categorized into the following four broad approaches.
Tree based budgeted learning: Prediction time elicitation of fea-
tures under a cost budget has been widely studied in literature. A
lot of work has been done in tree based models [5, 16, 17, 26–28]
by adding cost term to the tree objective function in either deci-
sion trees or ensemble methods like gradient boosted trees. All
these methods aim to build an adaptive and complex decision tree
boundary by considering trade-off between performance and test-
time feature acquisition cost. While we are similar in motivation to
these approaches, our methodology is different in the sense that
we do not consider tree based models. Instead our approach aims
to find local feature subsets using an information theoretic feature
selector for different clusters of training instance build in a lower
dimensional space.
Adaptive classification and dynamic feature discovery: Our
work also draws inspiration from Nan al.’s work [15] where they
learn a high performance costly model and approximate the model’s
performance adaptively by building a low cost model and gating
function which decides which model to use for specific training in-
stances. This adaptive switching between low and high cost model
takes care of the trade-off between cost and performance. Our
method is different from theirs because we do not maintain a high
cost model which is costly to build and and difficult to decide. We
refine the parameters of a single low cost model by incorporating a
cost penalty in the feature selector and model objective. Our work
is also along the direction of Nan et al.’s work [18] where they select
varying feature subsets for test instance using neighbourhood in-
formation of the training data. While calculating the neighborhood
information from training data is similar to building clusters in
our approach, the training neighborhood for our method is on just
the observed feature space. Moreover, we incorporate the neigh-
bourhood information in the training algorithm whereas Nan et
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al.’s work is a prediction time algorithm. Ma et al. [10] also address
this problem of dynamic discovery of features based on generative
modelling and Bayesian experimental design.
Feature elicitation using Reinforcement learning: There is
another line of work along the sequential decision making liter-
ature [4, 9, 22] to model the test time elicitation of features by
learning the optimal policy of test feature acquisition. Along this
direction, our work aligns with the work of Shim et al. [25] where
they jointly train a classifier and RL agent together. Their classifier
objective function is similar to our method with a cost penalty,
however they use a Deep RL agent to figure out the policy. We on
the other hand use localised feature selector to find the important
feature subsets for the underlying training clusters in the observed
feature space.
Active Feature Acquisition: Our problem set-up is also inspired
by work along active feature acquisition [13, 14, 19, 23, 29] where
certain feature subsets are observed and rest are acquired at a cost.
While all the above mentioned work follow this problem set up
during training time and typically use active learning to seek infor-
mative instances at every iteration, we use this particular setting
for test instances. Unlike their work, all the training instances in
our work are fully observed and the assumption is that the feature
acquisition cost has already being paid during training. Also, we
address a supervised classification problem instead of an active
learning set up. Our problem set up is similar to Kanani et al. [6] as
they also have partial test instances, however their problem is that
of instance acquisition where the acquired feature subset is fixed.
Our method aims at discovering variable length feature subsets for
various underlying clusters.
Our contributions: Although the problem of prediction time fea-
ture elicitation has been explored in literature from various direc-
tions and with various assumptions, we come up with an intu-
itive solution to this problem and formulate the problem in a two
step optimization framework. We incorporate acquisition cost
in both the feature selector and model objectives to balance the
performance and cost trade-off. The problem set up is naturally
applicable in real world health care and other domains where the
knowledge of the observed features also needs to be accounted
while selecting the elicitable features .

3 COST AWARE FEATURE ELICITATION
3.1 Problem setup
Given: A dataset {(𝑥1, 𝑦1), · · · , (𝑥𝑛, 𝑦𝑛)} with each 𝑥𝑖 ∈ R𝑑 as the
feature set. Each feature has an associated cost 𝑟𝑖 .
Objective: Learn a discriminative model which is aware of the fea-
ture costs and can balance the trade-off between feature acquisition
cost and model performance.
We make an additional assumption here that there is a subset of fea-
tures which have 0 cost. These could be, for example, demographic
information (e.g. age, gender, etc) in a medical domain which are
easily available/less cumbersome to obtain as compared to other
features. In other words, we can partition the feature set F = O∪E
where O are the zero cost observed features and E are the elicitable
features which can be acquired at a cost. We also assume that the
training data is completely available with all features (i.e. the cost
for all the features has already been paid). The goal is to use these

observed features to find similar instances in the training set and
identify the important feature subsets for each of these clusters
based on a feature selector objective function which balances the
trade-off between choosing the important features and the cost at
which these features are acquired.

3.2 Proposed solution
As a first step, we cluster the training instances based on just the
observed zero cost feature set O. The intuition is that instances
with similar features will also have similar characteristics in terms
of which elicitable features to order. For example, in a medical appli-
cation, whether to request for a blood test or a ct-scan will depend
on factors such as age, gender, ethnicity and whether patients with
similar demographic features had requested these tests. Also, since
the feature set O, comes at zero cost, we assume that for unseen
test instances, this feature set is observed.

Figure 1: Optimization framework for the proposed problem

We propose a model which consists of a parameterized feature
selector module 𝐹 (𝑋, E𝑐𝑖 , 𝛼) which takes in a set of input instances
𝐸𝑐𝑖 belonging to the cluster 𝑐𝑖 based on the feature set O and pro-
duces a subset 𝑋 of most important features for the classification
task. The feature selection model is based on an information- theo-
retic objective function and is augmented with the feature cost to
account for the trade off between model performance and acquisi-
tion cost at test-time. The output feature subset from the feature
selector module are used to update the parameters of the classifier.
The optimization framework is shown in Figure 1

Information theoretic Feature selector model: The feature
selector module selects the best subset of features for each cluster
of training data based on an information theoretic objective score.
Since at test time, we do not know the elicitable feature subset E
(since the goal of feature selection is in the first place to find the
truly necessary features for learning). Hence we propose to use the
closest set of instances in the training data to the current instance.
Since we assume that the training data has already been elicited,
we have all the features observed in the training data. We compute
this distance just based on the observed feature set O. We cluster
the training data based on the observed features into m clusters
𝑐1, 𝑐2, · · · 𝑐𝑚 . Next, we use the Minimum-Redundancy-Maximum
Relevance (MRMR) feature Selection paradigm [1, 21]. We denote
parameters [𝛼1𝑐𝑖 , 𝛼

2
𝑐𝑖
, 𝛼3𝑐𝑖 , 𝛼

4
𝑐𝑖
] as parameters of a particular cluster

𝑐𝑖 . The feature selection module is a function of the parameters of
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the cluster to which a set of instances belong and is defined as:

𝐹 (𝑋, E𝑐𝑖 , 𝛼𝑐𝑖 ) = 𝛼1𝑐𝑖

∑
E𝑝 ∈𝑋

𝐼 (E𝑝 ;𝑌 )︸                 ︷︷                 ︸
max. relevance

−
∑
E𝑝 ∈𝑋

©«𝛼2𝑐𝑖
∑
E 𝑗 ∈𝑋

𝐼 (E 𝑗 ; E𝑝 ) − 𝛼3𝑐𝑖

∑
E 𝑗 ∈𝑋

𝐼 (E𝑝 ; E 𝑗 |𝑌 )
ª®¬︸                                                              ︷︷                                                              ︸

min. redundancy
−𝛼4𝑐𝑖

∑
E𝑝 ∈𝑋

𝑐 (E𝑝 )︸             ︷︷             ︸
cost penalty

(1)

where 𝐼 (E𝑝 ;𝑌 ) is the mutual information between the random vari-
able E𝑝 (feature) and 𝑌 (target). In the above equation, the feature
subset 𝑋 is grown greedily using a greedy optimization strategy
maximizing the above objective function. In equation 1, E𝑝 denotes
a single feature from the elicitable set E that is considered for eval-
uation based on the subset 𝑋 grown so far. The first term is the
mutual information between each feature and the class variable 𝑌 .
In a discriminative task, this value should be maximized. The sec-
ond term is the pairwise mutual information between each feature
to be evaluated and the features already added to the feature subset
𝑋 . This value needs to be minimized for selecting informative fea-
tures. The third term is called the conditional redundancy [1] and
this term needs to be maximized. The last term adds the penalty
for cost of every feature and ensures the right trade-off between
cost, relevance and redundancy. For this work, we do not learn the
parameters 𝛼𝑐𝑖 for each cluster, instead fix these parameters to 1.
We leave the learning of these parameters to future work.

In the problem setup, since the 0 cost feature subset is always
present, we always consider the observed feature subset O in ad-
dition to the most important feature subset as returned by the
Feature selector objective. We also account for the knowledge of
the observed features while growing the informative feature subset
through greedy optimization. Specifically, while calculating the
pairwise mutual information between the features and the condi-
tional redundancy term (second and third term of equation 1), we
also evaluate the mutual information of the features with these
observed features. It is to be noted that in cases where the observed
features are not discriminative enough of the target, the feature se-
lector module ensures that the elicitable features withmaximum
relevance to the target variable are picked.

Optimization Problem: The cost aware feature selector
𝐹 (𝑋, E𝑐𝑖 , 𝛼) for a given set of instance E𝑐𝑖 belonging to a specific
cluster 𝑐𝑖 solves the following optimization problem:

𝑋 𝑖
𝛼 = argmax𝑋 ⊆E𝐹 (𝑋, E𝑐𝑖 , 𝛼) (2)

For a given instance (𝑥,𝑦), we denote 𝐿(𝑥,𝑦, 𝑋, 𝜃 ) as the loss
function using a subset 𝑋 of the features as obtained from the
Feature selector optimization problem. The optimization problem
for learning the parameters of a classifier can be posed as:

min
𝜃

𝑛∑
𝑖=1

𝐿(𝑥𝑖 , 𝑦𝑖 , 𝑋 𝑖
𝛼 , 𝜃 ) + 𝜆1𝑐 (𝑋 𝑖

𝛼 ) + 𝜆2 | |𝜃 | |2 (3)

where 𝜆1 and 𝜆2 are hyper-parameters. In the above equation, 𝜃
is the parameter of the model and can be updated by standard
gradient based techniques. This loss function takes into account the
important feature subset for each cluster and updates the parameter
accordingly. The classifier objective also consists of a cost term
denoted by 𝑐 (𝑋 𝑖

𝛼 ) to account for the cost of the selected feature
subset. For hard budget on the elicited features, the cost component
in the model objective can be considered. In case of a cost budget,
this component can be ignored because the elicited feature subset
adheres to a fixed cost and hence, this term is constant.

3.3 Algorithm
We present the algorithm for Cost Aware Feature Elicitation
(CAFE) in Algorithm 1. CAFE takes as input set of training examples
E, the zero cost feature set O, the elicitable feature subset E, a cost
vector𝑀 ∈ R𝑑 and a budget 𝐵. Each element in the training set E
consists of a tuple (𝑥,𝑦) where 𝑥 ∈ R𝑑 is the feature vector and y
is the label.

The training instances E are clustered based on just the observed
feature set O using K-means clustering (Cluster). For every cluster
𝑐𝑖 , the training instances belonging to the cluster is assigned to
the set E𝑐𝑖 and is passed to the Feature Selector module (lines 6-8).
The FeatureSelector function takes E𝑐𝑖 , parameter 𝛼 , the feature
subsets O and E, cost vector𝑀 and a predefined budget 𝐵 as input
and returns the most important feature subset X𝑐𝑖

𝛼 corresponding
to a cluster 𝑐𝑖 . A greedy optimization technique is used to grow
the feature subset 𝑋 of every cluster based on the feature selector
objective function defined in Equation 1. The FeatureSelector
terminates once the budget 𝐵 is exhausted or the mutual informa-
tion score becomes negative. Once all the important feature subsets
are obtained for all the |𝐶 | clusters, the model objective function is
optimized as mentioned in Equation 3 for all the training instances
using the important feature subsets for the clusters to which the
training instances belong (lines 12-18). All the remaining features
are imputed by using either 0 or any other imputation model be-
fore training the model. The final training model G(EO∪𝑋𝛼

, 𝛼, 𝜃 )
is an unified model used to make predictions for a test-instance
consisting of just the observed feature subset O.

4 EMPIRICAL EVALUATION
We did experiments with 3 real worldmedical data sets. The in-
tuition of CAFE makes more sense in medical domains, hence our
choice of data sets. However, the idea can be applied to other do-
mains ranging from logistics to resource allocation task. Table 2
jots down the various features of the data sets used in our experi-
ments. Below are the details of the 3 real data sets, we use for our
experiments.

1. Parkinson’s disease prediction: The Parkinson’s Progression
Marker Initiative (PPMI) [12] is an observational study where the
aim is to identify Parkinson’s disease progression from various
types of features. The PPMI data set consists of various features
related to various motor functions and non-motor behavioral and
psychological tests. We consider certain motor assessment features
like rising from chair, gait, freezing of gait, posture and postural sta-
bility as observed features and rest all features as elicitable features
which must be acquired at a cost.
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Algorithm 1 Cost Aware Feature Elicitation

1: function CAFE(E,O, E, 𝑀, 𝐵)
2: E = EO∪E ⊲ E consists of 0 cost features O and costly

features E
3: 𝐶 = Cluster(EO) ⊲ Clustering based on the observed

features O
4: X = {∅} ⊲ Stores best feature subsets of each cluster
5: for 𝑖 = 1 to |𝐶 | do ⊲ Repeat for every cluster
6: E𝑐𝑖 = GetClusterMember(E,𝐶, 𝑖)
7: ⊲ get the data points belonging to each cluster 𝑐𝑖
8: X𝑐𝑖

𝛼 = FeatureSelector(E𝑐𝑖 , 𝛼,O, E, 𝑀, 𝐵)
9: ⊲ Parameterized feature selector for each cluster
10: X = X ∪ {X𝑐𝑖

𝛼 ∪ O}
11: end for
12: for 𝑖 = 1 to |𝐶 | do ⊲ Repeat for every cluster
13: X𝑐𝑖

𝛼 = GetFeatureSubset(X, 𝑖)
14: ⊲ Get the feature subset for each cluster 𝑐𝑖
15: for 𝑗 = 1 to |E𝑐𝑖 | do ⊲ Repeat for every data point in

cluster 𝑐𝑖
16: Optimize 𝐽 (𝑥 𝑗 , 𝑦 𝑗 ,X𝑐𝑖

𝛼 , 𝜃, 𝑀)
17: ⊲ Optimize the objective function in Equation 3
18: Update 𝜃 ⊲ Update the model parameter 𝜃
19: end for
20: end for

return G(EO∪𝑋𝛼
, 𝛼, 𝜃 ) ⊲ G is the training model built on E

21: end function

2. Alzheimer’s disease prediction: The Alzheimer’s Disease Neu-
roIntiative (ADNI1) is a study that aims to test whether various
clinical, FMRI and biomarkers can be used to predict the early onset
of Alzheimer’s disease. In this data set, we consider the demograph-
ics of the patients as observed and zero cost features and the FMRI
image data and cognitive score data as unobserved and elicitable
features.

3. Rare disease prediction This data set is created from survey
questionnaires [11] and the task here is to predict whether a person
has rare disease or not. The demographic features are observed
while other sensitive questions in the survey regarding technology
use, health and disease related meta information is considered to
be elicitable.

Evaluation Methodology: All the data sets were partitioned
into a 80:20 train-test split. Hyper parameters like the number of
clusters on the observed features were picked by doing 5 fold cross
validation on all the data sets. The optimal number of clusters
picked were 6 for ADNI, 9 for Rare disease data set and 7 for the
PPMI data set. For the results reported in Table 1, we considered a
hard budget on the number of elicitable features and set it to half
of the total number of features in the respective data set. We use K-
means clustering as the underlying clustering algorithm. For all the
reported results, we use an underlying Support Vector Machine [3]
classifier with Radial basis kernel function. Since, all the data sets
are highly imbalanced, hence we consider metrics like recall, F1,
AUC-ROC and precision for our reported results. For the Feature
selector module, we used the existing implementation of Li et al. [7]

1www.loni.ucla.edu/ADNI

Figure 2: Recall Vs number of clusters for Rare disease for
CAFE-I

and built upon it. We consider two variants of CAFE:(1) CAFE in
which we replace the missing and unimportant features of every
cluster with 0 and then update the classifier parameters (2) CAFE-I
where we replace the missing and unimportant features by using an
imputation model learnt from the already acquired feature values
of other data points. A simple imputation model is used where we
replace the missing features with mode for categorical features and
mean for numeric features.

Baselines: We consider 3 baselines for evaluating CAFE and
CAFE-I: (1) using the observed and zero cost features to update
the training model denoted as OBS (2) using a random subset of
fixed number of elicitable features and all the observed features
to update the training model denoted as RANDOM. For this baseline,
the results are averaged over 10 runs. (3) using the information
theoretic feature selector score as defined in Equation 1 to select
the ’k’ best elicitable features on the entire data without any cluster
consideration along with the observed features denoted as KBEST.
We keep the value of ’k’ to be the same as that used by CAFE.
Although some of the existing methods could be potential baselines,
none of thesemethodsmatch the exact setting of our problem, hence
we do not compare our method against them.

Results:We aim to answer the following questions:
Q1: How does CAFE and CAFE-I with hard budget on features

compare against the standard baselines?
Q2: How does the cost-sensitive version of CAFE and CAFE-I

fare against the cost-sensitive baseline KBEST?
The results reported in Table 1 suggests both CAFE and CAFE-

I significantly outperform the other baselines in almost all the
metrics for Rare disease and PPMI data set. For ADNI, CAFE and
CAFE-I outperform the other baselines in clinically relevant recall
metric while KBEST performs the best for the other metrics. The
reason for this is that in ADNI, since, the elicitable features are
image features and we discretize the image features to calculate
the information gain for the feature selector module, the granular
level feature information is lost because of this discretization and
hence the drop in performance. For the experiments in Table 1,
we keep the budget to be approximately half of the total number

www.loni.ucla.edu/ADNI
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Data set Algorithm Recall F1 AUC-ROC AUC-PR

Rare disease

OBS 0.647 0.488 0.642 0.347
RANDOM 0.57 ± 0.064 0.549± 0.059 0.693 ± 0.042 0.421 ± 0.051
KBEST 0.47 0.457 0.628 0.349
CAFE 0.647 0.628 0.749 0.489
CAFE-I 0.647 0.647 0.759 0.512

PPMI

OBS 0.765 0.685 0.741 0.563
RANDOM 0.857 ± 0.023 0.809 ± 0.015 0.85 ± 0.013 0.712 ± 0.020
KBEST 0.828 0.807 0.846 0.716
CAFE 0.846 0.817 0.855 0.726
CAFE-I 0.855 0.829 0.865 0.743

ADNI

OBS 0.5 0.44 0.553 0.365
RANDOM 0.711 ± 0,043 0.697 ± 0.082 0.767 ± 0.064 0.592 ± 0.098
KBEST 0.73 0.745 0.806 0.646
CAFE 0.807 0.711 0.786 0.578
CAFE-I 0.769 0.701 0.776 0.574

Table 1: Comparison of CAFE against other baseline methods on 3 real data sets

Dataset # Pos # Neg # Observed # Elicitable
PPMI 554 919 5 31
ADNI 94 287 6 69

Rare Disease 87 232 6 63
Table 2: Data set details of the 3 real data sets used.#Pos is num-
ber of positive example, #Neg is number of negative example. # Ob-
served is number of observed features and # Elicitable is the maxi-
mum number of features that can be acquired.

of features for all the methods. On an average, CAFE-I performs
better than CAFE across all the data sets because of the underlying
imputation model which helps in better treatment of the missing
values as against replacing all the features by 0. This answers Q1
affirmatively.

In Figure 3, we compare the cost version of CAFE and CAFE-I
against KBEST. Cost version takes into account the cost of individ-
ual features and accounts for them as penalty in the feature selector
module. Hence, in this version of CAFE, a cost budget is used as
opposed to hard budget on the number of elicitable features.We gen-
erate the cost vector by sampling each cost component uniformly
from (0,1). For PPMI and Rare disease, we can see that cost sensitive
CAFE performs consistently better than KBEST with increasing
cost budget. In the PPMI data set, the greedy optimization of the
feature selector objective on the entire data set lead to elicitation of
just 1 feature, beyond that the information gain was negative, hence
the performance of PPMI across various cross budget remains the
same. CAFE on the other hand was able to select important feature
subsets for various clusters based on the observed features related
to gait and postures. For ADNI data set, CAFE performs better than
KBEST only in recall. The reason for this is the same as mentioned
above. This helps in answering Q2 affirmatively.

Lastly, Figure 2 shows the effect of increasing cluster on the
validation recall for the Rare disease data set. As can be seen, for
smaller number of clusters, the recall is very low and increases to
an optimum for 9 clusters. This helps us in understanding the fact
that forming clusters based on observed important features helps
CAFE in selecting different feature subsets for different clusters,
thus helping the learning procedure.

5 CONCLUSION
In this paper, we pose the prediction time feature elicitation problem
as an optimization problem by employing a cluster specific feature
selector to choose the best feature subset and then optimizing the
training loss. We show the effectiveness of our approach in real data
sets where the problem set up is intuitive. Future work includes
learning the parameters of the feature selector module and jointly
optimizing the feature selector and model parameters for a more
robust framework and adding more constraints to optimization.
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