
Tautology Checkers in Isabelle and Haskell ?

Jørgen Villadsen

Algorithms, Logic and Graphs Section
Department of Applied Mathematics and Computer Science

Technical University of Denmark
Richard Petersens Plads, Building 324, DK-2800 Kongens Lyngby, Denmark

Abstract. With the purpose of teaching functional programming and
automated reasoning to computer science students, we formally verify
a sound, complete and terminating tautology checker in Isabelle with
code generation to Haskell. We describe a series of approaches and finish
with a formalization based on formulas in negation normal form where
the Isabelle/HOL functions consist of just 4 lines and the Isabelle/HOL
proofs also consist of just 4 lines. We investigate the generated Haskell
code and present a 24-line manually assembled program.

1 Introduction

Logic textbooks usually have pen-and-paper proofs only. But we find that the
formalization of logic can be a very rewarding endeavor.

Our main interest in the formalizations of logic is for teaching an advanced
course on automated reasoning for computer science students at the Technical
University of Denmark (DTU). The prerequisites for the automated reasoning
course include courses in logic and functional programming. In the course, we
start with the formal verification of a sound, complete and terminating tautology
checker as described in the present paper. We end with the formal verification
of a proof system kernel for first-order logic [7].

Both in our courses and and in our student projects and theses we mainly
use the proof assistant Isabelle/HOL [10].

https://isabelle.in.tum.de/

Our longer term goal is a formalized logic textbook. Rather than formally
verifying existing code it is common to develop everything in Isabelle and then
use the code generator at the end of the formalization. This is also the strategy
that we follow for our tautology checker.

The following Isabelle formalizations have been tested in Isabelle2020/HOL
and the following Haskell programs have been tested in Stackage LTS 16.10
(ghc-8.8.3).

? Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

https://isabelle.in.tum.de/

The Isabelle formalizations are available here:

https://github.com/logic-tools/micro

The main formalization is in the file Prover.thy and the whole tautology
checker — with Isabelle proofs of soundness, completeness and termination as
well as a small example and the code generation to Haskell — even fits on a
single slide (25 lines including blank lines).

We present a small Isabelle code generation example in Section 2. We discuss
related work in Section 3. In Section 4 we investigate a tautology checker based on
the standard two-sided sequent calculus with falsity and implication. In Section 5
we investigate tautology checkers based on a one-sided sequent calculus with
negation and conjunction and also with negation and disjunction. In Section 6
we describe in details a formalization of a tautology checker based on a one-
sided sequent calculus with formulas in negation normal form (NNF). Finally,
we conclude with future work in Section 7.

2 Code Generation in Isabelle

Consider the following example from the Isabelle manual on code generation:

The example provides functions for amortized queues by keeping two lists
and performing a list reversal when necessary. We often leave out the types but
for the constant ‘empty’ the type is needed since there is already a constant
empty for the set ∅ imported from the theory Main.

We have extended the example in the manual with a theorem and a proof:
unfolding empty def by simp (which first unfolds the definition of the empty
queue and then finishes the proof by simplification of the resulting expression).

The screenshot shows two ‘Info’ pop-up windows to the right. The top one
reports that termination for the enqueue/dequeue functions have been automat-
ically proved and the bottom one reports that the code generation to Haskell
has been successful.

https://github.com/logic-tools/micro

The exported lines are essentially as follows:

import Prelude (Maybe(..), print, reverse)

data Queue a = AQueue [a] [a]

empty = AQueue [] []

enqueue x (AQueue xs ys) = AQueue (x : xs) ys

dequeue (AQueue [] []) = (Nothing, AQueue [] [])

dequeue (AQueue xs (y : ys)) = (Just y, AQueue xs ys)

dequeue (AQueue (x : xs) []) =

(case reverse (x : xs) of y : ys -> (Just y, AQueue [] ys))

main = print (case dequeue (enqueue 0 empty) of (Just x, _) -> x)

Isabelle can generate code to Haskell, OCaml, Scala and Standard ML. Note
that the Isabelle theorem establishes a fact for all n (of any type) but the Haskell
printout only concerns the value 0.

3 Related Work

Completeness proofs go back to Hilbert for propositional logic [16] and to Gödel
for first-order logic [5]. Henkin simplified Gödel’s proof [6].

Shankar [13] formalized in 1985 a tautology checker for propositional logic
using the Boyer-Moore theorem prover.

Michaelis and Nipkow recently formalized propositional proof systems in
Isabelle/HOL [9]. We have used their formalization as starting point but we
avoid the use of a prover returning counterexamples. We have also made the
prover non-sequential, i.e. deterministic, and have simplified the termination
measure as well as the soundness and completeness proofs.

Nowadays many provers for propositional logic are based on SAT solving and
the resolution calculus [1]. Systems like leanTAP for first-order logic are usually
not formally verified [3]. Schlichtkrull has proved the completeness of first-order
resolution, also in Isabelle/HOL [12].

Blanchette gives an overview of the formalized metatheory of various other
logical calculi and automatic provers in Isabelle/HOL [2]. Paulson formalized
Gödel’s incompleteness theorems in Isabelle/HOL [11]. Kumar et al. formalized
higher-order logic [8] (soundness only).

For our introductory course on logical systems and logic programming we
have recently developed the Sequent Calculus Verifier (SeCaV) for first-order
logic [4] but it consists of thousands of lines in Isabelle/HOL and has no decision
procedure.

We recently gave a talk “A Micro Prover for Teaching Automated Reasoning”
(presentation only) at the Seventh Workshop on Practical Aspects of Automated
Reasoning (PAAR 2020).

4 Sequent Calculus — Falsity and Implication

We first investigate a tautology checker based on the standard two-sided sequent
calculus with falsity and implication.

Formulas p, q, . . . in classical propositional logic are built from propositional
variables (not further specified for now), falsity (⊥) and implications (p → q).
Let Γ and ∆ be finite sets of formulas.

The axioms of the sequent calculus are of the form:

Γ ∪ {p} ` ∆ ∪ {p} Γ ∪ {⊥} ` ∆

The rules of the sequent calculus are left and right introduction rules:

Γ ` ∆ ∪ {p} Γ ∪ {q} ` ∆
Γ ∪ {p→ q} ` ∆

Γ ∪ {p} ` ∆ ∪ {q}
Γ ` ∆ ∪ {p→ q}

We obtain the following Haskell code (we often use our own list membership
function in order to make it a bit easier to consider various other functional
programming languages):

import Prelude ((&&), (||), (==), Bool(..), print)

data Form a = Pro a | Falsity | Imp (Form a) (Form a)

member _ [] = False

member m (n : a) = m == n || member m a

common _ [] = False

common a (m : b) = member m a || common a b

mp a b (Pro n : c) [] = mp (n : a) b c []

mp a b c (Pro n : d) = mp a (n : b) c d

mp _ _ (Falsity : _) [] = True

mp a b c (Falsity : d) = mp a b c d

mp a b (Imp p q : c) [] = mp a b c [p] && mp a b (q : c) []

mp a b c (Imp p q : d) = mp a b (p : c) (q : d)

mp a b [] [] = common a b

prover p = mp [] [] [] [p]

main = print (prover (Imp (Pro 0) (Pro 0)))

We leave the underlying sequent calculus implicit. The last two arguments
are the two sides of a sequent. The first two arguments are lists of propositional
variables that we have so far encountered in the left side and in the right side,
respectively, as made clear in the two first cases of the function.

The formalization is in the following file:

Implication.thy

Unfortunately the Isabelle formalization is almost a hundred lines. We obtain
a much smaller formalization by simplifying the sequent calculus, as we describe
in the rest of the paper.

5 Conjunction, Disjunction and Negation

Before we consider formulas in negation normal form (NNF) we first investigate
a tautology checker based on a one-sided sequent calculus with negation and
conjunction.

import Prelude ((&&), (||), (==), Bool(..), print)

data Form a = Pro a | Neg (Form a) | Con (Form a) (Form a)

member _ [] = False

member m (n : a) = m == n || member m a

common _ [] = False

common a (m : b) = member m a || common a b

mp a b (Pro n : c) = mp (n : a) b c

mp a b (Neg (Pro n) : c) = mp a (n : b) c

mp a b (Neg (Neg p) : c) = mp a b (p : c)

mp a b (Neg (Con p q) : c) = mp a b (Neg p : Neg q : c)

mp a b (Con p q : c) = mp a b (p : c) && mp a b (q : c)

mp a b [] = common a b

prover p = mp [] [] [p]

main = print (prover (Neg (Con (Pro 0) (Neg (Pro 0)))))

The termination proof requires the following size function:

sz (Pro _) = 1

sz (Neg p) = 1 + sz p

sz (Con p q) = 2 + sz p + sz q

But except for the complication concerning the termination proof the above
tautology checker is straightforward.

We then investigate a tautology checker based on a one-sided sequent calculus
with negation and disjunction.

import Prelude ((&&), (||), (==), Bool(..), print)

data Form a = Pro a | Neg (Form a) | Dis (Form a) (Form a)

member _ [] = False

member m (n : a) = m == n || member m a

common _ [] = False

common a (m : b) = member m a || common a b

mp a b (Pro n : c) = mp (n : a) b c

mp a b (Neg (Pro n) : c) = mp a (n : b) c

mp a b (Neg (Neg p) : c) = mp a b (p : c)

mp a b (Neg (Dis p q) : c) = mp a b (Neg p : c) && mp a b (Neg q : c)

mp a b (Dis p q : c) = mp a b (p : q : c)

mp a b [] = common a b

prover p = mp [] [] [p]

main = print (prover (Dis (Pro 0) (Neg (Pro 0))))

The termination proof does not require any special size function and the
above tautology checker is straightforward.

The formalizations are in the following files:

Conjunction.thy

Disjunction.thy

The formalizations are in all cases almost a hundred lines and so we turn
to a tautology checker based on a one-sided sequent calculus with formulas in
negation normal form (NNF).

6 Negation Normal Form

We describe a concise formalization of a tautology checker based on a one-sided
sequent calculus with formulas in negation normal form (NNF).

In the micro prover we use sets of propositional variables instead of lists of
propositional variables. This makes the formalization in Isabelle a bit shorter
but in general makes the generated code in Haskell longer.

We start by showing the entire formalization and then we describe the for-
malization in details. The formalization has the usual boilerplate, like the first
line with the name of the theory and the last line with the end command:

theory Prover imports Main begin

datatype ′a form = Atom bool ′a | Op 〈 ′a form 〉 bool 〈 ′a form 〉

primrec val where
〈 val i (Atom b n) = (if b then i n else ¬ i n) 〉 |
〈 val i (Op p b q) = (if b then val i p ∧ val i q else val i p ∨ val i q) 〉

function cal where
〈 cal e [] = (∃n ∈ fst e. n ∈ snd e) 〉 |
〈 cal e (Atom b n # s) = (if b then cal ({n} ∪ fst e, snd e) s

else cal (fst e, snd e ∪ {n}) s) 〉 |
〈 cal e (Op p b q # s) = (if b then cal e (p # s) ∧ cal e (q # s)

else cal e (p # q # s)) 〉

by pat-completeness auto
termination by (relation 〈 measure (λ(-, s).

∑
p ← s. size p) 〉) auto

definition 〈 prover p ≡ cal ({}, {}) [p] 〉

value 〈 prover (Op (Atom True n) False (Atom False n)) 〉

lemma complete: 〈 cal e s ←→
(∀ i . ∃ p ∈ set s ∪ Atom True ‘ fst e ∪ Atom False ‘ snd e. val i p) 〉

unfolding bex-Un by (induct rule: cal .induct) (auto split : if-split)

theorem 〈 prover p ←→ (∀ i . val i p) 〉

unfolding complete prover-def by auto

end

Isabelle/HOL has a special intelligible semi-automated reasoning language,
Isar for short [14], in which we normally formulate our proofs, but the classical
reasoner (auto) of Isabelle/HOL [15] is so powerful that by defining the lemmas
just right there is hardly any proving left for us to do.

We now describe the formalization in details. Formulas in negation normal
form (NNF) are obtained using the following equivalences:

φ→ ψ ≡ ¬φ ∨ ψ φ↔ ψ ≡ (φ→ ψ) ∧ (ψ → φ)

¬(φ ∧ ψ) ≡ (¬φ ∨ ¬ψ) ¬(φ ∨ ψ) ≡ (¬φ ∧ ¬ψ)

¬¬φ ≡ φ

So we are left with atomic propositional formulas, possibly negated, and build
propositional formulas using conjunction and disjunction.

datatype ′a form = Atom bool ′a | Op 〈 ′a form 〉 bool 〈 ′a form 〉

We use a boolean to indicate a negated atomic propositional formula and we
use a boolean to choose between conjunction and disjunction. This is reflected
in the semantics, the function val, taking a formula and an interpretation (i).

primrec val where
〈 val i (Atom b n) = (if b then i n else ¬ i n) 〉 |
〈 val i (Op p b q) = (if b then val i p ∧ val i q else val i p ∨ val i q) 〉

The type of the interpretation (i) is automatically inferred.

function cal where
〈 cal e [] = (∃n ∈ fst e. n ∈ snd e) 〉 |
〈 cal e (Atom b n # s) = (if b then cal ({n} ∪ fst e, snd e) s

else cal (fst e, snd e ∪ {n}) s) 〉 |
〈 cal e (Op p b q # s) = (if b then cal e (p # s) ∧ cal e (q # s)

else cal e (p # q # s)) 〉

by pat-completeness auto
termination by (relation 〈 measure (λ(-, s).

∑
p ← s. size p) 〉) auto

The micro prover, the function cal, is a combination of the previously defined
provers based on conjunction, disjunction and negation.

A function definition produces a proof obligation which expresses complete-
ness and compatibility of patterns that is usually solved by a combination of the
methods pat completeness and auto (simplification of all goals).

Termination of the function cal must be proved. The termination proof also
uses the method auto with a sum of the formula sizes as the decreasing measure.

We now obtain the tautology checker using a simple definition (it is not
possible to use an abbreviation instead when we want to use code generation).

definition 〈 prover p ≡ cal ({}, {}) [p] 〉

After the termination proof we can execute the tautology checker and move
on to the proof of soundness and completeness.

value 〈 prover (Op (Atom True n) False (Atom False n)) 〉

The above command uses normalization by evaluation (NBE) and compiles
the expression to Standard ML and executes it as such using the integration of
Standard ML in Isabelle/HOL.

lemma complete: 〈 cal e s ←→
(∀ i . ∃ p ∈ set s ∪ Atom True ‘ fst e ∪ Atom False ‘ snd e. val i p) 〉

unfolding bex-Un by (induct rule: cal .induct) (auto split : if-split)

This is the key lemma for the soundness and completeness proof.
Some comments:

– We need to state the lemma for arbitrary arguments e and s in order for the
induction proof to go through.

– We formulate the validity of the sequent in the usual way by requiring that
for all interpretations i there exists a formula p where the semantics is true.

– We use the function set to turn the list into a set of formulas because the
proof automation for set theory is very strong.

– We finally solve all proof obligations using the method auto.

theorem 〈 prover p ←→ (∀ i . val i p) 〉

unfolding complete prover-def by auto

This is the soundness and completeness proof based on the lemma complete
and the definition of the prover prover.

export-code prover in Haskell

We export the code to Haskell. In order to allow for experiments we export
the tautology checker prover. The function cal is added automatically.

The result of the code generation can be found in the Appendix. We present
the following 24-line manually assembled program based on the code generation.

import Prelude ((&&), (||), (==), Bool(..), print)

fst (x, _) = x

snd (_, y) = y

any _ [] = False

any p (x : xs) = p x || any p xs

fold f (x : xs) s = fold f xs (f x s)

fold _ [] s = s

member [] _ = False

member (x : xs) y = x == y || member xs y

newtype Set a = Set [a]

bex_set (Set xs) p = any p xs

bot_set = Set []

insert_set x (Set xs) = Set (if member xs x then xs else x : xs)

member_set x (Set xs) = member xs x

sup_set (Set xs) a = fold insert_set xs a

data Form a = Atom Bool a | Op (Form a) Bool (Form a)

cal e [] = bex_set (fst e) (\ n -> member_set n (snd e))

cal e (Atom b n : s) =

(if b then cal (sup_set (insert_set n bot_set) (fst e), snd e) s

else cal (fst e, sup_set (snd e) (insert_set n bot_set)) s)

cal e (Op p b q : s) =

(if b then cal e (p : s) && cal e (q : s) else cal e (p : q : s))

prover p = cal (bot_set, bot_set) [p]

main = print (prover (Op (Atom True 0) False (Atom False 0)))

Of course it is better to use the result of the code generation without modifi-
cation but it is nevertheless relevant for teaching purposes that a simple program
can easily be manually assembled.

7 Conclusion and Future Work

We have presented a formalization of a tautology checker for propositional logic
with termination, soundness and completeness proofs in Isabelle/HOL. We can
use the code export features of Isabelle/HOL to generate standalone Haskell,
OCaml, Scala or Standard ML code. The formalized provers are for small, but
adequate, fragments of classical propositional logic.

The automation in Isabelle/HOL is very powerful. In particular the function
package is powerful and easy to use. The termination proof is independent of
the function specification but supplying a termination proof makes an induction
principle and code generation available.

The micro provers are simple but not trivial: they break down the formula in
the style of a sequent calculus and not even termination is verified automatically.
The micro provers are concise enough to be the first examples in a course on
automated reasoning. Our approach shows how to use Isabelle/HOL and it also
shows a prover program in Haskell with termination, soundness and completeness
proofs.

We are working on formalizations of micro provers in other proof assistants
like Agda and Coq. We also plan to consider provers for first-order logic and
higher-order logic.

Acknowledgements

Thanks to Asta Halkjær From, Alexander Birch Jensen and Anders Schlichtkrull
for discussions.

Appendix: Isabelle Code Generation

Listing of the three Haskell files exported from the Isabelle theory file Prover.thy

List.hs

{-# LANGUAGE EmptyDataDecls, RankNTypes, ScopedTypeVariables #-}

module List(fold, member, insert, removeAll) where {

import Prelude ((==), (/=), (<), (<=), (>=), (>), (+), (-), (*), (/), (**),

(>>=), (>>), (=<<), (&&), (||), (^), (^^), (.), ($), ($!), (++), (!!), Eq,

error, id, return, not, fst, snd, map, filter, concat, concatMap, reverse,

zip, null, takeWhile, dropWhile, all, any, Integer, negate, abs, divMod,

String, Bool(True, False), Maybe(Nothing, Just));

import qualified Prelude;

fold :: forall a b. (a -> b -> b) -> [a] -> b -> b;

fold f (x : xs) s = fold f xs (f x s);

fold f [] s = s;

member :: forall a. (Eq a) => [a] -> a -> Bool;

member [] y = False;

member (x : xs) y = x == y || member xs y;

insert :: forall a. (Eq a) => a -> [a] -> [a];

insert x xs = (if member xs x then xs else x : xs);

removeAll :: forall a. (Eq a) => a -> [a] -> [a];

removeAll x [] = [];

removeAll x (y : xs) = (if x == y then removeAll x xs else y : removeAll x xs);

}

Set.hs

{-# LANGUAGE EmptyDataDecls, RankNTypes, ScopedTypeVariables #-}

module Set(Set, bex, insert, member, bot_set, sup_set) where {

import Prelude ((==), (/=), (<), (<=), (>=), (>), (+), (-), (*), (/), (**),

(>>=), (>>), (=<<), (&&), (||), (^), (^^), (.), ($), ($!), (++), (!!), Eq,

error, id, return, not, fst, snd, map, filter, concat, concatMap, reverse,

zip, null, takeWhile, dropWhile, all, any, Integer, negate, abs, divMod,

String, Bool(True, False), Maybe(Nothing, Just));

import qualified Prelude;

import qualified List;

data Set a = Set [a] | Coset [a];

bex :: forall a. Set a -> (a -> Bool) -> Bool;

bex (Set xs) p = any p xs;

insert :: forall a. (Eq a) => a -> Set a -> Set a;

insert x (Coset xs) = Coset (List.removeAll x xs);

insert x (Set xs) = Set (List.insert x xs);

member :: forall a. (Eq a) => a -> Set a -> Bool;

member x (Coset xs) = not (List.member xs x);

member x (Set xs) = List.member xs x;

bot_set :: forall a. Set a;

bot_set = Set [];

sup_set :: forall a. (Eq a) => Set a -> Set a -> Set a;

sup_set (Coset xs) a = Coset (filter (\ x -> not (member x a)) xs);

sup_set (Set xs) a = List.fold insert xs a;

}

Prover.hs

{-# LANGUAGE EmptyDataDecls, RankNTypes, ScopedTypeVariables #-}

module Prover(Form, prover) where {

import Prelude ((==), (/=), (<), (<=), (>=), (>), (+), (-), (*), (/), (**),

(>>=), (>>), (=<<), (&&), (||), (^), (^^), (.), ($), ($!), (++), (!!), Eq,

error, id, return, not, fst, snd, map, filter, concat, concatMap, reverse,

zip, null, takeWhile, dropWhile, all, any, Integer, negate, abs, divMod,

String, Bool(True, False), Maybe(Nothing, Just));

import qualified Prelude;

import qualified Set;

data Form a = Atom Bool a | Op (Form a) Bool (Form a);

cal :: forall a. (Eq a) => (Set.Set a, Set.Set a) -> [Form a] -> Bool;

cal e [] = Set.bex (fst e) (\ n -> Set.member n (snd e));

cal e (Atom b n : s) =

(if b then cal (Set.sup_set (Set.insert n Set.bot_set) (fst e), snd e) s

else cal (fst e, Set.sup_set (snd e) (Set.insert n Set.bot_set)) s);

cal e (Op p b q : s) =

(if b then cal e (p : s) && cal e (q : s) else cal e (p : q : s));

prover :: forall a. (Eq a) => Form a -> Bool;

prover p = cal (Set.bot_set, Set.bot_set) [p];

}

References

1. Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of Satisfiability. IOS
press, 2009.

2. Jasmin Christian Blanchette. Formalizing the metatheory of logical calculi and au-
tomatic provers in Isabelle/HOL (invited talk). In Assia Mahboubi and Magnus O.
Myreen, editors, Proceedings of the 8th ACM SIGPLAN International Conference
on Certified Programs and Proofs, CPP 2019, pages 1–13. ACM, 2019.

3. Melvin Fitting. leanTAP revisited. J. Log. Comput., 8(1):33–47, 1998.
4. Asta Halkjær From, Alexander Birch Jensen, Anders Schlichtkrull, and Jørgen

Villadsen. Teaching a Formalized Logical Calculus. In Proceedings of the 8th
International Workshop on Theorem proving components for Educational software
(ThEdu’19), 2020.

5. Kurt Gödel. Über die Vollständigkeit des Logikkalküls. PhD thesis, University of
Vienna, 1929.

6. Leon Henkin. The Completeness of Formal Systems. PhD thesis, Princeton Uni-
versity, 1947.

7. Alexander Birch Jensen, John Bruntse Larsen, Anders Schlichtkrull, and Jørgen
Villadsen. Programming and verifying a declarative first-order prover in
Isabelle/HOL. AI Communications, 31(3):281–299, 2018.

8. Ramana Kumar, Rob Arthan, Magnus O Myreen, and Scott Owens. Self-
formalisation of higher-order logic. Journal of Automated Reasoning, 56(3):221–
259, 2016.

9. Julius Michaelis and Tobias Nipkow. Formalized proof systems for propositional
logic. In A. Abel, F. Nordvall Forsberg, and A. Kaposi, editors, 23rd Int. Conf.
Types for Proofs and Programs (TYPES 2017), volume 104 of LIPIcs, pages 6:1–
6:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

10. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A
Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer
Science. Springer, 2002.

11. Lawrence C. Paulson. A machine-assisted proof of Gödel’s incompleteness the-
orems for the theory of hereditarily finite sets. The Review of Symbolic Logic,
7(3):484–498, 2014.

12. Anders Schlichtkrull. Formalization of the resolution calculus for first-order logic.
Journal of Automated Reasoning, 61(1-4):455–484, 2018.

13. Natarajan Shankar. Towards mechanical metamathematics. Journal of Automated
Reasoning, 1(4):407–434, 1985.

14. Makarius Wenzel. Isabelle/Isar—a generic framework for human-readable proof
documents. From Insight to Proof—Festschrift in Honour of Andrzej Trybulec,
10(23):277–298, 2007.

15. Makarius Wenzel. The Isabelle/Isar Reference Manual. Part of the Isabelle distri-
bution, 2020.

16. Richard Zach. Completeness before Post: Bernays, Hilbert, and the development
of propositional logic. Bulletin of Symbolic Logic, 5(3):331–366, 1999.

	Tautology Checkers in Isabelle and Haskell

