
Reasoning on Information Term Semantics with
ASP for Constructive EL⊥

Loris Bozzato1 and Camillo Fiorentini2

1 Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy
2 DI, Univ. degli Studi di Milano, Via Celoria 18, 20133 Milano, Italy

Abstract. Constructive description logics represent different re-inter-
pretations of description logics (DLs) under constructive semantics. Con-
structive description logics have been mostly studied for their formal
properties, while limited practical approaches have been shown for their
use in Knowledge Representation languages and tools (which, on the
other hand, constitute the distinctive applications of description logics).
To address this aspect, we recently studied the relation of constructive
DLs based on Information Term semantics with Answer Set semantics
in the context of the positive logic EL.
In this paper we continue this study in the direction of more expressive
DLs by considering the introduction of negative information, leading
to a constructive interpretation for the DL EL⊥. We show that formal
results linking the constructive semantics to answer set semantics can be
extended to the case of negative information in EL⊥.

1 Introduction

Constructive description logics are interpretations of description logics (DLs)
under different constructive semantics. The application of such non-classical se-
mantics to description logics is motivated by the interest in applying the formal
properties of constructive semantics to different aspects of knowledge represen-
tation. Starting from different constructive semantics, several constructive de-
scription logics have been proposed, see e.g. [6,9,16].

Constructive description logics have been mostly studied from a theoretical
viewpoint, and they have also been applied to tackle different representation
and reasoning problems (see, e.g., [4,12,13,15]); however, the interaction between
formal and practical aspects of constructive DLs has been scarcely investigated.
To bridge this gap, in [2] we have introduced a simple constructive DL based on
EL and we have disussed its relationship with Answer Set Programming (ASP).
From the practical point of view, by taking advantage of such a relation, we have
presented a datalog encoding managing one reasoning task over the constructive
semantics (namely, the generation of valid “states” of a knowledge base) and we
have developed a prototype based on the standard OWL-EL profile and “off the
shelf” tools for manipulation of OWL 2 ontologies and ASP reasoning.

Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

Our constructive interpretation of EL is based on information term seman-
tics [5,9]: the information terms (ITs) are syntactical objects that provide a
constructive justification for the classical truth of a formula. Information terms
have been used to represent the state or answer of a formula (and, for exten-
sion, a notion of “snapshot” representing a valid state of a knowledge base).
In particular, [2] follows the direction studied in [10], where the relation be-
tween information term and answer set semantics has been first studied over
propositional theories. In fact, we remark that [2] extends for the first time the
study of relations between IT semantics and ASP to the context of constructive
description logics.

In this paper, we continue the investigation started in [2] by “pushing the
envelope” towards more expressive DLs: as a first step we introduce falsum in
EL, thus providing a constructive interpretation for the DL EL⊥. Then, we
show how the results linking IT semantics and answer set semantics can be
extended in presence of negative information. Intuitively, following [10], negative
information can be represented similarly to default negation in ASP: negative
formulas are used as constraints and answer sets are formulated over a suitable
positive reduction of the input formulas w.r.t. negative information. Our goal
in this paper is to show that results connecting IT semantics and answer set
semantics can be expanded to EL⊥ in presence of negative information. These
connections can be then leveraged to reason on the constructive reading of EL⊥
using ASP tools, for example for computing the valid ITs of a knowledge base
as in [2]: this task represents an essential step in order to use transformations of
ITs in reasoning, e.g., to represent change of states as in [4].

In the following sections, we first present (see Section 2) the definition of the
IT interpretation of EL⊥ (that we call ELc⊥); then, in Section 3 we extend the
definition of answer sets for formulas and answer sets to this logic and we show
how to extend the results connecting the IT semantics and answer set semantics
for ELc⊥. Finally, in Section 4 we briefly discuss how to extend to ELc⊥ the
datalog implementation from [2] for the generation of IT of knowledge bases.
Proofs of the main results from Section 3 are provided in the Appendix.

2 Constructive Description Logic ELc⊥

We present a constructive semantics based on information term semantics (as in
BCDL [9]) for the description logic EL⊥ [1]; we refer to this logic as ELc⊥.

Syntax. The language L for ELc⊥ is based on the disjoint denumerable sets
NR of role names, NC of concept names and NI of individual names. In addition,
we introduce a set NG of special concepts, called generators, where NG ∩ NC = ∅.
Generators are used in the definition of a limited form of subsumption, which
facilitates the characterization of the logic in a constructive semantics. A gen-
erator G is an atomic concept associated with a finite set of individual names
dom(G) (the domain of G) which fixes the interpretation of G. In our language,
we use bounded quantified formulas of the kind ∀GC, meaning that every ele-

ment of dom(G) belongs to the concept C; thus, the formula ∀GC can be read
as the subsumption relation G v C.3

In the language L for ELc⊥, concepts C are inductively defined as:

C ::= > |⊥ |A | ¬C1 |C1 u C2 | ∃R.C1

where A ∈ NC ∪ NG and R ∈ NR.4 The formulas K of L are defined as:

K ::= R(c, d) |C(c) | ∀GC

where c, d ∈ NI, R ∈ NR, G ∈ NG and C is a concept (as defined above). We
point out that ∀GC represents the inclusion (subsumption) between concepts
G and C. A formula K is atomic if K has the form R(s, t), >(t), ⊥(t), A(t)
with A ∈ NC ∪ NG; K is simple if it is an atomic or a negated formula (namely,
K = ¬C(t)); K is positive if it does not contain a negation or ⊥.

A theory K (that is, a knowledge base) is a finite set of formulas which is
partitioned as usual into ABox and TBox. The ABox contains formulas of the
kind C(d) and R(c, d), with R ∈ NR, c, d ∈ NI and C is a concept. The TBox
contains formulas of the kind ∀GC, representing subsumption axioms.

In the following we refer to languages LN restricted to finite subsets N of
NI. Given a finite N ⊆ NI, let NGN be the set of generators G ∈ NG such that
dom(G) ⊆ N . By LN we denote the language built on the set N of individual
names, the set NC of concept names, the set NR of role names and the set NGN
of generators.

Classical semantics. A model M for LN is a pair 〈∆M, ·M〉, where the domain
∆M is a non-empty set and ·M is a valuation map such that: for every c ∈ N ,
cM ∈ ∆M; for every C ∈ NC, CM ⊆ ∆M; for every R ∈ NR, RM ⊆ ∆M×∆M; for
every G ∈ NGN , if dom(G) = {c1, . . . , cn}, then GM = {cM1 , . . . , cMn }. Classical
interpretation of non-atomic concepts is defined as usual:

⊥M = ∅ >M = ∆M (C1 u C2)M = CM1 ∩ CM2 (¬C)M = ∆M \ CM

(∃R.C)M = {c ∈ ∆M | ∃d ∈ ∆M s.t. (c, d) ∈ RM, d ∈ CM}

A formula K is valid in M, written M |= K, iff one of the following conditions
holds:

M |= R(c, d) iff (cM, dM) ∈ RM

M |= C(d) iff dM ∈ CM

M |= ∀GC iff GM ⊆ CM

If Γ is a set of formulas, M |= Γ means that M |= K, for every K in Γ .

3 While non-conventional in DL languages, as noted in [9], the definition of generators
with a fixed domain simplifies the following presentations of the constructive seman-
tics. Alternatively, domain of generators can be defined by extending the language
with nominals and directly including the domains declaration in the knowledge base.

4 Note that concept negation ¬C1 does not appear in the standard syntax of EL⊥. It
can be simulated by introducing a new concept C1 and the axiom C1 u C1 v ⊥.

Example 1. We reprise the running example presented in [2], inspired by the
classical example of food and wine pairings from [8], including negative informa-
tion to introduce constraints. The set NI contains names for wines, colors and
regions. The set NC contains the concepts Wine, defining wines, and ExcRegion,
defining regions to be excluded. We introduce the generators Food and Color ,
defining foods and colors respectively, and we set: dom(Food) = {fish,meat} and
dom(Color) = {red ,white}, where fish, meat , red and white are elements of NI.
The set NR contains the role names goesWith, to represent the matches between
wine colors and foods, isColorOf , to associate a color with a wine, hasRegion, to
map a wine to its origin region. We introduce the knowledge base KW consisting
of the TBox axioms:

(Ax1) ∀Food∃goesWith.Color

(Ax2) ∀Color∃isColorOf .(Wine u ¬(∃hasRegion.ExcRegion))

Intuitively, axiom Ax1 asserts that each Food matches an appropriate wine
Color ; Ax2 states that for every Color there is at least a Wine not originat-
ing from an ExcRegion (excluded region). Note that the negated subconcept
of Ax2 behaves like a constraint. The ABox of KW consists of the following
assertions:

Wine(barolo) isColorOf (red , barolo)
Wine(chardonnay) isColorOf (white, chardonnay)
Wine(cabernet) isColorOf (red , cabernet)

hasRegion(barolo, piedmont) goesWith(fish,white)
hasRegion(chardonnay , lombardy) goesWith(meat , red)
hasRegion(cabernet , california) ExcRegion(california)

We can take as N any finite set containing individual names occurring in the
ABox. We point out that a classical model M for KW must interpret the gen-
erator Food as the set {fishM,meatM} and Color as {redM,whiteM}. Instead,
ExcRegion can be interpreted by any superset of {californiaM} satisfying the
axioms. 3

Information term semantics. The constructive semantics for ELc⊥ is based
on the notion of information term [17]. Information term semantics is related to
the BHK (Brower-Heyting-Kolmogorov) interpretation of logical connectives [18]:
intuitively, an information term η for a formula K is a syntactical object that
constructively justifies the truth of K in a classical model M. For instance, the
validity of the formula ∃R.C(d) in a model M can be explained by an infor-
mation term (e, η) providing the filler e s.t. (dM, eM) ∈ RM and, inductively,
an information term η justifying eM ∈ CM. A simple formula K does not need
any constructive explanation, thus the associated information term is an atom,
denoted by tt. Given a finite subset N of NI and a formula K of LN , we define

the set of information terms itN (K) by induction on K as follows.

itN (K) = { tt }, if K is a simple formula

itN ((C1 u C2)(c)) = { (α, β) | α ∈ itN (C1(c)) and β ∈ itN (C2(c)) }
itN (∃R.C(c)) = { (d, α) | d ∈ N and α ∈ itN (C(d)) }

itN (∀GC) = { φ : dom(G)→
⋃
d∈dom(G)itN (C(d)) | φ(d) ∈ itN (C(d)) }

Note that no constructive information is associated with negated sub-formulas,
which are treated similarly to atomic formulas: negative sub-formulas can be seen
as “constraints” that need to be verified by the models of the knowledge base.

The justification of formulas in classical models with respect to one of their
information terms is given by the realizability relation. Let M be a model for
LN , K a formula of LN and η ∈ itN (K). We define the realizability relation
M� 〈η〉K by induction on the structure of K:

M� 〈tt〉K iff M |= K, where K is a simple formula

M� 〈(α, β)〉C1 u C2(c) iff M� 〈α〉C1(c) and M� 〈β〉C2(c)

M� 〈(d, α)〉 ∃R.C(c) iff M |= R(c, d) and M� 〈α〉C(d)

M� 〈φ〉 ∀GC iff, for every d ∈ dom(G), M� 〈φ(d)〉C(d)

Example 2. Let us consider the knowledge base KW defined in Example 1. An
element φ ∈ itN (Ax1) is a function mapping each food f ∈ dom(Food) to an
information term φ(f) ∈ itN (∃goesWith.Color(f)). Thus, every φ(f) has the
form (c, tt), meaning that c is a proper color for f . An element ψ1 ∈ itN (Ax1)
is:

[fish 7→ (white, tt), meat 7→ (red , tt)]

Similarly, we can define ψ2 ∈ itN (Ax2) as follows:

[red 7→ (barolo, (tt, tt)), white 7→ (chardonnay , (tt, tt))]

where there is no constructive information associated with the negated subcon-
cept of Ax2. We point out that every modelM of the ABox of KW satisfies both
M� 〈ψ1〉Ax1 and M� 〈ψ2〉Ax2. 3

The following result, provable by induction on the structure of K, shows the
relation between classical and constructive semantics (see Lemma 2 in [9]).

Proposition 1. Let N be a finite subset of NI, K a formula of LN and η ∈
itN (K). For every model M, M� 〈η〉K implies M |= K.

Thus, the constructive semantics preserves the classical declarative reading of
DL formulas. The converse of Proposition 1 does not hold in general, unless we
assume stronger conditions, such as the reachability ofM (i.e., every element in
the domain of M is denoted by a constant, see e.g. [7]).

First-order translation. We introduce a first-order translation of ELc⊥ for-
mulas (see similar translations in [3]), that we exploit as an intermediate rep-
resentation to define the notion of reduction of a formula. Let N be a finite
subset of NI. By L1

N we denote the first-order language having constants N , a
unary predicate symbol A, for every A ∈ NC ∪ NG, a binary relation symbol R,
for every R ∈ NR, the logical constants t (true) and f (false), the connectives ¬
and ∧. We also introduce unary function symbols f∃R.C to be used as Skolem
functions to properly translate existential concepts ∃R.C. Firstly, we introduce
the translation γC mapping a concept C to a first-order formula F of L1

N , hav-
ing x as possible free variable; γC(t) denotes the formula obtained by replacing
every occurrence of x in γC with the term t.

A 7→γ A(x) > 7→γ t ⊥ 7→γ f ¬C 7→γ ¬γC
C1 u C2 7→γ γC1 ∧ γC2 ∃R.C 7→γ R(x, f∃R.C(x)) ∧ γC(f∃R.C(x))

In translating C, we stipulate that different occurrences of the same existential
subformulas ∃R.D of C are associated with different Skolem function (e.g., f1∃R.D,
f2∃R.D, and so on). Given a formula K ∈ LN , the first-order translation Φ(K) of
K is defined as follows:

C(d) 7→Φ γC(d) R(c, d) 7→Φ R(c, d)

∀GC 7→Φ γC(c1) ∧ · · · ∧ γC(cn), where {c1, . . . , cn} = dom(G)

Example 3. Let KW be the knowledge base from Example 1. The first-order
translation of Ax1 is (C = ∃goesWith.Color):

Φ(Ax1) = γC(meat) ∧ γC(fish) γC = goesWith(x, fC(x)) ∧ Color(fC(x))

Similarly, Ax2 is translated as follows:

D = ∃isColorOf .(Wine u ¬E) E = ∃hasRegion.ExcRegion

Φ(Ax2) = γD(red) ∧ γD(white)

γD = isColorOf (x, fD(x)) ∧ γ(Wineu¬E)(fD(x))

γ(Wineu¬E) = Wine(x) ∧ ¬ (hasRegion(x, fE(x)) ∧ ExcRegion(fE(x)))

3

An interpretation I for L1
N is a classical interpretation for the language L1

N
satisfying the following condition:

for each generator G ∈ NGN , I |= G(c) iff c ∈ dom(G) (∗)

Next proposition states the correspondence between first-order translation and
classical semantics:

Proposition 2. Let K be a formula of LN .

(i). IfM |= K, then there is an interpretation I for L1
N such that I |= Φ(K).

(ii). If I |= Φ(K), with I an interpretation for L1
N , then there is an interpre-

tation M for LN such that M |= K.

3 Answer Set Semantics for Formulas and Information
Terms

Following the construction in [10], we adapt the definitions concerning logic pro-
grams with nested expressions [14] to ELc⊥ formulas. The first step to define a
notion of answer sets for ELc⊥ formulas is thus to define a notion of interpreta-
tion akin to the one used in logic programs. In this regard, an lp-interpretation I
over LN is a set of atomic formulas H of LN such that H = A(c) or H = R(c, d),
where A ∈ NC ∪ NG, R ∈ NR and c, d ∈ N . Given a formula K of LN , the sat-
isfiability relation I |= K, and its extension to sets of formulas Γ , is defined as
follows:

I |= >(c) for every c ∈ N
I |= H iff H ∈ I, where either H = A(c) and A ∈ NC ∪ NG, or H = R(c, d)

I |= G(c) iff c ∈ dom(G), where G ∈ NG

I |= ¬C(c) iff I 6|= C(c)

I |= C uD(c) iff I |= C(c) and I |= D(c)

I |= ∃R.C(c) iff there is d ∈ N such that R(c, d) ∈ I and I |= C(d)

I |= ∀GC iff for every e ∈ dom(G), I |= C(e)

I |= Γ iff I |= K for every K ∈ Γ

We remark that I 6|= ⊥(c), for every c ∈ N ; moreover, I satisfies condition (∗) of
previous section. The definition of J |= F , where J is an lp-interpretation over
L1
N and F a formula of L1

N , is similar. We point out that J must be a set of
formulas of the kind A(t1) and R(t1, t2), where A ∈ NC ∪ NG, R ∈ NR, t1 and t2
are ground terms (namely, they do not contain variables).

Given an lp-interpretation I over LN , the extension I+ of I is an lp-interpre-
tation over L1

N obtained by properly interpreting Skolem functions. More specifi-
cally, I+ is the smallest extension of I satisfying the following property: for every
formula K = ∃R.C(c) of LN such that I |= K, let d such that R(c, d) ∈ I and
I |= C(d), and let fK be a Skolem function associated with ∃R.C; then, I+

contains the formulas R(c, fK(c)) and d = fK(c).
The reduct of a formula K ∈ LN w.r.t an lp-interpretation I, denoted by KI ,

is obtained from the formula Φ(K) of L1
N by replacing every negated subformula

¬C(c) with either t or f, in compliance with I+. Formally, the reduct of a formula
F ∈ L1

N w.r.t. an lp-interpretation J (over L1
N), denoted by F J , is the formula

of L1
N inductively defined as follows:5

HJ = H, if H is an atomic formula of L1
N

(¬C)J =

{
f if J |= C
t otherwise

(C ∧D)J = CJ ∧DJ

We define the reduct on formulas K of LN and set of formulas Γ as follows:

KI = (Φ(K))I
+

Γ I = {KI | K ∈ Γ }
5 Atomic formulas of L1

N are the Φ-images of atomic formulas of LN .

We remark that, for positive formulas K, we have KI = Φ(K).

Example 4. We show the definition of reduct of axioms in KW (see Exam-
ple 1) based on the first-order translation displayed in Example 3. Let I be
the lp-interpretation coinciding with the ABox of KW . The extension I+ is ob-
tained by adding to I the formulas (D = ∃isColorOf .(Wine u ¬E) and E =
∃hasRegion.ExcRegion):

isColorOf (red , fD(red)), fD(red) = barolo,

isColorOf (white, fD(white)), fD(white) = chardonnay ,

hasRegion(fD(red), fE(fD(red))), fE(fD(red)) = piedmont ,

hasRegion(fD(white), fE(fD(white))), fE(fD(white)) = lombardy , . . .

The reduction KIW is computed as follows: since Ax1 is a positive formula, then

AxI1 = Φ(Ax1). Instead, AxI2 coincides with the formula Φ(Ax2)I
+

such that:

Φ(Ax2)I
+

= (γD(red))I
+ ∧ (γD(white))I

+

(γD(red))I
+

= isColorOf (red , fD(red)) ∧Wine(fD(red)) ∧ t
(γD(white))I

+

= isColorOf (white, fD(white)) ∧Wine(fD(white)) ∧ t

Note that both occurrences of the constraint ¬E are reduced to t, since we have
that, for c ∈ {red ,white}, I+ 6|= (hasRegion(c, fE(c)) ∧ ExcRegion(fE(c)). 3

We introduce the notion of answer set for formulas:

Definition 1. An lp-interpretation I is an answer set for a set of positive for-
mulas Γ ⊆ LN (resp. Γ ⊆ L1

N) iff I |= Γ and, for every I ′ ⊆ I, I ′ |= Γ implies
I ′ = I. An lp-interpretation I is an answer set for a set of formulas Γ ⊆ LN iff
I+ is an answer set for Γ I .

In the following we want to extend this notion of answer set to pieces of infor-
mation. We call piece of information over LN an expression of the kind 〈η〉K
with K ∈ LN a formula and η ∈ itN (K). Given a piece of information 〈η〉K,
the following defines the sets of answers ans(〈η〉K) obtainable from it:

ans(〈tt〉K) = {K}, with K a simple formula

ans(〈(α, β)〉A1 uA2(c)) = ans(〈α〉A1(c)) ∪ ans(〈β〉A2(c))

ans(〈(d, α)〉∃R.A(c)) = {R(c, d)} ∪ ans(〈α〉A(d))

ans(〈φ〉∀GA) =
⋃
d∈dom(G) ans(〈φ(d)〉A(d))

We remark that ans(〈η〉K) is a finite set of simple formulas. Note that negated
formulas of the kind ¬C(d) are considered as simple formulas and their only
possible information term is tt: intuitively, this corresponds to considering these
formulas as constraints, i.e. we only require that C(d) does not hold, without any
constructive information about non-validity.

Example 5. Let us consider the information terms ψ1 ∈ itN (Ax1) and ψ2 ∈
itN (Ax2) defined in Example 2; we have:

H1 = ∃goesWith.Color H2 = ∃isColorOf .H3

H3 = Wine u ¬(∃hasRegion.ExcRegion)

ans(〈ψ1〉Ax1) = ans(〈ψ1(fish)〉H1(fish)) ∪ ans(〈ψ1(meat)〉H1(meat))

= ans(〈tt〉Color(white)) ∪ { goesWith(fish,white) } ∪
ans(〈tt〉Color(red)) ∪ { goesWith(meat , red) }

= {Color(white), goesWith(fish,white),
Color(red), goesWith(meat , red) }

ans(〈ψ2〉Ax2) = ans(〈ψ2(red)〉H2(red)) ∪ ans(〈ψ2(white)〉H2(white))

= { isColorOf (red , barolo) } ∪ ans(〈(tt, tt)〉H3(barolo)) ∪
{ isColorOf (white, chardonnay) } ∪ ans(〈(tt, tt)〉H3(chardonnay))}

= { isColorOf (red , barolo), Wine(barolo),
¬(∃hasRegion.ExcRegion)(barolo),
isColorOf (white, chardonnay),Wine(chardonnay),
¬(∃hasRegion.ExcRegion)(chardonnay) }

3

We point out that ans(〈η〉K) in some sense unfolds the constructive meaning of
〈η〉K. Actually, by induction on the structure of K, we can prove that:

Theorem 1. Let N be a finite subset of NI, K a formula of LN . For every
model M, M� 〈η〉K iff M |= ans(〈η〉K).

Accordingly, the problem of determining the realizability of a formula (w.r.t. an
information term) can be reduced to the classical satisfiability of a finite set of
atomic formulas. By Theorem 1, and taking into account that lp-interpretations
are reachable models, we can strengthen Proposition 1 as follows:

Theorem 2. Let N be a finite subset of NI, K a formula of LN . For every
lp-interpretation I, I |= K iff there exists an information term η ∈ itN (K) such
that I |= ans(〈η〉K).

Now we can study the relations between answer sets for ELc⊥ formulas and
pieces of information.

Definition 2. Let K be a formula of LN and K ∈ itN (K). An lp-interpretation
I is a minimal model of 〈η〉K iff:

– I |= ans(〈η〉K) and,
– for every lp-interpretation I ′ ⊆ I, I ′ |= ans(〈η〉K) implies I ′ = I.

Note that, by Theorem 1, this definition implies that, for every model M for
LN such that M |= I, it holds that M� 〈η〉K.

Lemma 1. Let N be a finite subset of NI, K a formula of LN and I an lp-
interpretation. Then:

(i) I |= K iff I+ |= Φ(K);
(ii) I |= K iff I+ |= KI ;

(iii) I+ |= KI iff there exists η ∈ itN (K) s.t. I+ |= (ans(〈η〉K))I .

In one direction we can show:

Theorem 3. If I is an answer set for a formula K ∈ LN , then there exists
η ∈ itN (K) such that I is a minimal model of 〈η〉K.

In the other direction, we need to define a notion of minimality on pieces of
information and introduce default reasoning as follows.

Definition 3. Let K be a positive formula of LN . A piece of information 〈η〉K
is minimal iff there is no η′ ∈ itN (K) such that ans(〈η′〉K) ⊂ ans(〈η〉K).

Similarly to [2], in the case of (sets of) positive formulas the following property
can be shown:

Theorem 4. Let K be a positive formula of LN and 〈η〉K be a minimal piece
of information for K. Then, ans(〈η〉K) is an answer set for K.

In the general case (i.e. when negative information can occur in formulas), we
need to generalize this result by including a notion of negative answer set: these
sets represent constraints that positive answer sets need to meet, in order to be
considered as valid answers for the piece of information given as input. Positive
and negative answers of a piece of information 〈η〉K are defined as follows:

ans+(〈η〉K) = {H ∈ ans(〈η〉K) | H = A(c), with A ∈ NC ∪ NG, or H = R(c, d) }
ans−(〈η〉K) = {H ∈ ans(〈η〉K) | H = ¬C(d) or H = ⊥(d) }

Note that ans+(〈η〉K) is an lp-interpretation.

Example 6. The set ans(〈ψ2〉Ax2) in Example 5 can be partitioned into positive
answers and constraints as follows:

ans+(〈ψ2〉Ax2) = { isColorOf (red , barolo),Wine(barolo),
isColorOf (white, chardonnay),Wine(chardonnay) }

ans−(〈ψ2〉Ax2) = {¬(∃hasRegion.ExcRegion)(barolo),
¬(∃hasRegion.ExcRegion)(chardonnay) }

3

We introduce the notion of answer set and minimality concerning pieces of in-
formation.

Definition 4. Let K be a formula of LN and 〈η〉K a piece of information.
Then, ans+(〈η〉K) is an answer set for 〈η〉K iff ans+(〈η〉K) |= ans−(〈η〉K).

Definition 5. Let K be a formula of LN . A piece of information 〈η〉K is min-
imal iff, for every η′ ∈ itN (K) such that ans+(〈η′〉K) ⊂ ans+(〈η〉K), it holds
that ans+(〈η〉K) 6|= ans−(〈η′〉K).

Using these definitions, we can generalize Theorem 4 as follows:

Theorem 5. Let K be a formula of LN and 〈η〉K be a minimal piece of infor-
mation for K with answer set ans+(〈η〉K). Then, ans+(〈η〉K) is an answer set
for K.

To complete the picture, we state the following characterization of answer sets:

Theorem 6. Let K be a formula of LN . I is an answer set for K iff there exists
a minimal piece of information 〈η〉K such that I = ans+(〈η〉K).

4 Discussion: ASP based IT generation for ELc⊥

As discussed in [2], and as a consequence of the results of previous section, a way
to solve the reasoning task of generating information terms of an input ELc⊥
knowledge base consists in computing its answer sets and then, by exploiting
the recursive definition of ans(〈η〉K), reconstruct the corresponding (minimal)
information term η.

In [2] we have presented alternative datalog encodings for an input EL knowl-
edge base in order to generate its answer sets and build minimal information
terms from them. In the case of negative information of ELc⊥, we need to adapt
the datalog encoding in order to consider the constraints provided by the nega-
tive sub-formulas, so that the candidate answer sets not matching the constraints
are discarded. A possible way to encode negative constraints, reflecting the def-
inition of reduct KI provided in previous sections, is to use default negation
under the answer set semantics [11] and check that the computed answer sets do
not contradict the constraints. For example (using the rules of the translation
P2 in [2]), information terms of a formula ¬D(a) can be computed by the rules:

is it(tt, a, l¬D)← nom(a), not check(a, lD).
check(a, lD)← is it(x, a, lD).

Another option is to encode negative information as constraints rules (i.e. rules
of the form ← b1, . . . , bn.) in the rules generating the candidate answer sets, so
that interpretations that verify the body of such rules are excluded from the
computed answer sets.

We leave as future work the formal definition of a suitable datalog encoding
for ELc⊥ for the ASP based generation of information terms and the proof of
its correctness with respect to the formal results shown in this paper. As noted
in [2], an issue that deserves to be investigated is how the intrinsic complexity
of IT generation can be related to the computation of answer sets (and whether
complexity can be limited in practical scenarios).

5 Conclusions

In this paper we present the relation between answer set semantics and informa-
tion term semantics in the context of the description logic EL⊥. Following [2],
we first provide the definition of the information term semantics for EL⊥. Then,
we show how to extend the results presented in [2] concerning the correspon-
dence between answer set semantics and information term semantics to EL⊥.
By introducing a notion of reduction, similar to the one used in Answer Set Pro-
gramming, it is possible to use negative information as constraints that answer
sets must verify; this leads to the notion of minimal pieces of information of a
KB. Finally, we briefly discuss how these results can be used to generate the
information terms of an input KB over ELc⊥.

We note that the constructive reading of formulas provided by information
term semantics can be related to the recent interest in Explainable AI (which
is being discussed also in the field of symbolic Knowledge Representation and
Reasoning). For example, as shown in [7], the generation of a valid “snapshot” of
a knowledge base (i.e. a valid information term for its set of formulas) can be used
to verify the set of constraints encoded by the KB and, in case of a violation, to
constructively identify the source of inconsistencies, in order to amend the KB.

The work presented in this paper represents a first step towards the extension
of this study to more expressive description logics: for example, an interesting
goal is to extend the discussed results to the full language of ALC, exploiting the
information term semantics presented in [9]. Another issue to be investigated is
the application of the presented formal results to representation and reasoning
tasks, for example by extending the datalog encoding and prototype discussed
in [2] for ASP based generation of information terms. We also aim at developing
procedures for the manipulation of information terms (see, e.g., [4]), in order to
apply IT semantics in concrete problems.

References

1. F. Baader. Terminological cycles in a description logic with existential restrictions.
In IJCAI-03, pages 325–330. Morgan Kaufmann, 2003.

2. L. Bozzato. ASP based generation of information terms for constructive EL. Fun-
dam. Inform., 161(1-2):29–51, 2018.

3. L. Bozzato, T. Eiter, and L. Serafini. Reasoning with Justifiable Exceptions in
EL⊥ Contextualized Knowledge Repositories. In Description Logic, Theory Com-
bination, and All That, volume 11560 of LNCS, pages 110–134. Springer, 2019.

4. L. Bozzato and M. Ferrari. Composition of semantic web services in a constructive
description logic. In RR2010, volume 6333 of LNCS, pages 223–226. Springer,
2010.

5. L. Bozzato, M. Ferrari, C. Fiorentini, and G. Fiorino. A constructive semantics
for ALC. In DL2007, volume 250 of CEUR-WP, pages 219–226. CEUR-WS.org,
2007.

6. L. Bozzato, M. Ferrari, C. Fiorentini, and G. Fiorino. A decidable constructive
description logic. In JELIA 2010, volume 6341 of LNCS, pages 51–63. Springer,
2010.

7. L. Bozzato, M. Ferrari, and P. Villa. Actions over a constructive semantics for
description logics. Fundam. Inform., 96(3):253–269, 2009.

8. R.J. Brachman, D.L. McGuinness, P.F. Patel-Schneider, L.A. Resnick, and
A. Borgida. Living with CLASSIC: When and how to use a KL-ONE-like lan-
guage. In Principles of Semantic Networks, pages 401–456. Morgan Kaufmann,
1991.

9. M. Ferrari, C. Fiorentini, and G. Fiorino. BCDL: basic constructive description
logic. J. of Automated Reasoning, 44(4):371–399, 2010.

10. C. Fiorentini and M. Ornaghi. Answer set semantics vs. information term seman-
tics. In ASP2007: Answer Set Programming, Advances in Theory and Implemen-
tation, 2007.

11. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9:365–385, 1991.

12. E. Hermann Haeusler, V. de Paiva, and A. Rademaker. Intuitionistic description
logic and legal reasoning. In DEXA 2011 Workshops, pages 345–349. IEEE Com-
puter Society, 2011.

13. M. Hilia, A. Chibani, K. Djouani, and Y. Amirat. Semantic service composition
framework for multidomain ubiquitous computing applications. In ICSOC 2012,
volume 7636 of LNCS, pages 450–467. Springer, 2012.

14. V. Lifschitz, L. R. Tang, and H. Turner. Nested expressions in logic programs.
Ann. Math. Artif. Intell., 25(3-4):369–389, 1999.

15. M. Mendler and S. Scheele. Towards a type system for semantic streams. In
SR2009 - Stream Reasoning Workshop (ESWC 2009), volume 466 of CEUR-WP.
CEUR-WS.org, 2009.

16. M. Mendler and S. Scheele. Towards Constructive DL for Abstraction and Refine-
ment. J. Autom. Reasoning, 44(3):207–243, 2010.

17. P. Miglioli, U. Moscato, M. Ornaghi, and G. Usberti. A constructivism based on
classical truth. Notre Dame Journal of Formal Logic, 30(1):67–90, 1989.

18. A. S. Troelstra. From constructivism to computer science. Theoretical Computer
Science, 211(1-2):233–252, 1999.

A Appendix: Proofs

Lemma 1. Let N be a finite subset of NI, K a formula of LN and I an lp-
interpretation. Then:

(i) I |= K iff I+ |= Φ(K);
(ii) I |= K iff I+ |= KI ;

(iii) I+ |= KI iff there exists η ∈ itN (K) s.t. I+ |= (ans(〈η〉K))I .

Proof.

(i). We first note that, by the definition of I+, if fD(d) = e in I+, then fD(d)
behaves like e in I+, namely:

(‡) for every concept C, I |= C(e) iff I+ |= C(fD(d)).

We can show the claim by induction of the form of the formula K.

– Let K be atomic. If K = A(c) or R(c, d), then Φ(K) = K and (i) trivially
holds. If K = >(c), then Φ(K) = t and K = ⊥(c), then Φ(K) = f; in both
cases (i) holds.

– Let K = ¬C(d). Note that Φ(¬C(d)) = ¬Φ(C(d)). If I |= ¬C(d), then by
definition I 6|= C(d). By induction hypothesis, I+ 6|= Φ(C(d)), which implies
I+ |= ¬Φ(C(d)), namely I+ |= Φ(¬C(d)). Similarly, if I+ |= Φ(¬C(d)), we
conclude I |= ¬C(d).

– Let K = C1uC2(d). Note that Φ(C1uC2(d)) = Φ(C1(d))∧Φ(C2(d)). If I |= K,
then I |= C1(d) and I |= C2(d). By induction hypothesis, I+ |= Φ(C1(d)) and
I+ |= Φ(C2(d)). Conversely, if I+ |= Φ(K), we get I |= K.

– Let K = ∃R.C(d). Note that Φ(K) = R(d, f∃R.C(d)) ∧ γC(f∃R.C(d)). Let us
assume I |= ∃R.C(d). By hypothesis, there exists e ∈ N such that R(d, e) ∈ I
and I |= C(e). By induction hypothesis and the definition of the extension
I+, I+ |= R(d, e) and I+ |= Φ(C(e)). By (‡), we get I+ |= R(d, f∃R.C(d)) and
I+ |= Φ(C(f∃R.C(d))), namely I+ |= γC(f∃R.C(d)); we conclude I+ |= Φ(K).
Conversely, let us assume I+ |= Φ(K). Then, I+ |= R(d, f∃R.C(d)) and I+ |=
γC(f∃R.C(d)). By the definition of I+, I contains a formula of the kind R(d, e)
and, by (‡), we get I+ |= γC(e). By induction hypothesis we get I |= C(e),
thus I |= ∃R.C(d).

– Let K = ∀GC. We have Φ(K) = Φ(C(c1))∧· · ·∧Φ(C(cn)), thus we can proceed
as in the case concerning u.

(ii). One can easily prove that, for every formula F of L1
N , I |= F iff I |= F I .

Thus, I |= K iff I+ |= Φ(K) (by point (i)), iff I+ |= (Φ(K))I
+

(by the previous
remark), iff I+ |= KI (by definition of KI).

(iii). Considering the definition of ans and reduction KI , we show the claim by
induction on the structure of K (and definition of ans):

– Let K be atomic. Then we have that KI = K and (ans(〈tt〉K))I = {K} thus
the claim immediately follows.

– Let K = ¬C(d). Since K is a simple formula, we have that (ans(〈tt〉K))I =
{K}I . Thus, it immediately follows that I+ |= KI iff I+ |= (ans(〈tt〉K))I .

– Let K = C1 u C2(d). Then we have KI = (γC1(d))I ∧ (γC2(d))I and
(ans(〈(α, β)〉K))I = ans(〈α〉C1(d))I ∪ans(〈β〉C2(d))I . By induction hypoth-
esis, I+ |= (γC1

(d))I iff I+ |= ans(〈α〉C1(d))I and I+ |= (γC2
(d))I iff I+ |=

ans(〈α〉C2(d))I . Thus I+ |= KI iff I+ |= (ans(〈(α, β)〉K))I .
– Let K = ∃R.C(d). Then KI = R(d, f∃R.C(d)) ∧ (γC(f∃R.C(d)))I and

(ans(〈(e, α)〉K))I = {R(d, e)} ∪ (ans(〈α〉A(e)))I .
Let us suppose that I+ |= KI : then, we have I+ |= R(d, f∃R.C(d)) and
I+ |= (γC(f∃R.C(d)))I . Thus, by (‡), I+ |= R(d, e) and I+ |= (γC(e))I . By
induction hypothesis we have that I+ |= ans(〈α〉C(e))I . Thus, we have that
I+ |= (ans(〈(e, α)〉K))I . Conversely, suppose that I+ |= (ans(〈(e, α)〉K))I .
Then we have I+ |= R(d, e) and I+ |= ans(〈α〉C(e))I . By definition of I+ and
induction hypothesis, we obtain that I+ |= KI .

– If K = ∀GC, then KI = (γC(c1))I ∧· · ·∧ (γC(cn))I for {c1, . . . , cn} = dom(G)
and ans(〈φ〉K)I =

⋃
e∈dom(G)(ans(〈φ(e)〉C(e)))I . By induction hypothesis,

for each e ∈ dom(G), I+ |= (γC(e))I iff (ans(〈φ(e)〉C(e)))I . Thus, by the
above definitions we have that, I+ |= KI iff I+ |= (ans(〈φ〉K))I .

ut

Theorem 3. If I is an answer set for a formula K ∈ LN , then there exists
η ∈ itN (K) such that I is a minimal model of 〈η〉K.

Proof. Since I is an answer set for K, we have that I+ |= KI and thus, by
Lemma 1, I |= K. By Theorem 2, then there exists η ∈ itN (K) s.t. I |=
ans(〈η〉K).

We can prove that I is minimal: suppose that J ⊆ I with J |= ans(〈η〉K).
Then, by Theorem 2, J |= K. Let us show that J+ |= (ans(〈η〉K))I . Consider
H ∈ ans(〈η〉K). If H is atomic (and H is not ⊥(d)), then HI = H and thus
it holds J+ |= HI . Otherwise, if H = ¬C(d), since I+ |= HI then we have
HI = t and thus it holds J+ |= HI . This proves that J+ |= (ans(〈η〉K))I : thus,
by Lemma 1, we obtain that J+ |= KI . Since I is an answer set for K, then by
definition we obtain J = I. ut

Theorem 4. Let K be a positive formula of LN and 〈η〉K be a minimal piece
of information for K. Then, ans(〈η〉K) is an answer set for K.

Proof. By Theorem 2, for every lp-interpretation I s.t. I |= ans(〈η〉K) we have
I |= K. Hence, considering I = ans(〈η〉K), also ans(〈η〉K) |= K.

Moreover, let us consider I ′ ⊆ ans(〈η〉K) with I ′ |= K. Then, by Theorem 2,
there exists a β ∈ itN (K) s.t. I ′ |= ans(〈β〉K). Thus, ans(〈β〉K) ⊆ I ′ and, for
the minimality of 〈η〉K, this implies that ans(〈β〉K) = I ′ = ans(〈η〉K). ut

Theorem 5. Let K be a formula of LN and 〈η〉K be a minimal piece of infor-
mation for K with answer set ans+(〈η〉K). Then, ans+(〈η〉K) is an answer set
for K.

Proof. Assuming that I = ans+(〈η〉K) is an answer set for the minimal piece of
information 〈η〉K, then by definition I |= ans−(〈η〉K). Let us show that I is an
answer set for K.

By the condition above (and the definition of positive an negative answers),
it holds that I |= ans(〈η〉K). Thus, by Theorem 2 we have I |= K and by
Lemma 1, it holds that I+ |= KI .

To show that I is minimal, let us consider J ⊂ I s.t. J+ |= KI . Then, by
Theorem 2 and Lemma 1, there exists β ∈ itN (K) s.t. J+ |= (ans(〈β〉K))I .
This implies that:

(a). J+ |= (ans+(〈β〉K))I

(b). J+ |= (ans−(〈β〉K))I

Considering (a), we have that ans+(〈β〉K)I = ans+(〈β〉K) (i.e. the reduction
does not change the positive contents of the set). Thus, ans+(〈β〉K) ⊆ J ⊂ I.

Moreover, considering (b) (and the fact that J is consistent), the reduct
(ans−(〈β〉K))I = {t}. This implies that I |= ans−(〈β〉K): this is an absurd, as
it would contradict the minimality condition of 〈η〉K. ut

Theorem 6. Let K be a formula of LN . I is an answer set for K iff there exists
a minimal piece of information 〈η〉K such that I = ans+(〈η〉K).

Proof. By Theorem 4 we directly have the “if” direction: if 〈η〉K is a minimal
piece of information, I = ans+(〈η〉K) is an answer set for K.

Let us now prove the other direction and consider an answer set I for K: by
definition, then I+ |= KI . By Lemma 1, we have that there exists η ∈ itN (K)
such that:

(a). I+ |= (ans(〈η〉K))I .

Moreover, given that I is an answer set:

(b). for every J ⊂ I, J+ 6|= KI , that is for any β ∈ itN (K), J+ 6|= (ans(〈β〉K))I .

From (a) and the definition of the reduct, we have that (ans−(〈η〉K))I = {t},
and so I |= ans−(〈η〉K).

From (b), for every J ⊂ I, J+ 6|= (ans+(〈η〉K))I , thus we have that I =
ans+(〈η〉K).

We need to show that 〈η〉K is minimal. It holds that I is an answer set for
〈η〉K since I |= ans−(〈η〉K). Let us consider a piece of information 〈β〉K s.t.
ans+(〈β〉K) ⊂ I. We have by (b) that, if J = ans+(〈β〉K), J+ 6|= (ans(〈β〉K))I :
thus, in particular J+ 6|= (ans−(〈β〉K))I . This means that f ∈ (ans−(〈β〉K))I

and thus I 6|= ans−(〈β〉K). By definition of minimality, this implies that 〈η〉K
is minimal. ut

	Reasoning on Information Term Semantics with ASP for Constructive EL

