CEUR-WS.org/Vol-2723/1long22.pdf

A Computational Expedition into the Undiscovered
Country - Evaluating Neural Networks for the
Identification of Hamlet Text Reuse

Maximilian Bryan®, Manuel Burghardt® and Johannes Molz®

®Leipzig University, Augustusplatz 10, 04109 Leipzig, Germany

Abstract

In this article, we describe a two-step processing pipeline for identifying text reuse of Shakespeare’s
Hamlet in a corpus of postmodern fiction by comparing n-grams from both sources. A key feature of
our approach lies in a pre-filtering step, in which we select target sentences in the fiction corpus that
are potential candidates for Hamlet text reuse. Without pre-filtering, the amount of text reuse pairs
(that are no actual quotes) would be extremely high. In a second filtering step, we compare potential
text reuse pairs by their vector representation using a neural network trained in an unsupervised
manner. We found that using the vector similarity produces a problematic amount of false positives.
The created vector representations are created using an unsupervised training approach, resulting in
similarity aspects that are unfavorable for our use case.

Keywords
text reuse, intertextuality, Shakespeare, neural networks

1. Introduction

Intertextuality is an approach to literary studies that assumes that works of literature are never
independent but are instead part of a bigger network of textual relations, i.e., literary texts
are, to some degree, always influenced and informed by the texts that preceded them [1]. The
most objective way of studying intertextuality is to look at the recognizable re-occurrence [11]
of an earlier text in a later text. The detection of such recognizable re-occurrences, i.e. more or
less verbatim repetitions of parts of one text in another, is very well suited for a computational
approach, as the area of text reuse, which typically has applications in plagiarism detection
and information retrieval, provides a well-equipped toolbox of methods and algorithms [2, 3, 4,
18, 10]. More concretely, we are interested in using computational methods for the detection of
Shakespearean intertextuality (see [15]) in postmodern fiction, as Shakespeare’s words, topics,
characters, and plots are present in some of the most successful writers of the genre, like for
instance Neil Gaiman & Terry Pratchett [21].

In a previous pilot study, we experimented with a local alignment algorithm (Smith-Wa-
terman). As we aligned all the n-grams of Shakespeare’s work with the contemporary corpus,
this was a computationally intensive approach that returned a high number of false positives
[7]. In this work, we present the first results of an alternative approach to the detection of

CHR 2020: Workshop on Computational Humanities Research, November 18-20, 2020, Amsterdam, The
Netherlands

& bryan@informatik.uni-leipzig.de (M. Bryan); burghardt@informatik.uni-leipzig.de (M. Burghardt);
johannes.molz@googlemail.com (J. Molz)

@ 0000-0003-1354-9089 (M. Burghardt)

02020 Copyrighy for b papet 23 U5 SIS vtbuton 10 Intermational (CC BY 1.0),

[== CEUR Workshop Proceedings (CEUR-WS.org)

115

intertextuality, which relies on a two-step NLP pipeline. First, we use a classifier to extract
sentences in our corpus that are potential candidates for quoting Shakespeare. Second, we
compare these candidate sentences to the actual Shakespearean texts. This comparison is im-
plemented using a sequence vector representation created by a siamese neural network trained
on a large collection of news articles'.

The rest of the paper is structured as follows: We first give an overview of text reuse
approaches that rely on neural networks and related techniques. Next, we describe our NLP
pipeline and focus on the two neural networks that were used before explaining our process in
more detail. After that, we use our pipeline to discover intertextual references to Hamlet in a
data set of postmodern fictional literature and discuss our findings.

2. Related work

Text reuse has been a popular use case in computational linguistics and information retrieval
for many years. However, most of the existing approaches so far have relied on statistical
approaches rather than on alternatives that come to mind when looking at neural networks.
We claim that neural networks are well suited for the computer-aided investigation of text
reuse and present an innovative approach to do so in this paper.

This section gives an overview of the related work that uses statistical methods for text reuse
detection. We also provide related work for the usage of neural networks for tasks very similar
to text reuse and intertextuality detection, making a case for an existing research gap to use
a neural network architecture for the identification of text reuse.

Statistical approaches. [14] use tri-grams to represent text passages. When comparing these
tri-grams to other text passages, the Jaccard index is used to measure overlap. A major
downside of this simplistic approach is that synonyms or more complex rephrasing also will
result in a low tri-gram overlap. A similar approach is used by [22]. Here, longer n-grams
with lengths 4-7 are used to represent documents, while frequent n-grams are filtered out. The
remaining n-grams are hashed into a set of predefined buckets, with overlapping words being
put into the same bucket. Another approach that hashes n-grams is presented by [25]. They
calculate a one-sided Jaccard index, which allows them to find out how much of a text passage
is included in a bigger passage. An approach using alignments (similar to [7]) is presented by
[24]. Here, the BLAST algorithm is used to find reused text given query words.

When looking for a reused sentence, it is interesting to dissect the identified, possibly reused,
text parts by their type of similarity. A threefold way for looking at such similarities is presented
by [3], who distinguish content, structure and style as potential levels of textual similarity.

Neural Networks. One major disadvantage of using purely statistical approaches lies in the
binary representation of text similarity, i.e. a word that is spelled differently is also treated as
a different word, no matter the semantic closeness. When using neural networks for finding
text reuse, approaches can be used that give continuous similarity values. Our research did
hardly find any previous work regarding neural networks explicitly for intertextuality, whereas
several approaches are aiming at similar problems while not being applied in the broader field
of intertextuality in digital humanities.

'https://corpora.uni-leipzig.de

116

An approach that uses alignments is presented by [6]. The authors use a pre-processed corpus
and try to find text reuse for different input queries (=the actual quotes) using a modified
Needleman-Wunsch operating on word embeddings. An approach that also uses word vectors
to find similar sentences for a given query sentence is presented by [12]. When comparing not
just single words, but rather full sentences, it is necessary to respect the order of words in a
sentence. Recurrent neural networks (RNN) can be used for this, as has been demonstrated
by [13].

In general, when trying to find similarities between objects, neural networks are trained in
an unsupervised manner. In image similarity scenarios, a siamese architecture can be used
to create a semantic vector representation of data, meaning that data with similar features
will lead to a similar vector representation. To our knowledge, the earliest usage of a siamese
architecture is documented in [5]: In their project, the authors wanted to calculate the sim-
ilarity between signatures. The signatures have been given into the neural network by a set
of different predefined features. In this case, a positive pair contained two signatures from
the same person. Negative signatures were two signatures from two different people. The last
layer’s output was linear, and the vector representation of the two signatures was compared
using cosine similarity. [8] created another siamese approach: In their work, they present a
convolutional neural network with a linear output. During training, the network is trained
to give face images from the same person a cosine similarity of 1. When the images came
from two different people, the cosine similarity should be 0. Another siamese approach was
created by [17]. Here, a sentence was put token-wise into an LSTM, the last hidden state of
that layer was then used to calculate the Manhattan distance to another sentence’s vector on
a pre-labeled data set. [20] created a similar approach: They used the output sequence of a
pre-trained BERT model [9] and added a pooling layer to get a single vector representation of
that sequence. The network then was trained by giving positive and negative sentence pairs
into the network, similar to the previously mentioned approaches.

3. Method

Building on the above related work, we suggest a novel two-step filtering approach to find
quotations of Shakespeare’s Hamlet in postmodern fictional literature. We use a neural network
to create vector representations of sentence parts, both from Hamlet and our target corpus.
These are then compared to each other to find the most similar sentence parts. Since the
number of comparisons would be extremely high if we were to compare all Hamlet sentences to
all the sentences in our target corpus of 31 books, a major challenge was to lower the number
of actual comparisons, which ultimately will also result in a lower number of false positives:
While each of Shakespeare’s plays and poems has an undisputed literary quality, not every line
is equally suitable for quoting. For example, a sentence like Beware the ides of March is rather
famous, and it would be interesting to know where this quote is reused. However, a sentence
like I am a man is a common idiomatic phrase that is neither uniquely Shakespearean nor will
it be read as a quotation of Shakespeare. I am a man in a contemporary text does not evoke
a connection of an older text, as it is just a prevalent and frequent phrase that occurs in many
different texts (including Shakespeare’s works and earlier or later texts) and would thus result
in a false positive.

This section describes the steps and methods used to find quotes of Shakespeare’s Hamlet
in a small corpus of postmodern fictional literature. First, we describe the materials used.

117

After that, we explain the two neural networks we used in the two different steps of our NLP
pipeline. The order in which the two networks are described resembles the order in which they
are used in practice: First, we describe the training of a classifier that allows us to pre-filter
the corpus of novels, i.e. to filter out sentences that are likely to not contain any traces of
Hamlet. Second, we describe an approach to train a neural network in an unsupervised manner
in order to find semantically similar sentences for the remaining sentences of the corpus. The
individual steps of the proposed pipeline can be found in Figure 1.

Shakespeare Vectorize
‘ Novels }—> Prefilter Vectorize

Figure 1: NLP pipeline for finding Shakespeare quotes.

Compare Postfilter

~
_

3.1. Language resources

For this paper, we decided to focus on Shakespeare’s most popular tragedy: Hamlet - The
Tragedy of Hamlet, Prince of Denmark. Our comparison corpus is a collection of 31 novels of
postmodern fiction (see Table A.1), with a total size of 286,165 sentences. We decided to use
this corpus because of the availability of a ground truth of 129 Hamlet quotes for these books,
which were gathered by a Shakespeare expert by a mixture of close and distant reading [16].
This ground truth allows us to evaluate our approach (for more details see the results section).

3.2. Filtering candidate quotes

When we are looking for quotes from Shakespeare’s Hamlet in the presented corpus, we assume
that a potential quote uses register, vocabulary and style that resembles Shakespeare’s way
of writing. In order to pre-emptively discard sentences that — with a high probability — do
not contain a Shakespeare quote, we use a neural network that classifies sentences or sentence
parts by their quote potential. For this, we are using a list of predefined Shakespeare quotes.
We used a quote list created by Oxford scholars [19] and combined it with a crowdsourced list
of Wikiquotes®. Since our classifier also needs to be trained with negative examples, we chose
to also include data from the same time era by using an early modern drama data set®. Since
Hamlet is a drama, we also included a data set of movie subtitles [23], which are also based
on dialogue and consequently more similar to stage plays than contemporary prose. To widen
the classifier’s knowledge about text, we also included a data set of contemporary books* and
news articles into our data set.

The classifier’s neural network architecture is straight-forward, as it comprises an embedding
layer for word input, a recurrent layer that receives the token sequences, and a final feed-forward

2https://en.wikiquote.org/wiki/William_Shakespeare
3https://graphics.cs.wisc.edu/WP /vep /vep-early-modern-drama-collection /
*https://www.gutenberg.org/

Shttps://corpora.uni-leipzig.de/

118

layer with a single output with sigmoid activation. Some preliminary tests have shown that
the classifier works best when receiving full sentences as input, although this leads to undesired
side effects: The classifier can quickly learn that a sentence is non-Shakespearean if it contains
at least one word that does never appear in the Shakespeare quote list. Thus, when using the
classifier on sentences to find potential quotes, many sentences would be discarded, although
parts of it may contain a quote. To circumvent this problem, we decided to train the classifier
on n-grams of lengths 5, 7, 9, 11, and 13. If a longer sentence contains at least a smaller part
that is a potential quote, the sentence will not be discarded. Given the rather small number of
lines (8,855) that make up Shakespeare’s Hamlet, the classifier quickly learned to identify all
the quotes we used in the training phase. The problem was that the classifier only found exact
verbatim quotes and all variations were discarded, even if it was only a minor change compared
to the original quote. To counter this problem, we added input noise during the training by
randomly masking words from the input sequence, i.e. words have been replaced randomly
by an empty placeholder. During training, the classifier now learns that a given sequence can
be a valid quote, even if specific keywords are not present. The effect is that when using the
classifier on non-Shakespearean data, not only verbatim quotes but also variations of quotes
are classified as quote candidates.

The number of ngrams for all the 31 novels can be found in Table 1. For each n-gram,
our classifier computes a probability that a given n-gram is likely to be an actual Shakespeare
quote. For n-grams with length 5, the threshold was set to 0.8, since the shorter n-grams often
are included in the longer n-grams. We also noticed that n-grams of that length amounted to
a large number of false positives. For the other lengths, we decided to only keep those n-grams
with a probability higher than 0.3. We decided to only use such a low threshold to keep true
positive matches while at the same time discarding roughly 90% of all of the other ngrams.

3.3. Finding similar sentences

To find reused parts of Shakespeare’s Hamlet in postmodern fiction, we had to find a sentence
representation that makes actual Hamlet quotes and candidate quote sentences comparable.
We decided to use a vector representation created by a neural network. We did this because
there may be slightly different words used, compared to a quote in a source by a different author.
An example would be Or that the Everlasting had not ... (Shakespeare: Hamlet) as compared
to Or that God had not ... (Fforde, Jasper: Thursday Next Book 4: Something Rotten).
We assume that a neural network will be able to learn that these words are semantically very
closely related. Another reason against using a purely statistical approach is that modern texts
contain many words that have not been in used in Shakespeare’s time so that the number of
exactly overlapping n-grams [14] is lower compared to the comparison of texts from the same
era or even the same topic.

The neural network to be used will find sentence pairs between two corpora. The previously
mentioned encoder-decoder approach by [13] is able to do exactly that. However, we think
that having a decoder structure for textual data is too complex memory-wise, since generating
text needs a weight matrix with one axis being the size of the used dictionary. We circumvent
this problem by only using an encoder structure and by proposing a siamese neural network
to create vector representations of both the known quotes and the candidate quotes. Such an
architecture is used to create a semantic vector representation of data, meaning that data with
similar features will lead to a similar vector representation. We decided to use a custom model
rather than relying on existing, pre-trained models such as BERT [9] for several reasons. On

119

Table 1
The number of snippets for each snippet length before and after filtering.

ngram length number of ngrams number of ngrams after filtering

5 1,729,519 237,690
7 1,480,019 359,216
9 1,262,438 101,875
11 1,078,270 38,872
13 921,433 5,284
Sum 6,471,679 742,937

the one hand, the BERT model has to be extended since it is not explicitly trained on creating
vector representations of whole sentences. Instead, the output of the BERT model is a sequence
of vector representations for all tokens of the input sequence. A vector representation for the
whole sentence is created by calculating the mean of all the tokens vectors. On the other
hand, the BERT model consists of 12 layers and creates a vector output of 768 features, and
is trained on full sentences. We feel a model of that size is unnecessarily complex for our use
case since our data consists only of short token sequences with a small variety of used topics.
Similar to the necessary extension of the BERT model [20], we created a neural network that
is giving a sentence token-wise into a bidirectional recurrent layer. The recurrent layer returns
a vector for each time step of the sequence of shape length x features. We chose to use a
feature size of 256, which is three times smaller than the number of features the BERT model
uses. We sum that output on the length axis, resulting in a single vector representation of the
sequence.

When training the network, sentences are inserted into the network as positive and negative
pairs. A positive pair of sentences consists of two coherent sentences from the same document.
A negative sentence pair, on the other hand, contains two randomly chosen sentences. For each
of the pair’s sentences, the model had to create a vector representation. The vector similarity of
that pair should be 1 for positive pairs and 0 for negative pairs. The similarity was calculated
using the cosine similarity. To get training data, we used the Leipzig Corpora Collection®,
which provides large corpora in various languages. We used an English news corpus, which
contains news articles about various topics with an average length of 20 tokens per sentence.
A positive training pair for our siamese architecture was a sentence pair from the same news
article; a negative training pair was a sentence pair from different articles. The idea is similar
to the one presented by [13], where training pairs are coherent book sentences. To train our
network also on Shakespearean words, we extended the corpus by Shakespearean texts. The
fact that the network is trained with (weak) labels makes the training of the network supervised.
However, creating vector representations that result in close or distant similarity scores for the
shown positive and negative pairs is an auxiliary task. The resulting vector representation of
input sequences is not pre-defined, thus this part of the training is unsupervised. The neural
network was trained with a batch size of 16. Each batch contained two input sequences of
sentences. The maximum sequence length was 32. If a sentence’s sequence was longer than 32,
a random subset was chosen. The sequence pairs were either coherent sentences from the same
news article or random sentences from the same dataset, i.e. negative and positive pairs have
been shown with the same frequency. For positive pairs, the target similarity value was 1, for

Shttps://corpora.uni-leipzig.de/

120

negative pairs 0. Mean squared average was used as loss function. The model was trained for
12 hours and was created using the following layers from the Keras library:

model = Sequential()

model.add (Embedding(input_dim=50000, output_dim=256))
model.add (Masking())

model.add (Bidirectional (GRU(256, return_sequences=True))

Using these vector representations, we can pair each Hamlet n-gram with each candidate
n-gram, whereas only parts of the same length are compared. In a final step, we compared the
results by the tokens that appear in each sentence part. We created a set of tokens appearing
in each part as well as in both parts and the share of each part set with the combined set
using intersection over union. Thus, if a pair has received a high vector similarity but hardly
shares common tokens, we discarded it. The result list was sorted by the average of the two
similarity scores. We have cut the list after the last occurrence of a found known quote. To
reduce the number of entries in the list, we removed duplicate entries: Since each sentence
in our postmodern fictional literature dataset was split into several n-grams, sometimes more
than one n-gram was paired with the same Hamlet quote. In those cases, we only kept the
pair with the highest vector similarity score.

4. Results and discussion

This section presents the results we obtained with our approach on a sample corpus of 31 books
(see section 3.1). After executing our two-step pipeline, we retrieved a list with pairs of Hamlet
quotes and potential candidate quotes from our corpus of postmodern fictional literature. The
pairs are sorted by the average of their vector and token similarity, with a score that ranges
from 0 - 100. Of the 129 known quotes from the ground truth, we found a total of 92 in our
results list. Among the 92 true positives, our approach also found a number of false positives.
We cut off the list of results after the last true positive match, which results in a list with 1897
items. In order to be able to better discuss the list of results, we split it into three parts (see
Figure 2). Also, for each index for which we find a true positive, we calculate the precision up
to that index position. After that, we calculate the average precision of all the precision values.
Using that evaluation measure, ranking true-positives high in the list of results correlates with
a high average precision.

Part 1 — The first part from index 1 to 500 contains only verbatim or near-verbatim quotes.
It contains 75 true positives, resulting in an average precision of 0.55. At the top of the list,
there are quotes that are full or nearly full-verbatim quotes. An example for a true positive
would be how the wheel becomes it (Stephen Fry: Paperweight). The lower the similarity
score, the more the pairs differ. For example, the pair what a piece of work is a man (Terry
Pratchett: The Amazing Maurice and his Educated Rodents) and what a wonderful piece of
work is man (Hamlet) has received similarity of 0.99. In this part of the list, there were also
true-positive quotes that have not been part of the ground truth but have been added to it
subsequently. For example, the phrase To sleep, perchance to dream in Hamlet is used, which
has been rephrased to To Die, Perchance to Sleep? by Jasper Fforde in Farly Riser: The new
standalone. Another newly found reference is a slight variation of The time is out of joint. In
Wyrd Sisters by Terry Pratchett it is used: time was out of joint.

121

1.0 4 q ..
g " 9
ot
0.8 4 L
o ° |
> @
E ® ¢ '..
E 0.6 e}
: ¢
S
F
> 0.4 °
Part1 Part 2 Part 3
0.2 4 75quotes 2 quotes 15 quotes
0.0 T T T T T T T T
0 250 500 750 1000 1250 1500 1750

Result list index

Figure 2: Vector similarity and result list index of the 92 found known quotes.

Part 2 — The second part of the list from index 501 to 1750 contains pairs that differ in some
stop words and have a high vector similarity. Although this part is considerably longer, it only
contains 2 true positives, the average precision from index 1 to 1750 is 0.54. This part of our
result list also contains many false positive pairs of two kinds. The one kind of pairs contains
many overlapping words, but these are in a different order. The other kind contains words
in the same position of the n-grams, but the not-overlapping words create a very different
meaning. An exemplary pair would be catch the conscience of the and with the blood of the:
Although the second, fourth, and fifth words are identical, the meaning of the two n-grams
differs significantly. An true-positive example from that part with a vector similarity of 0.75
is 7 Il catch the conscience of the king paired with William Shatner in Conscience of the King.
The two n-grams contain a significant overlap but both start with different words, which leads
to a low vector similarity. This shows that the vector similarity is not based on the aspects we
are interested in.

Part 3 — The more interesting pairs are found in the third part of our result list starting
from index 1751 to 1897. In this last part, there are 15 true positives, resulting in an average
precision of the whole list of 0.46. The pairs in this part overall have lower similarity scores,
among which we find quite interesting pairs such as to be or not to be that is the question
and to espresso or to latte that is the question, which is a true positive match. Comparing
this pair to the pairs of the second part in our result list shows that the vector similarity at
times focuses on aspects we are not interested in from the perspective of intertextuality. For
example, n-grams pairs containing word word groups like of the or in the account for a large
part of our false-positive findings.

37 of the 129 ground truth quotes were either not found by our approach or ranked with a
score so low that they were lost among the other low-ranked false positives. Apart from quotes
that have been filtered out in the pre-filtering step of our pipeline, other quotes we failed to

122

identify fall into the following problem categories:

A One-word quotes, which are too short to be detected automatically and that demand a
lot of context (for examples see Table A.2, lines 1-3)

B Quotes with long insertions or acutely different word order (lines 4-6)

C Quotes that are just too implicit, too altered or non-specific (lines 7-9)

D Quotes that contain spelling errors or deviations. One line contained intra-word punctua-
tion (line 10), one was a play on homophones (line 11), another contained a typographical
error in the contemporary text (line 12)

E Miscellaneous quotes, where we see no obvious reason why they have not been found or
why they were scored too low (lines 13-15)

5. Conclusion

The search for reused passages of Shakespeare’s texts at first sight might look like a standard
task for existing text similarity detection approaches. However, finding pairs that are reused
in the sense of an intertextual reference can be rather challenging, as automated searches for
these are bound to produce many false positives. In this article, we described a two-step
process to address this problem partially. We found that a critical element is the pre-filtering
of potential quote candidate sentences, to reduce the number of false positives (as compared
to previous studies by [7] and [16]). Without this pre-filtering, the number of pairs that need
to be compared would have been extremely high. In the second filtering step, we compared
potential pairs by their vector representation using a neural network which was trained without
supervision.

We found that using the vector similarity of two different n-grams leads to undesired results.
Our list of results contains pairs of n-grams that are lexically similar, but not all repetitions
of words are actual intertextual references. This shows that the learned vector representation
focuses on features that result in unfavorable similarity scores for our use case. For example, if
an n-gram pair contains stopwords in a different order, we would classify this as a false positive
and would like this pair to get a lower similarity score. Using our existing list of results, we
plan to use the true positive pairs to identify changes in the vector space for future work. We
also work with the false positives we found to identify undesired changes in the vector space.
With that knowledge, we plan to modify the neural networks to deliver less false positives.

Although our approach did not find all the quotes that were defined as the ground truth by
a Shakespeare expert, it did manage to identify 5 new quotes, that were not part of the initial
ground truth, but that were verified ex post. While this means that we have to critically reflect
on the function and requirements for ground truth data in the context of intertextuality, it
also shows that neither man nor machine are reliably able to detect all possible intertextual
references in a text, but rather a combined approach is most viable. Besides, a human expert
is needed in any case, to interpret the automatically generated results lists, which will always
contain false positives obvious to the expert but indistinguishable for the automated method.
With this in mind, we will also look into providing a more interactive tool that allows scholars
to effectively sieve through the results. We plan to realize a tool that is similar to a search
engine (see [6] for an example interface), i.e. all potential results will be displayed in a graphical
user interface that supports the verification of any of the results by close reading the underlying
full texts.

123

References

G. Allen. Intertextuality. Psychology Press, 2000.

D. Bamman and G. Crane. “The logic and discovery of textual allusion”. In: In Proceed-
ings of the 2008 LREC Workshop on Language Technology for Cultural Heritage Data.
2008.

D. Bér, T. Zesch, and I. Gurevych. “Text Reuse Detection using a Composition of Text
Similarity Measures”. In: Proceedings of COLING 2012. Mumbai, India: The COLING
2012 Organizing Committee, Dec. 2012, pp. 167-184. URL: https://www.aclweb.org/ant
hology/C12-1011.

M. Berti et al. “Measuring the Influence of a Work by Text Reuse” In: The Digital
Classicist 2013 (2013), pp. 63-79.

J. Bromley et al. “Signature Verification Using a ”Siamese” Time Delay Neural Network”.
In: Proceedings of the 6th International Conference on Neural Information Processing
Systems. NIPS’93. Denver, Colorado: Morgan Kaufmann Publishers Inc., 1993, pp. 737—
744. URL: http://dl.acm.org/citation.cfm?id=2987189.2987282.

M. Burghardt and B. Liebl. “”The Vectorian - Eine parametrisierbare Suchmaschine fiir
intertextuelle Referenzen””. In: Book of Abstracts, DHd, 2020.

M. Burghardt et al. “The Bard meets the Doctor” — Computergestiitzte Identifikation in-
tertextueller Shakespearebeziige in der Science Fiction-Serie Dr. Who. Book of Abstracts,
DHd, 2019.

S. Chopra, R. Hadsell, and Y. Lecun. “Learning a similarity metric discriminatively, with
application to face verification”. In: Proc. Computer Vision and Pattern Recognition.
Vol. 1. July 2005, 539-546 vol. 1. 1SBN: 0-7695-2372-2. por: 10.1109/CVPR.2005.202.

J. Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding”. In: CoRR abs/1810.04805 (2018). arXiv: 1810.04805. URL: http://arxi
v.org/abs/1810.04805.

C. Forstall et al. “Modeling the scholars: Detecting intertextuality through enhanced
word-level n-gram matching”. In: vol. 30(4). 2015, pp. 503-515.

R. Hohl Trillini. Casual Shakespeare: Three centuries of verbal echoes. Routledge, 2018,
pp. 1-199. por: 10.4324/9781351120944.

T. Kenter and M. de Rijke. “Short Text Similarity with Word Embeddings”. In: Pro-
ceedings of the 24th ACM International on Conference on Information and Knowledge
Management. CIKM ’15. Melbourne, Australia: ACM, 2015, pp. 1411-1420. 1SBN: 978-
1-4503-3794-6. DOI: 10.1145/2806416.2806475. URL: http://doi.acm.org/10.1145/280641
6.2806475.

R. Kiros et al. “Skip-Thought Vectors”. In: CoRR abs/1506.06726 (2015). arXiv: 1506.0
6726. URL: http://arxiv.org/abs/1506.06726.

C. Lyon, J. Malcolm, and B. Dickerson. “Detecting Short Passages of Similar Text in
Large Document”. In: (Dec. 2001).

J. Maxwell and K. Rumbold. Shakespeare and Quotation. Cambridge University Press,
2018. por: 10.1017/9781316460795.

124

J. Molz. “A close and distant reading of Shakespearean intertextuality”. July 2019. URL:
http://nbn-resolving.de/urn:nbn:de:bvb:19-261274.

J. Mueller and A. Thyagarajan. “Siamese Recurrent Architectures for Learning Sentence
Similarity.” In: AAAIL Ed. by D. Schuurmans and M. P. Wellman. AAAT Press, 2016,
pp. 2786-2792. URL: http://dblp.uni-trier.de/db/conf/aaai/aaai2016.html#MuellerT16.

M. Potthast et al. “Overview of the 5th International Competition on Plagiarism Detec-
tion”. In: Working Notes Papers of the CLEF 2013 Evaluation Labs. Ed. by P. Forner,
R. Navigli, and D. Tufis. Sept. 2013. 1SBN: 978-88-904810-3-1. URL: http://www.clef-ini
tiative.eu/publication/working-notes.

S. Ratcliffe. Ozford Essential Quotations. Oxford University Press, 2012.

N. Reimers and I. Gurevych. Sentence-BERT: Sentence Embeddings using Siamese BERT-
Networks. 2019. arXiv: 1908.10084 [cs.CL].

A. Rzyman. The Intertextuality of Terry Pratchett’s Discworld as a Major Challenge for
the Translator. Cambridge Scholars Publishing, 2017.

D. Smith, R. Cordell, and E. Dillon. “Infectious texts: Modeling text reuse in nineteenth-
century newspapers”. In: 2018 IEEE International Conference on Big Data (2013),
pp. 86-94.

J. Tiedemann. “Parallel Data, Tools and Interfaces in OPUS.” In: Proceedings of the 8th
International Conference on Language Resources and Evaluation (LREC 2012. Vol. 30(4).
2012.

P. Vierthaler and M. Gelein. “A BLAST-based, Language-agnostic Text Reuse Algorithm
with a MARKUS Implementation and Sequence Alignment Optimized for Large Chinese
Corpora”. In: Journal of Cultural Analytics (Mar. 22, 2019). po1: 10.22148/16.034.

Q. Zhang et al. “Continuous Word Embeddings for Detecting Local Text Reuses at
the Semantic Level”. In: Proceedings of the 37th International ACM SIGIR Confer-
ence on Research € Development in Information Retrieval. SIGIR ’14. Gold Coast,
Queensland, Australia: Association for Computing Machinery, 2014, pp. 797-806. ISBN:
9781450322577. por: 10.1145/2600428.2609597. URL: https://doi.org/10.1145/2600428.2
609597.

125

Table A.1

Corpus of postmodern fiction novels that will be used to test our automatic approach for text reuse detection

of Shakespeare's Hamlet.

Title Author #Sentences
Adams, Douglas H2G2 The Ultimate Hitchhiker's Guide 21,289
Barnes, Julian The Noise of Time 3,208
Carter, Angela Nights At The Circus 5,883
Carter, Angela Shaking A Leg 15,433
Carter, Angela Wise Children 5,927
Fforde, Jasper Early Riser: The new standalone 9,654
Fforde, Jasper Lost in a Good books 9,258
Fforde, Jasper One of our Thursdays is Missing 7,640
Fforde, Jasper Something Rotten 9,201
Fforde, Jasper The Eyre Affair 8,997
Fforde, Jasper The Well Of Lost Plots 9,305
Fforde, Jasper The Woman Who Died a Lot 7,746
Fry, Stephen Making History 12,608
Fry, Stephen Moab Is My Washpot 6,951
Fry, Stephen Paperweight 7,631
Fry, Stephen The Hippopotamus 7,741
Fry, Stephen The Liar 8,280
Gaiman, Neil Anansi Boys 10,778
Gaiman, Neil Trigger Warning 9,772
Pratchett, Terry Guards! Guards! 9,649
Pratchett, Terry Nation 9,084
Pratchett, Terry Night Watch 11,317
Pratchett, Terry The Amazing Maurice and His Educated Rodents 7,412
Pratchett, Terry Wyrd Sisters 8,315
Pratchett, Terry; et al. The Science of Discworld 2 8,009
Rushdie, Salman East, West 2,597
Rushdie, Salman Imaginary Homelands 6,078
Rushdie, Salman Joseph Anton 12,551
Rushdie, Salman The Ground Beneath Her Feet 13,006
Rushdie, Salman The Moor’s Last Sigh 8,214
Smith, Zadie On Beauty 12,631

126

Table A.2

Novel Intertextual reference Original Shakespeare passage Problem
category

1 Fforde, Jasper - Does “pirate” have one “t” or two?’ Ere we were two days old at sea, a A
Thursday Next Book 4: pirate of
Something Rotten

2 Fforde, Jasper - So he then screamed abuse at her for Excellent, i’ faith; of the chameleon’s | A
Thursday Next Book 4: five minutes, told her she was a whore | dish. | eat the air, promise-cramm’d.
Something Rotten and marched out, muttering You cannot feed capons so.

something about being a chameleon.

3 Pratchett, Terry, lan ‘A fishmonger was involved. You are a fishmonger. A
Stewart and Jack Cohen -

The Science of Discworld
II: The Globe

4 Adams, Douglas - And the rest, after a sudden wet So tell him, with th’ occurrents, more B
The Hitchhiker’s Guide to | thud, was silence. and less, which have solicited- the
the Galaxy rest is silence. Dies.

5 Fforde, Jasper - ‘—in the ear?’ said Joffy as | walked Anon comes in a fellow, takes off his B
Thursday Next Book 4: into the kitchen. ‘Does that work?’ crown, kisses it, pours poison in the
Something Rotten sleeper’s ears, and leaves him.

6 Fforde, Jasper - ‘Whether ’tis tastier on the palette Whether ’tis nobler in the mind to B
Thursday Next Book 4: to choose white mocha over plain,’ he | suffer
Something Rotten continued in a rapid garble, ‘or to The slings and arrows of outrageous

take a cup to go. fortune
Or to take arms against a sea of
troubles,
And by opposing end them.

7 Rushdie, Salman - Thus haste, enforced by our inevitable | Thus conscience does make cowards C
East, West end, makes Yoricks of us all) of us all,

8 Pratchett, Terry - avenge the terror of [his] father’s The collocation ‘father’s death’ C
Wyrd Sisters death. P222 appears 8 times in Hamlet: “my

father's death” is used by Laertes
once, thrice by Hamlet himself; “his
father's death,” “your father's death,”
and “your dear father's death,” is
used by Claudius and Gertrude once
speaks of “her father's death.”

9 Fforde, Jasper - ‘Oh God, oh God! O God! God! C
Thursday Next Book 4:

Something Rotten

10 | Rushdie, Salman - Methought there was nothing meet. | sings. In youth when | did love, did D

East, West love, Methought it was very sweet; To
contract-O- the time for- a- my
behove, O, methought therea- was
nothing- a- meet.

11 | Carter, Angela - We sported bellhop costumes for our To be, or not to be- that is the D
Wise Children Hamlet skit; should, we pondered in question:

unison and song, the package be
delivered to, | kid you not, ‘2b or not
2b’

12 | Carter, Angela - The notion of sickness is related to Something is rotten in the state of D
Shaking a Leg that indefinable ‘something rotten in | Denmark.

the state’

13 | Carter, Angela - As the baboushka slept, her too, too O that this too too solid flesh would E
Nights at the Circus solid kitchen fell into pieces under the | melt,

blows of their disorder as if it had thaw, and resolve itself into a dew!
been, all the time, an ingenious prop,

and the purple Petersburg night

inserted jagged wedges into the walls

around the table on which these

comedians cavorted with such little

pleasure, in a dance which could have

invoked the end of the world.

14 | Pratchett, Terry - Sometimes you have to be cruel to | must be cruel, only to be kind E
Guards, Guards be kind

15 | Smith, Zadie — There was only this one high note — So tell him, with th’ occurrents, more | E
On Beauty the rest was silence. 127 and less,

Which have solicited- the rest is
silence. Dies.

