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Abstract. After S. Smale's works it became clear that in smooth dynamics the 

system of a general form is not structurally stable and therefore there is no strict 

mathematical basis for modeling and computational analysis of systems. The 

contradiction appeared in science: according to physicists dynamics is simple 

and universal. The solution to this problem was proposed based on the construc-

tion of dynamic quantum models (DQM). From the assumption that quantum 

effects are caused by unrecoverable “white noise”, a certain mathematical mod-

el of quantum mechanics already follows and is essentially unambiguous. On 

the other hand, in this model spectral problems are reduced tothe usual pertur-

bation theory of smooth dynamical systems. Thus, the construction of such 

models can be considered as an asymptotic method for solving spectral prob-

lems. But the definition of DQM is not formally related to Hamiltonian sys-

tems. DQM is defined and constructed universally for both Hamiltonian sys-

tems and systems with the truth function. As a result, for example, quantization 

with the Bohr-Sommerfeld condition also extends to systems with a truth func-

tion. Hopefully DQM opens for new applications. The most important is to seek 

assistance and cooperation in future research.  

Keywords: modeling, computer simulation, structural stability, dynamical sys-

tem, dynamic quantum model, Markov cascade. 

1 Introduction  

Increasingly, processes and systems are researched or developed through computer 

simulations and this trend is likely to continue [1]. Computational modeling has been 

used in physics, chemistry and related engineering for many decades because this is 

the only way the equations can be solved at all [2]. It consists from two steps: (i) 

modeling, i.e. finding a model description of a real system, and (ii) solving the result-

ing model equations using computational methods [3]. 

But if an arbitrarily small perturbation of the model leads to a qualitatively differ-

ent picture of the dynamics, then such a model is not applicable to the real process: 

strictly speaking, perturbations are included in the definition of a model [4]. Also 

computational methods inevitably lead to errors of discretization and rounding in 

calculations [5]. Therefore traditionally the stability of a model with respect to rela-
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tively small changes is a necessary condition for its correctness [6]. The qualitative 

invariance of a mathematical model under small perturbations is usually called struc-

tural stability [7].  

However, in S. Smale's works [8] was shown, that there exist smooth dynamic sys-

tems whose neighborhoods do not contain any structurally stable system. This meant 

that there was no rigorous mathematical basis for modeling and computational analy-

sis. The contradiction has appeared in science, because physicists believe that the 

dynamics is simple and universal [9].  

The solution to this problem was proposed in [10] based on the construction of dy-

namic quantum models (DQM). It turned out that taking into account random fluctua-

tions, necessary for the transition to the quantum model of reality, allows us to return 

in fact to the simple picture of A. Poincare’s dynamics: a dense set of structurally 

stable systems.  

DQM is so named because for Hamiltonian systems it is simply related to the cor-

responding Schrödinger equation. From the assumption that quantum effects are 

caused by unrecoverable “white noise”, a certain mathematical model of quantum 

mechanics already follows and is essentially unambiguous [11]. Dynamics in it is 

described by Markov cascades (time is discrete). This model is simply connected with 

the traditional one: there is a simple correspondence between Markov cascades and 

quasisolutions of the corresponding Schrödinger equation. Thus, in a sense, DQM is a 

bridge between the formal calculus of quantum mechanics and the intuitive vision of 

physicists. On the other hand, in this model spectral problems are reduced to the usual 

perturbation theory of smooth dynamical systems. Thus, the construction of such 

models can be considered as an asymptotic method for solving spectral problems.  

This paper gives an example of such approach to the one-dimensional system with the 

quasiperiodic potential (Proposition 2).  

But the definition of DQM is not formally related to Hamiltonian systems; it is de-

fined for any ordinary differential equation or any diffeomorphism on any smooth 

Riemannian manifold. Hopefully this opens the way for absolutely new applications. 

For example, for applications to dynamic systems that using logical operations:  algo-

rithms, theorems, software applications. The use of fuzzy logic in DQM is in principle 

completely natural and even almost inevitable. Let J = J (z) be a given smooth func-

tion on phase space (0  J (z) 1), equal to 1 on the true trajectory and 0 outside some 

neighborhood of it; we can interpret it as the function of truth. In this paper, DQM is 

defined and constructed universally for both Hamiltonian systems and systems with 

the truth function J. As a result, for example, the point of the DQM spectrum is inter-

preted exactly as the average value of truth for approximate logical conclusions. 

Quantization with the Bohr-Sommerfeld condition also extends to systems with a 

truth function (Proposition 1).  

But the reverse is also true. If we construct an approximate model of given theorem 

or software application using the training of a neural network, then we get the DQM 

of these objects. With further training, these DQMs will approach the original object 

(in other words, they will converge to it according semiclassical limit). Perhaps this 

will allow a new approach to the problems of solvability in logic, there is some analo-

gy with the theorem of the equivalence of structural stability and hyperbolicity proved 



in [10]. DQM of systems with logical operations are always uniformly limited by the 

number of operations (see Section 2.2) and then for them solvability is not in doubt. 

Then everything depends on the semiclassical limit, more precisely, on the uniformity 

of the structural stability of DQM.  

The paper goal is 1) to build the foundations of the theory of dynamic quantum 

models (DQM); 2) to demonstrate the application of this theory for spectral problems 

of quantum mechanics.  

The paper is organized as follows: in part 2 we synthesize the dynamic quantum 

model (DQM); in part 3 we demonstrate the application of DQM for spectral prob-

lems of quantum mechanics; part 4 concludes.  

We had to omit proofs of some propositions in order to fit the paper format. 

2 The Dynamic Quantum Model: Basic Definitions  

2.1 DQM Definition  

Let )(xp  be an n -dimensional smooth vector field on an n -dimensional smooth 

Riemannian manifold M , where ),...,,( 21 nxxxx  are local Euclidean coordinates on 

M , )()( n

i RCxp  ( ni ,...,1= ). On each phase curve Mtx )(  of the dynam-

ical system generated by this vector field  

)(хp
dt
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i
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consider the integral of the “shortened action”  == 
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22
)()(  . The value of )(ts  on each curve )(tx , which is differ-

ent from a fixed point, is diffeomorphically expressed in t  and is called “optical 

time”. Let   be a metric such that =
)(

)(
tх

dts  : dttpd
2
)(= . The following is 

the heuristic derivation or explanation of the definition of dynamic quantum model 

(Definition 1).  

So, the distance d  traveled by a point along the path of (1) during the time t  is 

equal to 


=

t

dpd
0

)(  ttp c = )(  , where )( 0tppc =  is the average value 

)0( 0 tt  . (Of course this is with a single bypass of trajectory during t : turning 

points are the special case). Further, we assume that the fluctuations generate “white 

noise” )(t , acting on the configuration space with the dispersion )(tD  = t2 , 

where the diffusion coefficient 
2  is constant over the considered time interval. It 



will take some time t , until the point moves to a distance d   from the initial posi-

tion, which exceeds the mean square error caused by )(t  during the time t , i.e. 

tpc   will exceed t2 . With such a minimal t  tpc  = t , whence 

=2 tpc 
2

 and therefore  
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Here by assumption t  is the minimal time interval after which it becomes possi-

ble to make a new measurement, the difference from which will exceed the error, i.e. 

get a significantly different measurement. Owing to (2)  

)()(
0

222 tsdptp

t

c == 


 . Thus 1) the time interval between the 

nearest significant measurements is unchanged on the optical time scale and is equal 

to 
2 . (In other words, the distance between them in the metric   is equal to 

2 ). 

2) During this time “white noise” )(t  generates an irremovable random error, the 

standard deviation of which is equal to  the distance d  between the nearest signifi-

cant measurements along the trajectory.  

Now suppose that the configuration space is one-dimensional, there is a turn point 

on the segment of the trajectory, the initial position is located near the turn point and 

move towards it. To pass a segment of the path, the ends of which are significantly  

different, the point must reach the turning point, and then (after turning) pass another 

segment of ρ – length 
2 . How much will the distance to the nearest significantly 

different measurement increase? The points on the segment ρ – lengths 
2 , including 

the turning point, are indistinguishable among themselves, only their average value is 

important. Therefore, the points in the interval between 2

2

3
  and 2

2

1
 to the turning  

point in time 
2  will move to the segment centered just on the turning point; and 

after a while until the next significantly different position. So, only for points on a 

segment with length 2

2

1
 to a turning point, the distance to the nearest significantly 

different measurement will increase: on average by 2

4

1
 .  

In the general case, one should take into account those points that move towards 

the caustic  K –  the set of singular points at which the direction of motion changes 

and are located at  ρ – distance 2

2

1
  from K. To pass a segment of the path, the ends 

of which are significantly different, such points must reach K, and then (turning) to 

pass another segment of ρ – length 
2  in a new direction. Therefore, the travel time 



for these points will increase on average by 2

4

1
 . The jump in the time interval at 

turning points on the optical time scale is a quantum-mechanical phenomenon tradi-

tionally taken into account by means of the Morse index (when establishing a connec-

tion with the Schrödinger equation, it turns out that 2

4

1
  = 

2

h
 , i.e. 

2  = 2πh). 

Generally speaking, there may be features on the caustic other than turn points, how-

ever, such a singular point splits into several turn points with an arbitrarily small stir 

[6]. At such points, the number  2

4

1
 = 

2

h


 

is added to the ρ - length, where μ 

is the Morse index of the singular point. Here μ is an integer equal to the number of 

turning points that arose during small stir and passed in the positive direction to the 

caustic minus the number of turning points traveled in the negative direction.  

So, a dynamic quantum model first shifts each point along the phase curve of a 

given dynamic system over the optical time 
2  (or ρ – length 

2 ) and in a neigh-

borhood of the caustic this shift increases abruptly by  2

4

1
  = μ

2

h

 

. And then 

randomly shifts on a distance not exceeding the length of the trajectory from the orig-

inal to the new point. The following rigorous definition summarizes this description. 

The definition of a dynamic quantum model is given for an arbitrary dynamic system 

(1) on an arbitrary compact Riemannian manifold M .  

Definition 1. By a dynamic quantum model (DQM) for dynamical system (1) we 

mean the Markov cascade with the transition function) ),( AxP , which associates 

with each point x  of the trajectory of (1) and an open subset A  of the configuration 

space probability of getting from x  to A  in one iteration: 

t
AxP

2

1
),( =  

−−

A

tGxy dye
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where t  is the shift time from x  to Gx  along the path of the ρ-length h2  or h2  

+ 
2

h
  in the neighborhood of the caustic, 

2  = h2 . Given the initial distribu-

tion, we obtain a Markov process P  with this initial distribution and the transition 

function ),( AyP : if 
t  is the distribution at time t , t  is the lag between the two 

nearest measurements, then the DQM sets new distribution 
tttP +=  )(  at time 

tt + . 

2.2 DQM Eigenvalues and Markov Deviations  

Our goal is to determine pure states and eigenvalues of DQM. And now, along with 

the discreteness of the measurement process, its limited time will be essential. Of 

course, the measurement process cannot continue indefinitely, but here its duration is 

dictated by the very definition of DQM. Namely, the duration of the measurement, in 



principle, cannot exceed on order  
h

1  since further the measurement errors with dis-

persion 
2 t (where the diffusion coefficient 

2  is small of order  h) are no longer 

small and the notion of trajectory loses its meaning. (And you can only talk about the 

average values for the ensemble, as in statistical physics). Therefore, we limit the time 

to a certain limiting value T of order  
h

1   (
h

T
1

~ ): 
h

B
T  , where B > 0 is a con-

stant. (In general, we say that the quantity u = u (h) in a DQM is of order  hk  (u ~ hk  

or  u = O(hk)),  if   u  ≤ Chk . And  u = u (h)  is  exactly of the order hk  (u ~ = hk),  if  

chk ≤  u  ≤ Chk  for some constants  C, c > 0).  

Let us now consider the problem: it is required to experimentally determine the lo-

cation of the point at which a given point of the phase space (x; p) passes under the 

action of dynamical system (1) with the greatest possible accuracy. Note that the time 

interval between the two nearest significant measurements is 
2 = 2πh on the optical 

time scale or of order 
2

p

h
 on the usual scale in the neighborhood of the point (x; p) 

(see (2)). In addition, the duration of the measurements is limited by the value of  T ~ 

h

1
. Therefore, the position of the point in the next significant measurement can be 

obtained, in principle, only a finite number of times, namely N ~ 
2

p

h
T  ~  

2

2

h

p
 

numbers. But this position is determined each time with the unrecoverable error, the 

standard deviation of which is equal to  d   
p

2  (see (2)) , i.e. d  ~ 
p

h

 

. Therefore, 

the averaging of all such measurements, i.e. then the best approximation to the unper-

turbed value, which in principle can be achieved, differs from it by an order of value 

N

d  ~  
2

2

h

p

p

h  ~  
2

2

p

h .  Such a deviation is given at each point z of the 

phase space, i.e. defines a vector field Z(z). So,  

1. h2 is the least in order error, with which the coordinates of the point in he phase 

space can be known, and thus the values observed at the point. Values whose dif-

ference in order of value is less than h2  are not experimentally distinguishable. 

2. As a result of averaging the maximum number of maximally accurate measure-

ments, we arrive to a dynamical system generated not by the diffeomorphism G, 

but by its perturbation  ZGG += .  

Definition 2. The Markov deviation  Z (z) is a smooth vector field on phase space 

such that  1) 
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2
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( 0B ) is a constant of dynamical system (1) (i.e., the length  Z(z) does not exceed in 

order 
2

2

p

h  for all points z of the phase space);   

2) for any initial point  z0 = z(t0) on the phase curve z(t) of the dynamical system 

(1) and the time instant  t  in optical time  ( t  <  T ~ 
h

1 ) we have 

   
t

t

t

t

dtdsseszZ

0 0

)))(),(((( ≤  Вh2,  (3)  

where e(t) is the unit normal vector of the closed phase curve at the point z(t), 

0B  is the constant of dynamical system (1).  

Property (3) of the Markov deviation is due to the fact that, by construction, the 

vector Z(z(t)) has a random orientation, therefore, the pluses and minuses of the ac-

cumulations of its projections on the unit vectors are compensated. Therefore, the 

integral of the accumulation of projections along the phase curve is experimentally 

indistinguishable from zero.  

If instead of a given time limit 
h

T
1

~  we take 
h

T
1

~1
 ( TT 1

), then we obtain 

another Markov deviation; similarly, when replacing the zero point in time. So the 

Markov deviation is a smooth vector field that depends on the parameters; further, it 

can be assumed to be a general view field. 

2.3 DQM Pure States and Eigenvalues. Quantization of Spectrum in DQM. 

The physical meaning of the eigenvalues is that these are all values of energy that can 

be the result of reliable, i.e. the most accurate measurement (ideally of the order of 

h2). But as a result of the most accurate experiments, as we have seen, in reality the 

dynamics is studied not of the diffeomorphism G, but of its perturbation =G ZG +

. Let J = J (z) be a given smooth function on phase space. We can interpret it as the 

Hamiltonian (energy in the phase space) or as a function of truth (0  J (z) 1), equal 

to 1 on the true trajectory and 0 outside some neighborhood of it. Given the irremova-

ble errors of the Markov deviation, the discreteness of the measurement process and 

its limited time, we arrive at the maximum number of the most accurate measure-

ments 
=

tN

i

i

t

zGJ
N 0

)(
1

, where z is the point of phase space, Z is the general view 

Markov deviation, ZGG +=  is a diffeomorphism, Nt is the maximum number of 

significantly different measurements over time  t ≤ T.  

In terms of meaning the eigenvalue of the spectrum is associated with some pure 

stationary state of the dynamical system: any reliable measurement in this state leads 

to an acceptable error (ideally with a maximum accuracy of the order of  h2) and only 



to this value. But in a DQM any point in the phase space is always known with the 

irremovable error of order h (see (2)). As a result, we average generally speaking over 

trajectories with a starting point not z , but some z~ , that is distant from z by a dis-

tance of the order  h. Therefore, the carrier of the state associated with some eigenval-

ue of α must contain a ball with a diameter of exactly the order of h: otherwise, any 

reliable experiment with a significant probability will lead to values significantly 

different from α. Hence 

Definition 3. Let ZGG += , where Z is a general view Markov deviation; Nt  is 

the number of all iterations of the diffeomorphism in time t; α is a real number. Let D 

= Dαh be the set of points z of the phase space such that for all sufficiently large t  <  T  

~ = 
h

1  

2
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where B is a constant. Then, if for any Z of a general view and sufficiently small h, 

the set Dαh contains a ball with a diameter of exactly the order of h, then α will be 

called the eigenvalue of the DQM for dynamical system (1), and Dαh will be called the 

carrier of the pure state corresponding to this eigenvalue. 

Thus, all points of a DQM spectrum are formally determined only with an accuracy 

of the order of h2, but this corresponds precisely to their meaning. By definition, the 

domain Dαh is an open G - invariant subset of the phase space.  

So, to define DQM means to set: 1) the Markov process in accordance with Defini-

tion 1; 2) the Markov deviation  Z of general view or, what is the same, dif-

feomorphism ZGG +=  in accordance with Definition 2.  

Consider the two–dimensional dynamical system (1), the compact phase space Λ 

of which is filled with closed phase curves. After the smooth change of variables, in 

canonical coordinates, this is the dynamics of uniform rotation along concentric cir-

cles. If we interpret J  as a function of truth, then its values on each circle, concentric 

to the true path (true circle), are constants (i.e., they do not depend on a point on this 

circle). At the semantic level, with such interpretation, we are talking about transitions 

to equivalent propositions.  

Proposition 1. The DQM eigenvalues of the given dynamical system, with accura-

cy of the order h2, are equal to the values of J (z) on the phase circles in Λ, the ρ - 

length of which satisfies the Bohr - Sommerfeld condition   
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and only they. 

3 The Spectrum of Schrödinger Equation with Quasiperiodic 

Potential and DQM 

Consider the Schrödinger equation  
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with the quasiperiodic potential  U(x) = cos x + ε ∙ cos λx   (ε, λ > 0). For this Schrö-

dinger equation we construct its dynamic quantum model (DQM), i.e. in accordance 

with Definition 1, the perturbation of the corresponding classical system by the Mar-

kov process. There is a simple connection between these Markov processes and the 

quasisolutions of the Schrödinger equation. The connection between the Schrödinger 

equation and the corresponding DQM is based on a following modification of the 

traditional asymptotic expansion of solution (4).  

Lemma 1. Let  ),( tx = 
),(

),(
txS

h

i

etx  is some quasisolution (4), i.e.  

)(),()( 2

2

2
2 hOtxU

x
hH

t
ih ++




−==










, 
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The converse is also true: if ),(),( txStxS h= and ),(),( txtx h = is some 

quasisolution (5), then  ),( tx
),(

),(
txS

h

i

etx=  is some quasisolution (4).  

Now we show how the DQM of the Schrödinger equation is constructed from its 

two-dimensional classical analogue 
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Let us consider separately the terms of equation (5): Hamilton-Jacobi perturbed equa-

tion 
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and the Einstein-Fokker-Planck diffusion equation 
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in which ),( txS is determined from (7). If for ),( txS (7) holds with an accuracy of 

order 
2h and for ),( tx  (8) holds with an accuracy of order h, then the function 

),( tx = 
),(

),(
txS

h

i

etx  satisfies (4) with an accuracy of the order
2h , i.e. it is a 

quasisolution of the Schrödinger equation.  



According to section 2.3 the DQM of the Schrödinger equation is determined by  

1) the smooth dynamics from (7) and 2) its stochastic perturbation from (8).  

1) Consider the first two terms of the asymptotic expansion of the solution S(x, t) 

of equation (7) with respect to the small parameter h: 

 S(x, t) = )(),(),( 2

10 htxhStxS ++ . (9) 

Substituting this expansion into (7), in a first approximation, we obtain the Hamil-

ton - Jacobie equation 
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On the trajectory (6) γ with the energy level 
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The velocity on γ is  
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 ),(0  = )(xU−   =  р0(х)  regardless of  t. As-

suming that )(1 xS  is also independent of t, we find from (7) outside the turning 
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Now the smooth DQM dynamics corresponding to the perturbed Hamilton - Jacobi 

equation (7) is defined by the system: 
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where in h  - neighborhoods of turning points we smooth )(1 xS , preserving it with 

an accuracy of the order of h .  

2) DQM also includes stochastic disturbance, “white noise” in the configuration 

space. If each point  x0, in accordance with the smooth dynamics of the DQM, moves 

along the trajectory (6) during time Δt to the point  x = x0  + 
+
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and at this time scattering occurs, defined by the normal distribution with the disper-

sion Δt, then [12] the distribution density φ(x, t) at the time t = t0 + Δt  is a solution of 

the diffusion equation 
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This equation is equivalent to (8): if φ(x, t) is a solution of (8), then this is a solu-

tion of (12) for h=2 .  

Let H (γ) be the energy value on the trajectory (6) γ. Consider the integral of 

“shortened action” on γ (t) = (x(t), p (t)) : s(t)  = 
)(

)(
t

dxxp


 = 
t

dp
0

2
)(  . On 

each trajectory γ (t) other than a fixed point, the quantity s(t) is diffeomorphically 

expressed through t and is called the optical time. Let ρ be a metric such that s(t) =


)(tr

d :   =d  dttp
2

)( . For a closed trajectory  γ  (γ(0) = γ( ))  2I(γ) = s( ) 

= 


dxxp )(  is ρ - length of this trajectory, i.e. optical time of its bypass.  

Lemma 2. For all sufficiently small h, the eigenvalue α of equation (4) with accu-

racy of the order of h2 is equal to the value of the energy H(γ) on some closed path (6) 

γ. These and only these trajectories γ are such, for which the Bohr - Sommerfeld con-

dition holds with accuracy of order h2: 

 I(γ)  = )
2

1
( +nh        (n = 0, 1, …). (13) 

Proof. Suppose that, on a closed trajectory (11) γ, (13) holds. Using the DQM con-

struction, we show that   = H(γ)  is the eigenvalue of equation (4) with an accuracy 

of the order of h2. Let S0(x, t)  be the action on γ, i.e. the solution of the Hamilton - 

Jacobi equation (10) on γ )()(
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. As the initial 

condition for    S0(x, t) we take 
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where р0(y) = )(yU−  is velocity on γ, р0(x0) = 0,  i.e. x0 is the abscissa of the 

turning point on γ. Then 

 ),(0 txS  = IktxS t  +−)0,(0
,  (15) 

where kt is the number of turns in time t, πI is the ρ - length by γ between turning 

points. And for S(x, t) = ),(),( 10 txhStxS + , where in accordance with the construction 

of DQM  S1(x, t) = S1(x) from (11), equality (12) is approximately satisfied: 
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We assume that the velocity function р0(x) on the closed curve γ without loss of 

generality is analytic with an accuracy of the order of h2, otherwise approximating  

р0(x) on γ analytic with this accuracy. Then outside the neighborhood of the turning 

points this is also true for ),(0 txS , S1(x), and in the neighborhood of the turning 



point  S1(x) we can continue analytically. When turning, the sign of 
x

txS



 ),(0

 

=  

р0(х)  changes, which in view of (11), implies the transition S1(x) to another branch of 

the logarithm. This means adding to the value of the logarithm, i
2

1  to  S1  and then 

hi
2

1
 to  S. Therefore, in view of (15) 
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where, as in (17),  kt is the number of turns in time t.  

By definition, DQM also includes a stochastic perturbation defined on γ by equa-

tion (12) with a diffusion coefficient 2 = h. Let φ0(x) be the density of the stationary 

state for such a process. Then, for such dynamics at the initial density  φ0(x) = φ(x, 0), 

the solution of (12) φ(x, t)  is different from φ0(x) by order h for any finite time t: φ(x, 

t) – φ0(x) ~ h (due to scattering by “white noise” outside the limits of γ). Thus 
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which is equivalent to this option (8): 
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Now replace h by hi in (18), (17) and (16). Then 
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Let on γ )(xS = )0,(xS  to the first turning point and )(xS = )0,(xS
2

h
I


 −+   

then to the second. Then ),( txS  = )2()( hImtxS t  −+−  , where mt  is the 

number of complete walks γ in time t, kt = 2mt  or  kt = 2mt  + 1. Hence 
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since by condition (13)  2I – h = 2 )
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In virtue of (19) and (20) 
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) = O(h2). (24) 

Continuing this motion, we multiply by 
),( txS

h

i

e  both sides of (24). But then from 

Lemma 1, with the same accuracy of order h2, (4) also holds for the function (23): 
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Hence in view of (23) 

 α  =
)(

0 )(
xS

h

i

ex  H )())(( 2
)(

0 hOex
xS

h

i

+ , (25) 

where H = – h2
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 is Schrödinger operator. Equality(25) means [7] that the 

pair (α, 
)(

0 )(
xS

h

i

ex ) is quasisolution (quasimode) of the stationary Schrödinger 

equation α ψ = H ψ  with a small parameter h2. It follows that α is an eigenvalue of the 

operator H with order accuracy h2.  

Indeed, assuming that d is the distance from α to the spectrum of the operator  H,  

║ ║ is the norm in L2 , and 1)( −−= HER 
 is resolvent  H, we obtain for  ψ  = 
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where B > 0, whence d ≤ B h2 and then the lemma follows from the Weyl criterion, 

QED.  

Proposition 2. For Schrödinger equation (9) with a quasiperiodic potential U(x)  

for all sufficiently small h in the scattering region, the spectrum is continuous for all 

ε, λ> 0. In the region of vibrational motions 

1. the spectrum is discrete if λ is rational. 

2. If λ is irrational, then the point spectrum with increasing ε monotonically expands 

to its closure – small segments around the original (at ε = 0) eigenvalues and for ε 

of order h occupies this entire region. With a further increase in ε to an order of 

h1 , such a picture of the spectrum is preserved, only the region of vibrational 

motions expands ultimately to the entire space. For ε of order h1 , with increasing 

ε, the point spectrum monotonously narrows to segments converging to discrete 

points. 

Proof. At ε = 0, the potential U(x) = cos x  is periodic. In this case, in the region  

H(γ) ≤ 1 of the phase space of the dynamical system (6) (in the region of vibrational 



motions), the trajectories γ are closed. By virtue of Lemma 2, the spectrum in this 

region is discrete, and its points with an accuracy of the order of h2 are equal to the 

energy values H (γ) on such trajectories γ for which condition (13) is satisfied. In the 

region H(γ) > 1 (the scattering region), the trajectories γ are unbounded and un-

closed, so the spectrum here is continuous and, with accuracy of the order of h2, is 

equal to the energy H(γ) on the trajectories from this region. For the scattering region, 

this will always be true with increasing ε.  

As  increases from zero, the periodicity of the potential U(x) disappears, on the in-

terval )]1(2;2[ +kk   it has the form  

 ]).2;0[()2cos()cos()(  ++= xxkxxU  (26) 

If λ is rational and  λ = 
q

p , then there are no more than q different such potentials 

and for each of them the spectrum is discrete. For irrational λ, the points 2kλ modulo 

2 everywhere densely fill the segment [0; 2] and their closure coincides with the 

segment.  

Consider on the segment [0; 2] dynamic system (6) with potential )(xU = 

)cos()cos( xx ++  , smooth in the parameters ε  0 and   [0; 2], For  = 

2kλ (mod 2)  for the potential  U  ρ – length I = I (H, ε, ) of closed trajectory 

with given energy H and ε > 0 is equal to ρ – length trajectories for the initial poten-

tial U (26) with the same H and ε on the interval )]1(2;2[ +kk  .  

As for potential U  0
),,(


dH

HdI 
  at ε = 0, then this is also true for suffi-

ciently small  ε > 0. Let the inverse function  f(I)  =  f(I, , ε)  associates the ρ - length 

I of a closed trajectory with its energy level H. According to Lemma 2, for I = 

)
2

1
( +nh  (n = 0, 1, …) all this H = f(I, , ε) and there only are the eigenvalues (4) 

with order of accuracy h2. Since the dependence of f on  is continuous, then for fixed  

I and ε > 0  image of the segment [0; 2] along the  axis is some segment KI along 

the H axis.  

The length of the segment KI smoothly depends on ε, and for sufficiently small h 

and ε of order h it increases approximately linearly with increasing ε. Therefore, with 

increasing ε, the union of the segments KI over all I = )
2

1
( +nh  (n = 0, 1, …) will 

cover all values of energy in the field of oscillatory movements.  

All the above considerations remain valid with a further increase in ε, and therefore 

the spectral picture does not change, only the range of vibrational motions expands. 

As ε → ∞, this region occupies the entire phase space. Moreover, in the spectral pat-

tern in this region, a process occurs that is opposite to what was when ε changed from 

zero to h. Namely, the point spectrum narrows to segments converging in the limit to 

discrete points corresponding to phase curves with ρ – length  I = )
2

1
( +nh  (n = 0, 



1, …) for potential cos λx. This follows from the symmetry of the plots 0 < ε < h and 

h1  < ε < ∞: divide equation (4) by ε 
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As a result of the replacement of variables 
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=== xxtt , we obtain 
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At ε → ∞, i.e. ~  → 0 we back to the periodic case with potential U(x) = cos x, 

QED. 

4 Conclusion 

The structural stability of a mathematical model is a necessary condition for its cor-

rectness. But after S. Smale's works it became clear that in smooth dynamics the sys-

tem of a general form is not structurally stable and therefore there is no strict mathe-

matical basis for modeling and computational analysis of systems. The contradiction 

appeared in science: according to physicists dynamics is simple and universal.  

The solution to this problem was proposed based on the construction of dynamic 

quantum models (DQM). From the assumption that quantum effects are caused by 

unrecoverable “white noise”, a certain mathematical model of quantum mechanics 

already follows and is essentially unambiguous. This model is simply connected with 

the traditional one. Construction of such models can be considered as an asymptotic 

method for solving spectral problems, for example, for the one-dimensional system 

with the quasiperiodic potential.  

But the definition of DQM is not formally related to Hamiltonian systems; it is de-

fined for any ordinary differential equation or any diffeomorphism on any smooth 

Riemannian manifold. DQM is defined and constructed universally for both Hamilto-

nian systems and systems with the truth function. As a result, for example, the point 

of the DQM spectrum is interpreted exactly as the average value of truth from approx-

imate logical conclusions. Quantization with the Bohr-Sommerfeld condition also 

extends to systems with a truth function.  

Hopefully this will allow a new approach to the problems of dynamical systems that 

using logical operations:  algorithms, theorems, software applications. 
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