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Abstract. Companies have an increasing demand for enriching docu-
ments with metadata. In an applied setting, we present a three-part
workflow for the combination of multi-label classification and semantic
tagging using a collection of key-phrases. The workflow is illustrated on
the basis of patent abstracts with the CPC scheme. The key-phrases
are drawn from a training set collection of documents without manual
interaction. The union of CPC labels and key-phrases provides a label
set on which a multi-label classifier model is generated by supervised
training. We show learning curves for both key-phrases and classifica-
tion categories, and a semantic graph generated from cosine similarities.
We conclude that, given sufficient training data, the number of label
categories is highly scalable.

Keywords: multi-label classification · semantic tagging · prediction-
based embedding spaces · patents.

1 Introduction

For strategic developments, businesses and research organizations have an in-
terest in identifying competences or trends in their respective organization and
in comparison to competing institutions. Extracting this information manually
among heterogeneous data is time-consuming which is partly complicated by
different underlying classification schemes, e.g. from patents or publications.
Therefore, there is an increasing demand for metadata [8] that combines cat-
egories from classification schemes with semantic tags.

The automatic single-label classification of documents is well-researched [21]
[1] while multi-label classification with large numbers of labels still is a challenge
[16]. The combination of classification and semantic tagging is also less explored.
Advances in the distributed representation of words have provided the necessary
basis for this combination [14] and recent work allows to achieve both steps
together in a document processing workflow [18].

To tackle the fusion of classification and semantic tagging in an applied set-
ting, we introduce a basis workflow which allows to classify and tag documents
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at once. For that we start by introducing the tools, namely the model, data
and evaluation metrics (Section 3). Subsequently, we put the approach into con-
text by describing a use case within the Fraunhofer society that aims to extract
information from existing data sources (Section 4.1). As patent data is an im-
portant base for innovation research and because it exhibits one of the largest
and prominent classification schemes, we employ it to demonstrate the workings
of our approach.

Following the use case, we describe the three-part workflow in detail (Section
4.2). A set of key-phrases is collected in an unsupervised procedure from a train-
ing set of documents. The union of category labels and key-phrases provides a
label set on which a multi-label classifier model is trained. Following the model
training, we furthermore describe how to extract embedding vectors to visually
represent classification categories and key-phrases together in a semantic graph.
We depict learning curves with appropriate metrics and a cutout of the semantic
graph. We conclude that the workflow scales to a larger amount of documents
and can be applied on documents in various domains.

2 Related Work

Multi-label classification with a large number of categories has been notoriously
difficult. A first break-through that made classification of texts possible with-
out relying on manually designed features was the Support Vector Machine [5],
[10]. However, the computational effort grows considerably with the number of
labels, making the training of classification problems with thousands of labels
intractable. Semantic tagging, i.e. the assignment of key-phrases to a text, in an
unsupervised way was achieved by applications of the Latent Dirichlet Allocation
topic model [3].

Both steps, multi-label classification and semantic tagging, in a document
processing workflow could recently be combined with the advent of the StarSpace
algorithm [18] based on embedding vector spaces. This algorithm implements the
concept of prediction-based embedding spaces.

Since Elman’s seminal paper [7] on recurrent neural networks and their train-
ing on sequences, in particular sentences as sequences of words, there have been
many efforts to improve the storage capacity and reduce the computational com-
plexity of such systems. The Word2Vec algorithms [14] were a path-breaking
invention in this direction which for the first time made it possible to represent
semantic properties of words derived from their actual usage in large quantities
of texts. This algorithm exceeded capacities of systems known so far by orders of
magnitude. Levy and Goldberg [12] showed that the Word2Vec algorithms are
closely related to counting-based vector representations by matrix-factorization
mappings. An example is a vector-space based on PMI (point-wise mutual in-
formation) values. This finding supports confidence in the semantic properties
of prediction-based embedding spaces, such as the StarSpace model, which are
explored by cosine similarity. This is due to their close relationship to PMI-based



representations. Important follow-up developments of Word2Vec were Glove [15]
and FastText [4].

Recent applications of StarSpace have been published in the areas of ontolo-
gies [9] and knowledge graphs [20] that are related to our use case. Regarding
other recent work, transformer-based architectures [6] are also suitable for multi-
label classification.

3 Methods

3.1 StarSpace

We chose StarSpace [18], a general-purpose neural embedding model which can
be used for multi-label classification and tagging. It is based on a bag of entities
representation. Entities can be texts, labels, meta-data like authors, source URLs
etc. Starspace thus is capable of learning relations between items of various types
and origins. The bag of entities representation is a high dimensional vector in
an embedding space which may include labels. The actual learning algorithm is
a stochastic gradient descent optimization of a special loss function∑

(a,b)∈E+,b−∈E−
Lbatch(sim(a, b), sim(a, b−1 ), ..., sim(a, b−k )) (1)

where entities a and b are drawn from the set E+ of positive examples, and
entities b− are drawn from the set E− of negative examples. In our use case (sec-
tion 4.1) the entities are the patent abstracts and their labels and key-phrases.
The k-negative sampling strategy of [14] is used. The similarity function can be
chosen from {cosine, dotproduct}. The loss function Lbatch has two implemen-
tations:

– margin ranking loss: max(0, µ− sim(a, b)) with margin parameter µ

– the negative log loss of the softmax function: − log( eyi∑
j
eyj

)

During the optimization run, the similarity function sim(∆,∆) is ”learned”.
It can subsequently be used to measure the similarity between entities. For
classification, a label is predicted for a given input a as maxb̂(sim(a, b̂)) over the

set of possible labels b̂. This feature can be used to output a ranking of labels
according to their similarity, implementing multi-label classification.

3.2 Data

In our experiments, we employ a sample of patent abstracts from the United
States Patent and Trademark Office (USPTO)3 from the month of January 2020
which amounts to 22.000 abstracts. The classification scheme that we use is the
Cooperative Patent Classification (CPC). The CPC hierarchy is illustrated in
Fig.1 and consists of section, class, subclass, maingroup and subgroup.

3 https://developer.uspto.gov/product/patent-grant-full-text-dataxml
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Fig. 1: CPC hierarchy illustrated with
an example category

Label Quantity

Main-CPC 100
Further-CPC 250
Key-phrases 200

Table 1: Number of la-
bels per category

We focus on the first three levels, namely section, class and subclass. The
data contains a Main-CPC which serves as the main category of the patent
and Further-CPC categories which are also applicable categories (see Fig. 5(b)
for examples). We selected a subset of all possible labels with respect to the
number of examples available in our data collection. Table 1 shows the numbers
of selected labels in both categories. For the category key-phrases see section
4.2.

3.3 Evaluation Metrics

We evaluated the experiments based on two metrics:

– F1 value is the well-known harmonic mean of precision and recall measures.
We used the F1 value to assess the performance on the Main-CPC labels,
because it is suited to evaluate single-label classification tasks mainly.

– Coverage-rank [19] with a real-valued ranking function f(., .)

coverage(f) =
1

p

∑
i

max
y∈Y

rankf (xi, y)− 1 (2)

counts how many steps have to be taken to move down the ranked label list
to cover all the relevant labels of the example. The coverage-rank was used to
assess the performance on the Further-CPC labels and key-phrases. It seems
to be more adequate to multi-label classification than the F1 value. Another
important reason is that we want to train the model on a semantic tagging
task, which would be thwarted by an exclusive optimization according to F1
values. The reason is that semantic tagging is expected to tag documents
with a certain key-phrase that is not literally contained in the document
but is nevertheless highly relevant to the document content and topic. This
desired behavior would, however, result in a degraded F1 value because it
would be counted as a false positive.

4 Experiments

4.1 Use Case

Here, we first describe the applied benefit of our approach in the context of a
current project. Within the project ”Fraunhofer Digital” a data hub has been



created which will cover a variety of datasets, ranging from publications and
patents to project descriptions. All the datasets contain valuable information
about the competence landscape and, in particular, patent data is important for
the strategic technology and innovation management within Fraunhofer.

One key challenge is that patents are only mapped to a patent classification
system. There is no basis in linking the classification to information outside of
the scheme. In this use case it is desired to find similarities between patents and
at a glance we want to identify the most suitable key-phrases. This makes it for
example easier to determine current technologies and technology trends.

Our approach is to extract and assign information inherent in the patents
that exceeds the common patent classification. We achieve this by employing
key-phrase extraction. By providing key-phrases on top of the classification, the
model provides comprehensible information for readers and therefore serves as
a base to facilitate work for employees. In the ”Fraunhofer Digital” use case we
apply this approach also to publication data using more data to create several
classification models. For this paper, we narrow our focus to patent samples. In
the following, we describe the workflow in more detail.

4.2 Workflows

Key-phrase Extraction. We collect a list of key-phrases from the pool of
training documents using the RAKE (Rapid Automatic Keyword Extraction)
algorithm [17]. We chose RAKE, because it does not depend on sophisticated
preprocessing operations as named-entity recognition and training of neural net-
works as in [13]. RAKE operates in an unsupervised manner on individual doc-
uments. It identifies key-phrases by extracting phrases between stopwords (e.g.
”the”, ”a”) and by analyzing the frequency of word appearance and word co-
occurrence.

Because RAKE works on single documents, the frequent extraction of non-
informative standard key-phrases like section headings (”Related Work”, etc.)
is expected. It can be avoided by detecting and elimiating those phrases based
on an information-theoretic measure like TF-IDF (Term Frequency - Inverse
Document Frequency) [2] or Importance Weight [11]: We chose TF-IDF and keep
only those phrases which contain at least one term with a value above a certain
threshold (to be set as a hyper-parameter). The resulting list usually is still
too large. Therefore, we select the n most frequent phrases. In the experiment
described here, we chose 200 key-phrases (see Table 1). Examples from this set
of key-phrases are ”search engine” or ”application programming interface” and
more are depicted in Fig. 5. The selected key-phrases define the gold-standard
for F1 value optimization.

Model Training. The key-phrases together with the Main-CPC and Further-
CPC labels define the set of StarSpace labels to be trained (see Fig. 5(b) for
examples). Taking the abstracts and the labels, the StarSpace model is trained
(Fig. 2 top) with a pre-determined number of iterations on the training set. From
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the trained model we export the embedding vectors of the labels and construct
a semantic graph that represents the cosine-similarity based k-nearest-neighbor
relations of the labels (Fig. 2 bottom). This graph serves as a human-readable
quality reference of the model. It is not directly used for the prediction workflow.

To optimize hyper-parameters we used a fixed training dataset of ∼13.000
documents and a test set of ∼8.800 documents (60%/40% split). We evaluated
model performances for the CPC scheme from level 1 Section to level 4 Main-
group (see Fig. 1). Results are reported exclusively for level 3 Subclass, because
this was the most detailed level for which we could achieve satisfactory results.

The StarSpace algorithm has several hyper-parameters4 which need to be
explored in separate evaluations. We optimized 9 of them (see Table 2).

StarSpace param. Description Explanation

iterations number of training iterations an iteration includes n minibatches

minCount min frequency of terms less frequent terms are eliminated

ngrams ngrams of terms ngrams up to n terms

dim embedding dimension the dimension of embeding vectors

lr learning rate learning rates are set to <= 0.05

batchSize batch size number of items in a minibatch

loss loss function the functions hinge (i.e. margin
ranking) or softmax

similarity similarity measure cosine similarity or dot product of
embedding vectors

adagrad stochastic gradient optimizer adagrad can be switched on or off

Table 2: Description of hyperparameters that we optimized

Model Prediction. New documents (without CPC-label) are assigned their
CPC-labels and key-phrases by the trained StarSpace model (see Fig. 3). For
each test document the model outputs a weight for each of the labels. Therefore,
we need another hyper-parameter weight-threshold to cut-off the list of output
labels sorted decreasingly by weight to achieve adequate F1 values.

4.3 Results

Attainable Model Performance Figure 4 shows a typical development of
F1 and coverage-rank values during a training run of 640 iterations, a weight-

4 see https://github.com/facebookresearch/StarSpace



Fig. 4: Example illustration of learning curves of F1 value and coverage-rank for
Main-CPC (black), Further-CPC (red), and key-phrase (green) labels.

threshold of 0.35 and otherwise optimal StarSpace parameters. We see that op-
timal values of F1 and coverage-rank occur in the same range of iterations. Note
that large F1 values but small coverage-rank values are better. The overall F1
values are not very competitive. This is partly due to the limited number of
documents we use. Moreover, optimizing the F1 value is only a secondary goal.
It only makes sense for the Main-CPC values, because they are single-label cat-
egories. For the Further-CPC labels and a fortiori for the key-phrases we cannot
define the F1 measure in a fully consistent way. This would require a predefined
ordering on the multi-label categories which is not given. After all, the behavior
of the different label sets is as expected: the single-label Main-CPC categories
show better performance with respect to F1 compared to the multi-label cate-
gories Further-CPC and key-phrases.

The more important evaluation criterion is the coverage-rank, because it gives
an estimate on the precision of the output of non-sorted multi-labels. Here we see
the Main-CPC labels again performing best, as expected. The second-best per-
formance of key-phrases and the rather large distance of the Further-CPC values
to the other two cases is not expected and needs an explanation: All Further-CPC
labels are drawn from the same category system as the Main-CPC labels. The
most relevant of them is the Main-CPC label, and all others are Further-CPC
labels. The sequence of CPC categories may thus be different for thematically
closely related patent abstracts and result in different Main/Further-CPC label
sets. This seems to be more difficult to learn for a model than categorizations
from disjoint label sets. The fact that we have more Further-CPC labels than
keywords may also add to the performance differences.



Semantic Tagging A trained StarSpace model contains exportable embedding
vectors for both the terms occurring in the training documents and all category
labels. This allows to define a k-nearest-neighbor relation on the labels with the
cosine-similarity of their embedding vectors. A similar relation exists between the
label embeddings and document texts based on the bag-of-ngrams representation
of the documents5. This allows to assign k-nearest-neighbor key-phrase labels as
semantic tags to documents. It is difficult to rate the appropriateness of such
tagging directly. We therefore display a k-nearest-neighbor graph of labels from
all three categories in Fig. 5.

This sub-graph is centered around the Main-CPC level 3 category ”G06F -
electric digital data processing” and shows the neighboring color-coded Main-
CPC (red), Further-CPC (light blue) and key-phrase (cyan) labels6. The com-
plete graph contains all 550 labels as nodes. The directed edges in the graph
code the cosine similarity between the label embeddings. More similar labels are
connected by stronger edges. Note that the linear distance of labels in this graph
therefore is not an indicator of their embedding similarity. The edge color is set
by its source label. In particular, we can observe that the Main-CPC labels and
the Further-CPC labels of identical categories (for example G06F) are connected
strongly vice-versa, as one would expect.

Semantic tagging now works as follows: if a document is classified, for example
as M G06F, it gets assigned the Further-CPC labels G06F and H04L, as well as
the key-phrases ”search engine”, ”client system”, ”operating system”, ”computer
processor” and possibly more key-phrases that are not displayed in this graph
cutout. This tagging behavior is a major difference from other tagging algorithms
in that it may assign key-phrases to a document that are not contained in the
document itself.

4.4 Limitations and Recommendations

The classification and tagging workflow presented here has some intrinsic limi-
tations which we will shortly discuss in this section.

– Specificity of key-phrases: We advise to investigate the specificity of the
key-phrases that are extracted by the RAKE algorithm followed by TF-IDF
filtering. Depending on the particular properties of a training collection,
many of the key-phrases may occur in a large number of multi-label cate-
gories. It is up to the experimenter to create a mix of more frequent and
more specific key-phrases if required.

– Number of labels: Though scalable in a large range there surely exist
upper limits of the number of labels in a multi-label classification regime.
These limits are related to the number of documents in the training set, but
also to the skewedness of label distributions. We did not run quantitative
investigations on this topic but from our general experience with StarSpace

5 For details see https://github.com/facebookresearch/StarSpace
6 For details see

https://www.cooperativepatentclassification.org/cpcSchemeAndDefinitions/table



(a)

CPC category Description

G06F Electric digital data processing

H04 Electric communication technique

H04B Transmission

H04H Broadcast communication

H04L Transmission of digital information

H04N Pictorial communication

H04W Wireless communication networks

(b)

Fig. 5: (a) Semantic graph generated from cosine similarities of labels and key-
phrases. Main-CPC is illustrated in red, Further-CPC in light blue and key-
phrases in cyan. (b) The CPC categories and their description.



models in several domains we would state the following: The number of
labels should not exceed 1-2% of the number of training data, and with
respect to skewedness of distribution the frequency ratio of the least frequent
and the most frequent label should not exceed 0.01. One way to circumvent
the limit of label numbers would be to split labels into subsets and train
several StarSpace models, one on each subset. Doing this, one has to take
into account that the label weights in the model output cannot be compared
across models. Therefore it makes sense to define subsets accordingly - for
example category labels, frequent key-phrases, and specific key-phrases.

– Model and processing resources: StarSpace models can be very large
with large numbers of training data and large n for the ngram parameter.
Model sizes of more than 10GB are common, which also require correspond-
ing RAM sizes to process. The StarSpace program is thread-parallel, but
training wall-clock times can nevertheless exceed a day for large training
sets and many training iterations. Compared to training times, the predic-
tion time of a single document is small in the range of milliseconds.

5 Conclusion

We presented a detailed three-part workflow that allows to combine multi-label
classification with semantic tagging demonstrated on patent abstracts with more
than 200 CPC categories. An annotated large training set is needed to accomplish
good results. The semantic tagging is based on a set of key-phrases extracted
by an unsupervised algorithm from a training set. The predicted key-phrases do
not have to occur literally in the tagged document. The number of labels and
key-phrases is highly scalable, given sufficient training data.

For future work, we plan to test our approach by replacing StarSpace with
a deep neural network architecture. We already performed preliminary experi-
ments with Transformer architectures, i.e. BERT [6], on the patent dataset and
also on other textual datasets with different classification systems. The results
on the patent dataset suggest that the performance of BERT is significantly
worse than StarSpace with this amount of data and tests of both StarSpace and
BERT on much larger datasets resulted in equal performance. We are planning
to consolidate this hypothesis in more experiments.
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