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Abstract. The need to extend traditional temporal logics to express
and prove properties typical of stack-based formalisms led, among oth-
ers, to CaRet and NWTL on Visibly Pushdown Languages (VPL). Such
formalisms support, e.g., model checking of procedural programs and
other context-free languages (CFL).
To further and significantly extend their expressive power, we recently
introduced the logic OPTL, based on Operator Precedence Languages
(OPL) which cover a much wider subclass of CFL. In this communication
we survey the latest developments of our work. We introduced a novel
temporal logic, POTL, that redefines OPTL to be First-Order complete.
Furthermore, POTL’s semantics is better connected to the typical tree-
structure of CFL while retaining the ability to reason about linear time.
Besides the theoretical advancements, we are also moving steps toward
the implementation of POTL model checking.
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1 Introduction

The need for specifying requirements in model checking with formalisms more
expressive than classical Linear Temporal Logic (LTL) has motivated much re-
search towards the development of formalisms capable of expressing context-free
properties [6,7,16,14,15,12,8]. Most notable are those based on Nested Words [5],
or Visibly Pushdown Languages (VPL, [4]), a class of structured deterministic
context-free languages (CFL) slightly more general than Parenthesis Languages
[19]. Temporal logics based on them, such as CaRet [3], and the First-Order
(FO) complete NWTL [1], introduced temporal modalities to explicitly reason
about the nested structure of CFL, and found applications in the verification of
procedural programs.

Such logics, however, suffer from the limited generality of VPL with respect
to general CFL. This restricts the nesting relation on which they reason to be
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Simple chains: call[call]exc, call[hanexc]call
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Fig. 1. OPM Mcall (top left); a word and its subdivision in chains according to Mcall,
with some examples of simple and composed chains in it (bottom left); the ST cor-
responding to the word (right). In the ST, dots represent non-terminals, and PR are
show by colored arrows.

one-to-one, which is enough for modeling the matching between function calls
and returns in procedural programs. However, it is not adequate to represent
more complex constructs such as exceptions and continuations, which need to be
modeled by one-to-many or many-to-one relations. E.g., an exception is a single
event that needs to be put in relation with all function instances it terminates.

To further expand the expressiveness of temporal logics we introduced OPTL
[9], a temporal logic based on Operator Precedence Languages (OPL, [13]), a
class of structured CFL which retains all closure and decidability properties
needed for model checking. OPL are wider than VPL [11], and their more general
nesting relation, called the chain relation, can be many-to-one or one-to-many.

One of the features that is generally expected from temporal logics is equiva-
lence to FO Logic. Since proving this property for OPTL seems arduous, as is for
CaRet, in [10] we surveyed some possible ways to define a logic more strictly re-
lated to the context-free structure of OPL, for which FO-completeness could be
proved. Thus, we devised Precedence Oriented Temporal Logic (POTL), which
makes reasoning on the underlying syntax tree of an OPL word easier, while
remaining a linear-time temporal logic. We gave a FO-completeness proof of
POTL on finite words, which can be extended to ω-words by composition argu-
ments. Moreover, the automata-theoretic model checking procedure we devised
for POTL has the same asymptotic complexity of less expressive formalisms,
being exponential in formula length.

2 Operator Precedence Languages

OPL have been inspired by precedence relations among operators in arithmetic
expressions parsing. They are generated by grammars in operator form, i.e.
whose rules’ right-hand sides (rhs) have no consecutive non-terminals. Their
parsers are guided in recognizing and reducing grammar rhs by three binary
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precedence relations (PR) among terminal symbols. Given two terminals a, b,
for any non-terminals A,B,C and mixed terminal/non-terminal strings α, β, γ,
we say a yields precedence to b (a l b) if there exists a rule A → αaCβ, s.t. a
string Bbγ or bγ derives from C in any number of passes; a is equal in precedence
to b (a

.
= b) if there exists a rule A → αaCbβ or A → αabβ; and a takes prece-

dence over b (am b) if there is a rule A→ αCbβ, s.t. γaB or γa derives from C.
In practice, al b if b is the beginning of a rhs; a

.
= b if they belong to the same

rhs; am b if a is the end of a rhs. If at most one PR holds between any terminal
pair, once all PR are collected into an operator precedence matrix (OPM), the
syntax tree (ST) of any word on the same alphabet is fully determined.

The way PR determine the ST of a string is formalized by chains:

Definition 1. A simple chain c0 [c1c2 . . . c`]
c`+1 is a string c0c1c2 . . . c`c`+1, such

that: c0, c`+1 ∈ Σ ∪ {#}, ci ∈ Σ for every i = 1, 2, . . . ` (` ≥ 1), and c0 l c1
.
=

c2 . . . c`−1
.
= c`mc`+1. A composed chain is a string c0s0c1s1c2 . . . c`s`c`+1, where

c0 [c1c2 . . . c`]
c`+1 is a simple chain, and si ∈ Σ∗ is the empty string or is such

that ci [si]
ci+1 is a chain (simple or composed), for every i = 0, 1, . . . , ` (` ≥ 1).

Such a composed chain will be written as c0 [s0c1s1c2 . . . c`s`]
c`+1 . c0 (resp. c`+1)

is called its left (resp. right) context.

Fig. 1 shows OPM Mcall, together with word # call han call call call exc
call ret ret #. Its chain structure is shown by surrounding chain bodies with
brackets. The word is delimited by #, s.t. #la and am# for any terminal a. In
the ST, each simple chain body corresponds to a rhs in the tree, and composed
chains contain non-terminals, which are the bodies of other simple or composed
chains. Thus, the structure of chains in a given string is isomorphic to its ST.

OPL also have a defining class of pushdown automata, Operator Precedence
Automata [17]. We use them for model checking POTL, but we omit their defi-
nition for lack of space. For a better definition of OPL we refer readers to [18].

3 Precedence Oriented Temporal Logic

Given a finite set of atomic propositions AP , the syntax of POTL follows:

ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | #tϕ | �tϕ | χtFϕ | χtPϕ | ϕ U tχ ϕ | ϕ Stχ ϕ
| #t

Hϕ | �tHϕ | ϕ U tH ϕ | ϕ StH ϕ

where a ∈ AP , and t ∈ {d, u}.
The semantics of POTL is based on the word structure –also called OP word

for short– 〈U,MP(AP ), P 〉, where U = {0, 1, . . . , n, n + 1}, with n ∈ N is a set
of word positions; MP(AP ) is an OPM on P(AP ); P : U → P(AP ) is a function
associating each word position in U with the set of atomic propositions that hold
in that position, with P (0) = P (n+ 1) = {#}.

We use a partitioning of AP into a set of normal propositional labels (in
round font), and structural labels (SL, in bold). SL define the OP structure of
the word: MP(AP ) is only defined for subsets of AP containing exactly one SL,
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#lcalllhanlcalllcalllcallmexcm call
.
= ret mretm #

pA pB pC pC pErr pErr pA

0 1 2 3 4 5 6 7 8 9 10

Fig. 2. The example string as an OP word. Chains are highlighted by arrows joining
their contexts; structural labels are in bold, and other atomic propositions are shown
below them. pl means a call or a ret is related to procedure pl. First, procedure
pA is called (pos. 1), and it installs an exception handler in pos. 2. Then, three nested
procedures are called, and the innermost one (pC) throws an exception, which is caught
by the handler. Function pErr is called and, finally, pA returns.

so that given two SL l1, l2, for any a, a′, b, b′ ∈ P(AP ) s.t. l1 ∈ a, a′ and l2 ∈ b, b′
we have MP(AP )(a, b) = MP(AP )(a

′, b′). This way, we define an OPM on P(AP )
by only giving relations between SL, as we did for Mcall. Given two positions
i, j and a PR π ∈ {l, .=,m}, we write i π j to say P (i) π P (j).

We define the chain relation χ ⊆ U × U so that χ(i, j) holds between two
positions i, j iff i < j− 1, and i and j are resp. the left and right contexts of the
same chain. For composed chains, χ may not be one-to-one, but also one-to-many
or many-to-one. Fig. 2 shows the execution trace of a procedural program. The χ
relation is meaningful w.r.t. the program semantics: every call to a function is in
relation with the ret terminating it, and all instructions issued by that function
are contained between them. calls terminated by an exception are in relation
with the corresponding exc statement, so the chain relation is many-to-one.

The truth of POTL formulas is defined w.r.t. a single word position. Let
w be an OP word, and a ∈ AP . Then, for any position i ∈ U of w, we have
(w, i) |= a if a ∈ P (i). Operators such as ∧ and ¬ have the usual semantics from
propositional logic. Next, while giving the formal semantics of POTL operators,
we illustrate it by showing how it can be used to express properties on program
execution traces, such as the one of Fig. 2.

Next/back operators. The downward next and back operators #d and �d are
like their LTL counterparts, except they are true only if the next (resp. current)
position is at a lower or equal ST level than the current (resp. preceding) one.
The upward next and back, #u and �u, are symmetric. Formally, (w, i) |= #dϕ
iff (w, i+1) |= ϕ and il (i+1) or i

.
= (i+1), and (w, i) |= �dϕ iff (w, i−1) |= ϕ,

and (i − 1) l i or (i − 1)
.
= i. Substitute l with m to obtain the semantics for

#u and �u. E.g., #dcall means that the next position is an inner call (it holds
in pos. 2, 3, 4 of Fig. 2), �dcall to say that the previous position is a call, and
the current is the first of the body of a function (pos. 2, 4, 5), or the ret of an
empty one (pos. 8).

The chain next and back operators χtF and χtP evaluate their argument
respectively on future and past positions in the chain relation with the current
one. The downward (resp. upward) variant only considers chains whose right
context goes down (resp. up) in the ST. (w, i) |= χdFϕ iff there exists a position
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j > i such that χ(i, j), ilj or i
.
= j, and (w, j) |= ϕ. (w, i) |= χdPϕ iff there exists

a position j < i such that χ(j, i), j l i or j
.
= i, and (w, j) |= ϕ. Replace l with

m for the upward versions. E.g., in pos. 1 of Fig. 2, χdFpErr holds because χ(1, 7),
meaning that pA calls pErr at least once. Also, χuFexc is true in call positions
whose procedure is terminated by an exception thrown by an inner procedure
(e.g. pos. 3 and 4). χuP call is true in exc statements that terminate at least one
procedure other than the one raising it, such as the one in pos. 6. χdF ret and
χuF ret hold in calls to non-empty procedures that terminate normally, and not
due to an uncaught exception (e.g., pos. 1).

Until/Since operators. The summary until ψU tχθ (resp. since ψStχθ) operator
is obtained by inductively applying the #t and χtF (resp. �t and χtP ) operators.
It holds in a position if either θ holds, or ψ holds with #t(ψU tχθ) (resp. �t(ψStχθ))
or χtF (ψ U tχ θ) (resp. χtP (ψ Stχ θ)). It is an until on paths that move not only
between consecutive positions, but also between contexts of a chain, skipping
its body. With OPM Mcall, this means skipping function bodies. The downward
variants move between positions at the same level in the ST (i.e., in the same
simple chain body), or down in the nested chain structure. The upward ones move
at the same or to higher levels of the ST. Formula >Uuχ exc is true in positions
contained in the frame of a function that is terminated by an exception. It is
true in pos. 3 of Fig. 2 because of path 3-6, and false in pos. 1, because no path
can enter chain χ(1, 9). Formula >Udχ exc is true in call positions whose function
frame contains excs, but that are not directly terminated by one of them, such
as the one in pos. 1 (with path 1-2-6). Moreover, call Udχ (ret ∧ pErr ) holds in
pos. 1 because of path 1-7-8, (call ∨ exc) Suχ pB in pos. 7 because of path 3-6-7,
and (call ∨ exc) Uuχ ret in 3 because of path 3-6-7-8.

Hierarchical Operators These operators enable reasoning on multiple posi-
tions in the chain relation with a single one. The upward and downward hierar-
chical next are defined as (w, i) |= #u

Hϕ iff there exist a position h < i s.t. χ(h, i)
and h l i and a position j = min{k | i < k ∧ χ(h, k) ∧ h l k} and (w, j) |= ϕ;
(w, i) |= #d

Hϕ iff there exist a position h > i s.t. χ(i, h) and im h and a position
j = min{k | i < k ∧χ(k, h)∧ km h} and (w, j) |= ϕ. Their past counterparts are
symmetric, and their until and since operators are obtained by iterating them.

We proved the following claims on POTL’s expressivity:

Theorem 1. POTL = FO with one free variable on finite OP words.

Corollary 1. NWTL ⊂ OPTL ⊆ POTL over finite OP words.

Moreover, we developed an automata-theoretic model checking procedure,
whose complexity is not asymptotically greater than comparable formalisms:

Theorem 2. Given a POTL formula ϕ, it is possible to build an OPA Aϕ ac-
cepting the language denoted by ϕ with at most 2O(|ϕ|) states.

Aϕ can then be intersected [17] with an OPA modeling a program, and emptiness
can be decided with summarization techniques [2].
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4 Conclusions

We surveyed our work on POTL, a novel temporal logic based on OPL, for
which we proved FO-completeness. We gave a model-checking procedure based
on automata construction, which we implemented in a prototype tool. We plan
to further develop such tool to apply POTL to verification tasks.
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