
Structural Parameterizations of Tracking Paths
Problem?

Pratibha Choudhary1 and Venkatesh Raman2

1 Indian Institute of Technology Jodhpur, Jodhpur, India.
pratibhac247@gmail.com

2 Institute of Mathematical Sciences, HBNI, Chennai, India.
vraman@imsc.res.in

Abstract. Given a graph G with source and destination vertices s, t ∈
V (G) respectively, Tracking Paths asks for a minimum set of vertices
T ⊆ V (G), such that the sequence of vertices encountered in each simple
path from s to t is unique. The problem was proven NP-hard [3] and
was found to admit a quadratic kernel when parameterized by the size
of the desired solution [6]. Following recent trends, for the first time, we
study Tracking Paths with respect to structural parameters of the
input graph, parameters that measure how far the input graph is, from an
easy instance. We prove that Tracking Paths admits fixed-parameter
tractable (FPT) algorithms when parameterized by the size of vertex
cover, and the size of cluster vertex deletion set for the input graph.

Keywords: Tracking Paths · structural parameterization · vertex cover
· cluster vertex deletion set · undirected graphs.

1 Introduction

Graph theory plays a fundamental role in modeling many real world problems
related to (but not limited to) road networks, traffic monitoring, world wide
web, social networks and circuit design. One of the graph theoretic problems
studied in recent years is Tracking Paths: Given a graph, find a set of vertices
that can help uniquely distinguish all simple paths between a given source and
destination in the input graph. The problem finds applications in secure facility
object tracking, tracing data packets in network, identifying source of fake news
on social media, and tracking objects in wireless sensor networks.

More formally, let
−→
V (P) be the sequence of vertices in a path P . A tracking

set for a graph G with source s and destination t is a subset T of vertices such that

for any two distinct s-t paths P1 and P2,
−→
V (P1) 6=

−→
V (P2), and the Tracking

Paths problem is defined as follows:

Tracking Paths (G, s, t)
Input: An undirected graph G = (V,E) with terminal vertices s and t.
Question: Find a minimum cardinality tracking set T for G.

? Copyright c© 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

2 P. Choudhary and V. Raman

The problem was first studied by Banik et al. [1], where the problem was
restricted to distinguishing all shortest s-t paths in a graph. The authors proved
the problem NP-hard and APX-hard, and gave a 2-approximation algorithm for
Tracking Shortest Paths in planar graphs.

Parameterization of a problem involves associating the problem with an integer
k. A parameterized problem is said to admit a fixed-parameter tractable(FPT)
algorithm if there exists an algorithm with running time of the type f(k).nO(1),
where f is a computable function, k is the parameter and n is the input size.
Tracking Shortest Paths was proven to be FPT when parameterized by the
size of tracking set [2]. Bilò et al. [4] gave an FPT algorithm for the case when
there are multiple sources and destinations, the parameter being the maximum
number of vertices equidistant from the source (or destination).

Tracking Paths (not just tracking shortest paths) was proven to be NP-
hard for general graphs [3]. Note that from the definition, it is not even clear how
to verify if a subset of vertices forms a tracking set, as there can be exponentially
many s-t paths. Through an equivalent characterization, a polynomial time
algorithm was shown [3] for this task, thus proving the problem NP.

Theorem 1. [3] Tracking Paths belongs to NP, i.e. for a graph G and a
set of vertices T ⊆ V (G), there exists a polynomial time algorithm to verify if T
is a tracking set for G.

The problem was shown to be FPT when parameterized by the size of
tracking set, by showing the existence of a polynomial kernel [3, 6]. A kernel
for a parameterized problem is an equivalent instance of the given problem,
whose size (of the reduced new instance) is bounded by a function of just the
parameter. Kernelization (the process of deriving a kernel) is usually achieved
through Reduction Rules which are preprocessing operations. A reduction rule
is said to be safe if the new instance is equivalent to the original one, i.e. the
original instance is a YES instance if and only if the new one is a YES instance.
Eppstein et al. [9] studied Tracking Paths for planar graphs. They showed the
problem NP-hard and gave a 4-approximation algorithm. They also gave a linear
time algorithm for bounded clique-width graphs. Recently we gave polynomial
time algorithms for restricted cases of Tracking Paths [5].

For a parameterized problem, although output size is a natural parameter,
recent years have seen increasing attention on parameters related to structure of
the input [8, 10, 12,14]. So far, parameterized analysis of Tracking Paths has
been done only with respect to the output size. In this paper, we study Tracking
Paths parameterized by the size of vertex cover and the size of cluster vertex
deletion set. For a graph G = (V,E), a vertex cover is a set of vertices that covers
all edges, i.e. the union of these vertices includes at least one endpoint of each
edge in E. Removal of a vertex cover leaves the graph edgeless. For G, cluster
vertex deletion set is the set of vertices whose removal converts G into a cluster
graph: a graph whose each component is a clique.

Edgeless graphs do not need any trackers (since they lack s-t paths) and a
tracking set can be found in polynomial time for cluster graphs (proven later in

Structural Parameterizations of Tracking Paths Problem 3

the paper). Hence, it is an interesting question to analyze whether there exists an
FPT algorithm to solve Tracking Paths for graphs that are k vertices away
from an edgeless graph or a cluster graph. Usually, the quest is to look for the
smallest possible parameter for which the problem at hand is fixed-parameter
tractable. In general, the size of a minimum vertex cover can be both larger or
smaller than the size of a tracking set for a graph. A graph with long paths of
degree two vertices can have a vertex cover larger than the size of a tracking set.
While a denser graph can have a tracking set bigger than the size of a vertex
cover. See Figure 1. Here the circled vertices represent a vertex cover. However,
all vertices except s, t need to be part of a tracking set.

s

t

Fig. 1. Graph with tracking set larger than a vertex cover (circled vertices)

Our Approach. The usual challenge with structural parameterization is that
the parameter does not drop by rules that utilize properties of the output. We
start by applying some known preprocessing rules and then use some structural
properties to mark vertices as trackers that definitely need to belong to any
tracking set. Then we bound the number of vertices that are left unmarked as a
function of the parameter. Finally we try all subsets of the unmarked vertices to
find which among them can be trackers.

To design FPT algorithms for the two parameterizations we consider in this
paper, we first define an intermediate parameter, and that is the size of what we
call a Dual Connected Modulator. For a graph G = (V,E), a set of vertices S ⊆ V
is a dual connected modulator (DCM) if every vertex in V \ S has at least
two neighbours in S and has an additional property Π. For parameterization
by the size of vertex cover or cluster vertex deletion set, it suffices that Π is a
disjoint union of cliques.

We will first give an FPT algorithm for Tracking Paths parameterized by
the size of a dual connected modulator. Then we show how this algorithm can
be used to give FPT algorithms for Tracking Paths parameterized by the size
of vertex cover and cluster vertex deletion set.

4 P. Choudhary and V. Raman

2 Notations and Definitions

Throughout the paper, we assume graphs to be simple (no self loops or multi-
edges). We assume that the input graph contains a unique source s and a unique
destination t (s and t are known), and we aim to find a tracking set that can
distinguish all simple paths between s and t. Here s and t are also referred as the
terminal vertices. If a, b ∈ V , then unless otherwise stated, {a, b} represents the
set of vertices a, b, and (a, b) represents an edge between a and b. For a vertex
v ∈ V , the neighbourhood of v is denoted by N(v) = {x | (x, v) ∈ E}. Degree of a
vertex v is denoted by deg(v) = |N(v)|. For set of vertices V ′, G(V ′) denotes the
graph induced by vertices in V ′. For a subgraph G′ of G, V (G′) represents the
vertex set of G′ and E(G′) represents those edges whose both endpoints belong to
V (G′). We use G′ ⊆ G to denote that G′ is a subgraph of G. For a vertex v ∈ V
and a subgraph G′, NG′(v) = N(v) ∩ V (G′) and degG′(v) = |N(v) ∩ V (G′)|. For
a subset of vertices V ′ ⊆ V we use N(V ′) to denote

⋃
v∈V ′ N(v). For a graph

G and a set of vertices S ⊆ V (G), G− S denotes the subgraph induced by the
vertex set V (G)\V (S). For A,B ⊆ V (G), A]B denotes that A and B are vertex
disjoint partitions of graph G. Let P1 be a path between vertices a and b, and P2

be a path between vertices b and c, such that V (P1)∩V (P2) = {b}. By P1.P2, we
denote the path between a and c, formed by concatenating paths P1 and P2 at b.
Two paths P1 and P2 are said to be vertex disjoint if their vertex sets do not
intersect except possibly at the end points, i.e. V (P1) ∩ V (P2) ⊆ {a, b}, where a
and b are the starting and end points of the paths. For details on parameterized
complexity please refer to [7, 8, 11].

3 Parameterization by Dual Connected Modulator

In this section, we give an FPT algorithm for Tracking Paths parameterized
by the size of a Dual Connected Modulator. Recall that for a graph G, a subset
of vertices S ⊆ V (G) is a DCM if every vertex in V (G) \ S has at least two
neighbours in S, and has an additional property Π.

Tracking Paths/DCM (G, s, t, S, k)
Input: An undirected graph G = (V,E) with terminal vertices s and t, and
a dual connected modulator S ⊆ V (G) for G, such that |S| = k.
Question: Find a minimum cardinality tracking set T for G.

The main idea of the algorithm is to first guess how S intersects with a
tracking set T in G, and then for each such guess, analyze the graph structures
across the partition S](G−S) and mark as many vertices as possible, as trackers.
In the process, we give an upper bound for the number of vertices left unmarked
in G− S. Finally, we consider all possible subsets of unmarked vertices in G− S
as trackers, and together with the set of already marked vertices, we verify if
they form a tracking set for the graph G using Theorem 1. Initially none of the
vertices in V are marked as trackers. We start by recalling some preprocessing
rules from previous work.

Structural Parameterizations of Tracking Paths Problem 5

Reduction Rule 1 [3] If there exists a vertex or an edge that does not partic-
ipate in any s-t path then delete it.

Reduction Rule 2 [6] (Rephrased) If V \ {s, t} = ∅, then return an ∅ as a
solution. Else, if degree of s (or t) is 1 and N(s) 6= t (N(t) 6= s), then delete s(t),
and label the vertex adjacent to it as s(t).

Reduction Rule 3 [9] Let u, v ∈ V (G) such that deg(u) = deg(v) = 2,
N(v) = {u,w}, then delete v and introduce an edge between u and w.

We apply above rules repeatedly as long as they are applicable. We refer
to the graph obtained after applying the above rules as a reduced graph. Note
that in the reduced graph, there is no vertex with degree less than or equal to 1,
each vertex and edge participates in an s-t path and there are no long degree 2
paths (paths with consequent degree 2 vertices). Throughout the paper, after
application of each reduction rule, we retain the notations of G,S and k to refer
to the graph, modulator, and size of the modulator. For now, we assume that
the application of above reduction rules does not destroy any properties of the
modulator. Later, while analyzing specific graph parameters, we shall tweak the
rules in order to maintain the modulator properties.

IN OUT
S

G− S B

T ′ S − T ′
= A

Fig. 2. Disjoint tracking set problem

Let T be a minimum tracking set that will be output by the algorithm, and
T ′ = T ∩S be the subset of T that belongs to S. We attempt to guess the vertices
that belong to T ′, and towards this we simply consider all possible subsets of S.
Hence, there are 2k possible choices for T ′. For each guess T ′, observe that the
vertices in S \ T ′ cannot belong to T . Thus we need to find a tracking set for G,
that is disjoint from S \ T ′. We refer to this problem as disjoint tracking set. See
Figure 2. S represents a DCM for G that is received as a part of the input and
G− S represents the graph formed after removal of S from G. Recall that each
vertex in G− S has two neighbours in S. First we rule out those guesses for T ′

that can be easily discarded. It is known from [3] that every cycle in the graph
must contain a tracker. This implies that the graph induced by S \ T ′ cannot
contain a cycle. Thus, we have the following reduction rule.

6 P. Choudhary and V. Raman

Reduction Rule 4 If the graph induced by S \ T ′ is not a forest, reject the
current guess for T ′.

Now we define local source and local destination. For a subgraph G′ ⊆ G, and
vertices u, v ∈ V (G′), u is a local source and v is a local destination if

1. there exists a path in G from s to u, say Psu,
2. there exists a path from v to t, say Pvt,
3. V (Psu) ∩ V (Pvt) = ∅, and
4. V (Psu) ∩ V (G′) = {u} and V (Pvt) ∩ V (G′) = {v}.

For a subgraph G′, we can check if a pair of vertices a, b ∈ V (G′) forms
a local source-destination pair if there exists disjoint paths from s to a and
b to t in the graph G \ G′ ∪ {a, b}, in quadratic time using the disjoint path
algorithm from [13]. The concept of local source-destination pair has been used
to obtain efficient algorithms for Tracking Paths (see [3, 5, 9]). If u, v form a
local source-destination pair for a subgraph G′, we refer to them as a local s-t
pair. Next we recall the following lemmas (rephrased) from [3].

Lemma 1. In a reduced graph G, any induced subgraph G′ consisting of at least
one edge contains a local source and a local destination.

Lemma 2. In a subgraph G′ ⊆ G, if all paths between a local s-t pair cannot be
tracked with at most x trackers, then G cannot be tracked with at most x trackers.

Note that a subgraph can have more than one local s-t pairs. Now we can
analyze subgraphs in G and identify trackers with respect to the local s-t pairs in
that subgraph. Next we give two rules that help mark some vertices as trackers,
and thus reduce the number of unmarked vertices in a graph.

Reduction Rule 5 3 If abc is a triangle in G such that a, b is a local s-t pair
for the triangle abc and c /∈ S, then mark c as a tracker. While considering the
disjoint version, if c ∈ S \ T ′, then reject the current guess for T ′.

Reduction Rule 6 If there exists a subgraph G′ ⊆ G, such that G′ is a clique,
with a, b ∈ V (G′) as a local s-t pair for G′, then all vertices in V (G′) \ {a, b}
need to be marked as trackers. Further, if a, b is the only local s-t pair for G′,
then delete all vertices in V (G′) \ {a, b}.

3.1 Finding a Disjoint Tracking Set

Let A = S \ T ′ and B = V \ S. Note that our aim is to find a tracking set that
is disjoint from A, i.e. T ⊆ T ′ ∪B. We first look at some structures induced by
vertices in S and B that tries to force some vertices in B as trackers and mark
them. We start with the following reduction rule.

3 Proof of safeness and polynomial time application of Reduction Rules can be found
in the full version of the paper.

Structural Parameterizations of Tracking Paths Problem 7

Reduction Rule 7 Let a, b ∈ T ′. If a, b form a local s-t pair for a subgraph
G′ ⊆ G[{a, b} ∪A] (the subgraph induced by A and a, b) and G′ induces a cycle,
then reject T ′, and move to the next guess.

Since S is a DCM, each vertex in B is adjacent to at least 2 vertices in S. We
categorize the vertices in B based on whether their neighbours lie in A or S −A
as follows:

– V1: The set of vertices that have at least two neighbours in A.
– V2: The set of vertices that have at least one neighbour in A and at least one

in S −A.
– V3: The set of vertices that have at least two neighbours in S −A.

Observe that B = V1 ∪ V2 ∪ V3. There can be vertices that belong to more
than one category, but as we shall see, this does not affect the outcome of the
algorithm. Consider the case in which a pair of vertices u, v ∈ S is adjacent to
two vertices w, x ∈ B. Observe that the vertices u, v, w, x induce a C4, say C.
Due to Lemma 1, there exists a local s-t pair in the subgraph C. Now we analyze
each of the above listed vertex sets in B, and we consider the possibility of each
pair of vertices in a C4 being an local s-t pair for that C4. Then we mark all
those vertices as trackers that necessarily need to belong to T , and we bound the
number of unmarked vertices in V \ S.

Bounding V1 − T Consider a set of vertices in B that have two neighbours
u, v in A, i.e. S \ T ′. See Figure 3. Here, u, v cannot be trackers, as A ∩ T = ∅.

u v

w x

A

B

Fig. 3. A pair of vertices in A adjacent to two vertices in B forms a C4

Lemma 3. ~4 The number of vertices in V1 − T can be bounded by
(
k
2

)
.

Bounding V2 − T Here we consider the set of vertices in B that have one
neighbour in S \A and one neighbour in A. Since u ∈ S \A, v ∈ A, u is already
marked as a tracker and v cannot be a tracker.

Lemma 4. ~ The number of vertices in V2 − T can be bounded by 2
(
k
2

)
.

4 Proofs of Lemmas marked with ~ can be found in the full version of the paper.

8 P. Choudhary and V. Raman

Bounding V3 − T Here we consider the set of vertices in B that have two
neighbours in S \ A. Since u, v ∈ S \ A, both u and v are already marked as
trackers. Since we have already analyzed the vertices in B that have at least one
neighbour in A, here we restrict ourselves to only those vertices of B that are
adjacent to only S −A. Let G′ be the subgraph induced by (S \A) ∪ V3.

If a pair of vertices u, v ∈ S \ A are adjacent to a pair of vertices w, x ∈ B,
they induce a C4, say C. We create an empty set V ′

3 , which will be used to
identify those vertices of V3 which might later be needed to be marked as trackers.
We check for the possibility of each pair of vertices in V (C) being a local s-t pair
in the following sequence:

1. If w, x form a local s-t pair: Here u, v already serve as trackers to distinguish
the two paths in C between w and x. Even if (u, v) ∈ E(G), we do not need
any more trackers.

2. If u,w form a local s-t pair: Here v already serves as a tracker to distinguish
the paths u.w and u.x.v.w. If (u, v) ∈ E(G), then we mark x as a tracker to
distinguish the paths u.v.w and u.x.v.w.

3. If u, v form a local s-t pair: If (u, v) ∈ E(G), then we need to mark both
w, x as trackers, in order to distinguish the paths u.v, u.w.v and u.x.v. If
(w, x) ∈ E(G), then also we need to mark both w, x as trackers, in order to
distinguish the paths u.w.v, u.x.w.v and u.w.x.v. If (u, v), (w, x) /∈ E(G), we
arbitrarily mark one among w, x as a tracker, and add the other vertex to V ′

3 .

We add to V ′
3 those vertices from V3 that are adjacent to a unique pair of

vertices from T ′. Thus |V ′
3 | ≤

(
k
2

)
. If V \ S (hence V3) is an independent set,

for any path in G′, at least every alternate vertex is a tracker. Hence, if a pair
of paths between a local source and destination in G′, has the same sequence
of trackers, then the cycle induced by the distinct portions of these paths is of
length at most four. Else due to Reduction Rule 6, each component in G− S has
at most two unmarked vertices. Hence, if u, v ∈ T ′, then there exists a path of
length at most two between u and v, in G(V3 ∪ {u, v}), and all vertices in the
path are unmarked. Thus if two such paths exist between a pair of vertices in T ′

that forms a local s-t pair, then we mark a vertex as a tracker. In
(
k
2

)
.nO(1) time

we can find if two such paths exist between a pair of vertices in T ′ that forms a
local s-t pair. We arbitrarily mark one vertex on one of the paths as a tracker5,
and the two vertices from the other subpath are added to V ′

3 . Hence |V ′
3 | ≤ 2

(
k
2

)
.

Next we prove that we need not consider vertices from V3 \ V ′
3 as trackers.

Lemma 5. ~ There exists a k sized tracking set for G if and only if there is
one that is a subset of V1 ∪ V2 ∪ V ′

3 ∪ T ′.

Now each pair of vertices in S is adjacent to at most one unmarked vertex
or a vertex from V ′

3 . Note that |V1 ∪ V2 ∪ V ′
3 | ≤ 5

(
k
2

)
. We consider all possible

subsets of these O(k2) vertices, include them with the already marked trackers to
form a tracking set, and check the validity of that tracking set using Theorem 1.

5 Proof of correctness can be found in the full version of the paper.

Structural Parameterizations of Tracking Paths Problem 9

Thus the overall algorithm takes 2O(k2).nO(1) time. While solving the disjoint
problem, for each new guess for T ′, if the size of the tracking set found is less
than that of the tracking set found with respect to the previous guess, we discard
the previous disjoint solution, and retain the new one, else we discard the current
one. Hence we have the following theorem.

Theorem 2. For a graph G with a known dual connected modulator of size k,
Tracking Paths can be solved in 2O(k2).nO(1) time.

4 Parameterization by Vertex Cover

In this section we give an FPT algorithm for Tracking Paths when the
parameter k is the size of a known vertex cover for the given graph.

Tracking Paths/Vertex Cover (G, s, t, S, k)
Input: An undirected graph G = (V,E) with terminal vertices s and t, and
a vertex cover S ⊆ V (G) for G, such that |S| = k.
Question: Find a minimum cardinality tracking set T for G.

We start by applying Reduction Rules 1 and 2. Observe that these rules delete
vertices/edges from the input graph, and hence do not tamper with the vertex
cover S. Since Reduction Rule 3 introduces a new edge in the graph, we tweak
the rule in order to maintain that S is a vertex cover of size at most k.

Reduction Rule 8 Let u, v ∈ V (G) such that deg(u) = deg(v) = 2, N(v) =
{u,w}, then delete v and introduce an edge between u and w. If u,w /∈ S, set
S = S ∪ {u}.

Note that if u,w /∈ S, then v necessarily belongs to S. Since deletion of v
reduces the size of S by one, we can safely add u (or w) to S without increasing
the value of k.

Now observe that due to Reduction Rules 1 and 8, each vertex in G− S has
at least two neighbours in S. Hence S is a DCM for G. Thus we can apply the
algorithm for DCM to derive an FPT algorithm for parameterization by the size
of a vertex cover for a graph. Hence we have the following theorem.

Theorem 3. For a graph G with a known vertex cover of size k, Tracking
Paths can be solved in 2O(k2).nO(1) time.

5 Parameterization by Cluster Vertex Deletion set

In this section we give an FPT algorithm for Tracking Paths when the
parameter k is the size of a cluster vertex deletion set for the given graph.

Tracking Paths/Cluster Vertex Deletion Set (G, s, t, S, k)
Input: An undirected graph G = (V,E) with terminal vertices s and t, and
a cluster vertex deletion set S ⊆ V (G) for G, such that |S| = k.
Question: Find a minimum cardinality tracking set T for G.

10 P. Choudhary and V. Raman

First we apply the Reduction Rules 1, 2 and 3 as explained below.

– Reduction Rule 1: Observe that G − S is a cluster graph. Thus for each
component in G−S, either all the vertices participate in an s-t path, or none
of them do. Thus, when we apply Reduction Rule 1, it might lead to deletion
of some vertices/edges from S, or some components from G− S. Note that
this operation does not affect the properties of S or G− S.

– Reduction Rule 2: The application of this rule may delete vertices/edges from
S and/or single vertex components from G− S. Observe that this does not
affect the properties of S or G− S.

– Reduction Rule 3: Let u, v ∈ V (G) be two vertices such that deg(u) =
deg(v) = 2. If both u, v ∈ S, we can apply the rule and its does not affect
properties of S or G− S. Consider the case in which one vertex among u, v
belongs to S while the other belongs to G− S. In such a case, we necessarily
delete the vertex that belongs to G−S. Suppose u ∈ S and v ∈ G−S. Then
v must belong to a component in G− S that comprises only a single edge.
After application of the reduction rule, the component of v shall comprise
of only a single vertex. Observe that this does not affect the properties of S
and G− S.

We also apply Reduction Rules 5 and 6 to mark required vertices in G − S
as trackers. Note that while applying all above reduction rules, it has been
maintained that G− S is a cluster graph and |S| ≤ k.

Next, we try to mark as many vertices as possible as trackers in G− S, such
that for the unmarked vertices S is a DCM. We create two sets X = Y = ∅. We
use X to maintain the unmarked vertices in G − S, while ensuring that they
have two neighbours each in S, and we use Y to maintain some other vertices
that might need to be marked as trackers. Now we identify local s-t pairs in
each component. Due to Lemma 1, each component (having at least one edge) in
G− S has at least one local s-t pair. After the application of Reduction Rule 6,
for each local s-t pair in a component, all the remaining vertices shall be marked
as trackers.

Corollary 1. After application of Reduction Rule 6 at most two vertices in each
component of G− S are left unmarked.

First, we consider the components in G− S that contain s or t, or both. Let
G′ be a component in G− S such that s ∈ V (G′) (t ∈ V (G′)). Due to Lemma 1,
G′ contains a local s-t pair, say s, a (b, t). Due to Reduction Rule 6, all vertices
in V (G′) \ {s, a} (V (G′) \ {b, t}) shall be marked as trackers. If degS(a) ≥ 2
(degS(b) ≥ 2), we add a (b) to the set X, else we add a (b) to the set Y . Note
that |Y | ≤ 2. Henceforth, by ‘components’ we mean components in G− S, and
we assume that none of the components in G− S contain s or t. Now we analyze
different types of components in G− S based on their sizes.

5.1 Components with at least three vertices

Due to Lemma 1, each component has a local s-t pair. Since we already analyzed
the components that contain s or t, a local s-t pair in a component necessarily

Structural Parameterizations of Tracking Paths Problem 11

needs to be adjacent to S in order to connect with the rest of the graph. Thus,
each component that does not contain s, t, has at least two neighbours in S. We
consider different cases based on the number of vertices in each component of
G− S that have neighbours in S.

Components with exactly two vertices with neighbours in S Let G′ ⊆
G− S be a component with exactly two vertices, say u, v, that have neighbours
in S. Due to Lemma 1, G′ has at least one local s-t pair and since s, t /∈ V (G′),
u, v shall form an local s-t pair for G′ as these are the only vertices that connect
G′ with rest of the graph. Due to application of Reduction Rule 6, all vertices
in V (G′) \ {u, v} shall have been deleted. Thus if a component has only two
neighbours in S, it can consist of at most two vertices. The analysis for such
components is explained in Section 5.2.

Components with three or more vertices with neighbours in S Let G′

be a component in G − S. Due to Reduction Rule 6, if there are two disjoint
local s-t pairs, then all vertices in that component shall be marked as trackers.
We need not analyze such components further. Henceforth, we assume that if a
component in G− S has more than one local s-t pairs, then these pairs overlap.
Consider a component G′ in G− S, with two local s-t pairs. Since all local s-t
pairs overlap, at most three vertices in G′, say a, b, c, form these two local s-t
pairs. Consider the case in which a, b is a local s-t pair and b, c is another local
s-t pair. Observe that both c and a shall be marked as trackers due to Reduction
Rule 6. Since here all local s-t pairs in a component overlap, at most one vertex
in the component will be left unmarked. If such unmarked vertices have at least
two neighbours in S, we add them to X. Else, we prove that they need not be
part of an optimum tracking set.

Lemma 6. ~ If there exists a component G′ ⊆ G− S with only one unmarked
vertex v, and degS(v) = 1, then such a vertex need not be marked as a tracker.

Now we are left with components that have two unmarked vertices. Clearly
a pair of unmarked vertices in a component shall be a local s-t pair for that
component. Let G′ be a component with only one local s-t pair, say a, b, but
more than two vertices with neighbours in S. Consider the following cases:

1. Both a and b have at least two neighbours in S: We add both a, b to X.
2. One among a, b, say b, has two neighbours in S, while a has only one neighbour

in S: We add b to X. If b is marked as a tracker while application of the
DCM algorithm, due to Lemma 6, a need not be considered as a tracker, and
hence can be ignored. Else, if b is left unmarked in the DCM algorithm, we
can account for a by doubling the bound obtained for unmarked vertices.

3. Both a and b have only one neighbour in S: Let c ∈ NS(a) and d ∈ NS(b). We
introduce an additional vertex vab, and introduce edges (vab, c) and (vab, d)
to E(G). We also add vab to X. If vab is eventually part of a solution, then
we can arbitrarily mark either a or b, say a, as a tracker. Not that in order

12 P. Choudhary and V. Raman

to distinguish paths by their vertex sequences, we can mark c along with a,
thus ruling out the necessity of marking both a and b as trackers.

5.2 Single vertex and single edge components

If a component in G − S consists of a single vertex v, then due to Reduction
Rules 1 and 2, v has at least two neighbours in S. We include v in X, i.e.
X = X ∪ {v}.

If a component consists of a single edge (a, b) ∈ E(G− S), due to Reduction
Rules 1 and 2, both a, b have a neighbour in S. Due to Reduction Rule 3, it is not
possible that deg(a) = deg(b) = 2. Thus, at least one vertex in each single edge
component has at least two neighbours in S. If both a, b have two neighbours
each in S, then we set X = X ∪ {a, b}. Suppose (a, b) is an edge component and
b has two neighbours in S, while a has only one neighbour in S. Observe that if
while applying the algorithm for DCM, b is among the O(k2) bounded vertices
that are left unmarked, then we can simply double this bound in order to account
for vertices like a (Note that this does not change the asymptotic bound of the
running time). Else, if while applying the algorithm for DCM, if b is marked as a
tracker, we show that an optimum tracking set for G need not contain a.

Lemma 7. ~ If there exists a component in G−S that comprises an edge (a, b),
and b belongs to an optimum tracking set for G, then it can be determined in
polynomial time whether a needs be marked as a tracker.

Now all vertices in G− S are either already marked as trackers, or need not
be marked as trackers, or have been added to the set X. We consider all vertices
in X, and apply the algorithm for DCM. In the final step of the DCM algorithm,
where we consider all subsets of unmarked vertices and verify if they form a
tracking set (along with the marked ones), we include the vertices in Y along
with the unmarked vertices. This does not affect the bounds as |Y | ≤ 2. Observe
that we ignore all other vertices in G− S, except the ones in X, while analyzing
different cases in the DCM algorithm. Hence, we have the following theorem.

Theorem 4. For a graph G with a known cluster vertex deletion set of size k,
Tracking Paths can be solved in 2O(k2).nO(1) time.

6 Conclusions

In this paper, we study structural parameterizations of the Tracking Paths
problem. We prove that Tracking Paths is FPT when parameterized by
the size of vertex cover or the size of cluster vertex deletion set. We do so
by giving a generalized algorithm for the case when the modulator has some
specific properties. It would be interesting to explore if the running time of our
algorithms can be improved further. Future scope involves studying Tracking
Paths structural parameterization with respect to more parameters like odd
cycle traversal, feedback vertex set and distance to chordal graph.

Structural Parameterizations of Tracking Paths Problem 13

References

1. Banik, A., Katz, M.J., Packer, E., Simakov, M.: Tracking paths. In: Algorithms
and Complexity - 10th International Conference, CIAC 2017. pp. 67–79 (2017)

2. Banik, A., Choudhary, P.: Fixed-parameter tractable algorithms for tracking set
problems. In: Algorithms and Discrete Applied Mathematics - 4th International
Conference, CALDAM 2018, Guwahati, India, February 15-17, 2018, Proceedings.
pp. 93–104 (2018)

3. Banik, A., Choudhary, P., Lokshtanov, D., Raman, V., Saurabh, S.: A polynomial
sized kernel for tracking paths problem. Algorithmica 82(1), 41–63 (2020)

4. Bilò, D., Gualà, L., Leucci, S., Proietti, G.: Tracking routes in communication
networks. In: Censor-Hillel, K., Flammini, M. (eds.) Structural Information and
Communication Complexity. pp. 81–93. Springer International Publishing, Cham
(2019)

5. Choudhary, P.: Polynomial time algorithms for tracking path problems. In: Com-
binatorial Algorithms - 31st International Workshop, IWOCA 2020, Bordeaux,
France, June 8-10, 2020, Proceedings. pp. 166–179 (2020)

6. Choudhary, P., Raman, V.: Improved kernels for tracking path problems. CoRR
abs/2001.03161 (2020), http://arxiv.org/abs/2001.03161

7. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer Publishing Com-
pany, Incorporated, 1st edn. (2015)

8. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer
Publishing Company, Incorporated (2013)

9. Eppstein, D., Goodrich, M.T., Liu, J.A., Matias, P.: Tracking paths in planar graphs.
In: 30th International Symposium on Algorithms and Computation, ISAAC 2019,
December 8-11, 2019, Shanghai University of Finance and Economics, Shanghai,
China. pp. 54:1–54:17 (2019)

10. Fellows, M.R., Jansen, B.M., Rosamond, F.: Towards fully multivariate algorithmics:
Parameter ecology and the deconstruction of computational complexity. European
Journal of Combinatorics 34(3), 541 – 566 (2013), combinatorial Algorithms and
Complexity

11. Flum, J., Grohe, M.: Parameterized Complexity Theory (Texts in Theoretical
Computer Science. An EATCS Series). Springer-Verlag, Berlin, Heidelberg (2006)

12. Jansen, B.M., Kratsch, S.: Data reduction for graph coloring problems. Information
and Computation 231, 70 – 88 (2013), fundamentals of Computation Theory

13. Kawarabayashi, K., Kobayashi, Y., Reed, B.: The disjoint paths problem in quadratic
time. Journal of Combinatorial Theory, Series B 102(2), 424 – 435 (2012)

14. Majumdar, D., Raman, V.: Structural parameterizations of undirected feedback
vertex set: FPT algorithms and kernelization. Algorithmica 80(9), 2683–2724 (2018)

http://arxiv.org/abs/2001.03161

	Structural Parameterizations of Tracking Paths Problem

