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Abstract. In this paper we are interested in decomposing a dihyper-
graph H = (V,E) into simpler dihypergraphs, that can be handled more
efficiently. We study the properties of dihypergraphs that can be hierar-
chically decomposed into trivial dihypergraphs, i.e., vertex hypergraph.
The hierarchical decomposition is represented by a full labelled binary
tree called H-tree, in the fashion of hierarchical clustering. We present
a polynomial time and space algorithm to achieve such a decomposition
by producing its correspondingH-tree. However, there are dihypergraphs
that cannot be completely decomposed into trivial components. There-
fore, we relax this requirement to more indecomposable dihypergraphs
called H-factors, and discuss applications of this decomposition to closure
systems and lattices.
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1 Introduction

In this paper we are interested in decomposing directed hypergraphs (dihyper-
graphs for short). They are a generalization of directed graphs, as hypergraphs
generalize graphs. Dihypergraphs are often used to model implication systems
in various fields of computer science such as databases [ADS86, AL17], clo-
sure systems and lattice theory [BDVG18,Wil17], propositional and Horn logic
[GLPN93,GGPR98,Wil17] for instance.

A dihypergraph consists in a finite set of vertices V and a collection E of
(hyper)arcs (sometimes called hyperedges) of the form (B, h) over V, where B
is a subset of V and h a singleton of V. In database theory, V corresponds to
a relation schema and arcs are functional dependencies; whereas in Horn logic
an arc is definite Horn clause on the propositional variables set V. In general,
an arc (B, h) depicts a causality relation between B and h, namely, whenever
we deal with B we also have to take h into consideration. Note however that a
more general definition of dihypergraph is given in [GLPN93,GGPR98] where
the dihypergraphs we use in this paper are called B-graphs.

We are interested in decomposing a dihypergraph H = (V,E) into simpler
dihypergraphs, that can be handled more efficiently. The hierarchical decompo-
sition (H-decomposition for short) of a dihypergraph considered in this paper, is
? Copyright c© 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0). The second author
is funded by the CNRS, France, ProFan project.
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a recursive partitioning of the vertex set of the dihypergraph into smaller subhy-
pergraphs or clusters, in the fashion of hierarchical clustering (see [Das16]). The
H-decomposition is a way to represent a dihypergraph as a tree while preserving
its vertices and arcs. The notion of a split of a dihypergraph is the principal tool
we will use to achieve the H-decomposition. A split of a dihypergraph H = (V,E)
is a partitioning of the dihypergraph’s vertices into two subsets (V1,V2) such
that the arcs of H are the disjoint union of the arcs of the induced subhyper-
graphs H[V1], H[V2] and the bipartite dihypergraph H[V1,V2], i.e., for any
e = (B, h) ∈ E intersecting both V1 and V2, we have B ⊆ V1 and h ∈ V2 or
vice versa. Clearly, there are dihypergraphs that cannot have a split. Our moti-
vation is to study properties of dihypergraphs that can be H-decomposed into
trivial dihypergraphs, i.e., hypergraphs with one vertex. The H-decomposition
is represented by a full labelled binary trees called H-tree.

An application for our work arises from the decomposition of closure sys-
tems, or lattices. In particular, we wish to apply this decomposition to the prob-
lem of finding short representations of closure systems [Kha95,DNV19,Wil17].
Splitting lattices or closure systems is an old question and remains an active
topic in several areas in mathematics and computer science. Among the com-
mon ways to split a lattice are the subdirect decomposition, the duplication
(or doubling) of convex sets [BC02,VBDM15a], and other decompositions sum-
marised in [GW99, GW12, Grä11, KVD05]. The former has been early consid-
ered by Birkhoff in [Bir44] where his representation theorem “Every algebra is
a subdirect product of its subdirectly irreducible homomorphic images” is stated.
Jipsen and Rose [JR92] summarize many results related to subdirect decompo-
sition and give a list of subdirectly irreducible lattices. From the algorithmic
point of view, several works can be found in [GW99,VBDM15b] where closure
systems are represented with binary matrices (known as contexts) instead of
dihypergraphs. Database theory community has however provided some decom-
position schemes for dihypergraphs such as in [DLM92,SS96] or [Lib93], in view
of database normalization. Other works on decomposition of dihypergraphs are
considered in [BJJ03,GGPR98,AL17,PSSS20], where authors consider cuts or
acyclic k-partitioning of dihypergraph. The split operation however is not a cut
in general, while we seek for a full decomposition of a dihypergraph which is
neither balanced nor acyclic.

In this paper, we present a polynomial time and space algorithm to achieve
such a H-decomposition by producing a corresponding H-tree if it exists. How-
ever, there are dihypergraphs that cannot be completely decomposed into triv-
ial components. Therefore, we relax this requirement to more indecomposable
dihypergraphs called H-factors. This allows to extend the H-decomposition of
dihypergraphs to closure systems and lattices.

The paper is structured as follows. In Section 2 we recall some definitions
about dihypergraphs. In Section 3 we define the hierarchical decomposition of
dihypergraphs, and its representation by a binary labelled tree. We also give
a polynomial time and space algorithm to recognise dihypergraphs having a
H-decomposition and produces the tree decomposition. Section 4 extends the
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H-decomposition to closure systems and provide some properties that can be
useful for closure systems classification.

2 Preliminaries

All the objects considered in this paper are finite. For a set V, we denote by 2V

its powerset, and for n ∈ N, we denote by [n] the set {1, . . . , n}. Sometimes, We
omit braces for sets, writing v1v2 . . . vn instead of {v1, . . . , vn}.

We mainly refer to papers [AL17,GLPN93] for terminology and definitions
of dihypergraphs. A directed hypergraph (dihypergraph for short) H is a pair
(V(H),E(H)) where V(H) is a set of vertices, and E(H) = {e1, . . . , en}, n ∈ N,
a set of (hyper)arcs. An arc e ∈ E(H) is a pair (B(e), h(e)), where ∅ 6= B(e) ⊆ V
is called the body of e and h(e) ∈ V \B is the head of e. For simplicity, we
shall write V, E and (B, h) for V(H), E(H) and (B(e), h(e)) respectively. An arc
e = (B, h) is written as the set e = B ∪ {h} when no confusion can arise. If the
body B of an arc is reduced to a single element b, we shall write (b, h) instead
of ({b}, h). In this case, the arc (b, h) is unit. If a dihypergraph has only unit
edges, it is a digraph.

Let H = (V,E) be a dihypergraph and U a subset of V. The subhypergraph
H[U ] induced by U is the pair (U,E(H[U ])) where E(H[U ]) is the set of arcs of E
contained in U , namely E(H[U ]) = {e ∈ E | e ⊆ U}. A bipartite dihypergraph is a
dihypergraph in which the ground set can be partitioned into two parts (V1,V2)
such that for any (B, h) ∈ E, B ⊆ V1 and h ∈ V2 or B ⊆ V2 and h ∈ V1. We
denote a bipartite dihypergraph by H[V1,V2]. The size of a dihypergraph H is
written |H | and is given by |H | = |V |+

∑
e∈E |B(e)|+ 1.

3 Hierarchical decomposition of a dihypergraph

In this section, we introduce a hierarchical decomposition (H-decomposition) of
a dihypergraph as a recursive partition of the arcs into bipartite dihypergraphs,
from which it can be fully recovered. We are interested first in the class of
dihypergraphs that have a hierarchical decomposition. Given a dihypergraph
H = (V,E), we define the partitioning operation called a split of H. Then
we recursively apply the splitting operation until reaching trivial dihypergraphs.
The H-decomposition of a dihypergraphH will be represented by a rooted binary
tree, called H-tree.

We show that not all dihypergraphs can have such a H-decomposition into
trivial dihypergraphs, and give a polynomial time and space algorithm which
takes a dihypergraph as an input, and outputs a H-tree if it exists. Moreover,
we relax the requirement of the H-decomposition into trivial dihypergraphs to
H-factors which are indecomposable subhypergraphs of H.

3.1 Split operation

First we define the split operation of a dihypergraph as follows.
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Definition 1 (split). Let H = (V,E) be a dihypergraph. A non-trivial bipar-
tition (V1,V2) of the groundset V is a split of H, if for any e = (B, h) ∈ E,
B ⊆ V1 or B ⊆ V2.

A split (V1,V2) induces three subhypergraphs H[V1], H[V2] and a bipartite
dihypergraph H[V1,V2] = (V1,V2,E12) where E12 = {e ∈ E | e * V1 and e *
V2}. Moreover, the arcs of H[V1], H[V2] and H[V1,V2] form a partition of E.
Indeed, no arc is missed by a split. Intuitively, the split shows that H is fully
described by two smaller distincts dihypergraphs H[V1] and H[V2] acting on
each other through the bipartite dihypergraph H[V1,V2].

Example 1. Consider the dihypergraph H = (V,E) of Figure 1, with V = [7]
and E = {(12, 3), (3, 1), (56, 2), (23, 7), (45, 6), (5, 7)}. The bipartition illustrated
on the left separates V in two sets {1, 3} and {2, 4, 5, 6, 7}. It is not a split
since the body of the arc (12, 3) intersects the two parts, and will be missed.
The bipartition on the right V1 = {1, 2, 3} and V2 = {4, 5, 6, 7} is a split,
with H[V1] = ({1, 2, 3}, {(12, 3), (3, 1)}), H[V2] = ({1, 2, 3}, {(45, 6), (5, 7)}),
and H[V1,V2] = ({1, 2, 3} ∪ {4, 5, 6, 7}, {(56, 2), (23, 7)}).

5 4

7

6

1 2

3

5 4

7

6

1 2

3

Fig. 1: The left bipartition is a not a split, whereas the right one is.

Before giving a characterization of dihypergraphs having a split, we consider
some special cases:

– If the dihypergraph H is a digraph or has no arc. Then any bipartition of
the ground set (any cut) is a split.

– However, there are dihypergraphs that cannot have a bipartition that cor-
responds to a split. For example, any bipartition of the dihypergraph H =
({1, 2, 3}, {(12, 3), (13, 2)}) would miss an arc. For instance, if we consider
the bipartition V1 = {1, 2} and V2 = {3}, then we capture (12, 3) but
not (13, 2), i.e., H[V1] = ({1, 2}, ∅), H[V2] = ({3}, ∅), and H[V1,V2] =
({1, 2} ∪ {3}, {(12, 3)}).

In the following, we show that the dihypergraph’s connectivity is important
for the notion of a split. Given a dihypergraph H = (V,E), we define a body-
path in H to be a sequence v1, e1, v2, ..., vk, ek, vk+1 of distinct vertices and arcs
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of H such that: (1) vi ∈ V, i ∈ [k + 1], (2) ei = (Bi, hi) ∈ E, i ∈ [k], and (3)
{vi, vi+1} ⊆ Bi, i ∈ [k]. Two vertices v, v′ ∈ V are said to be body-connected in H

if there exists a body-path from v and v′. A dihypergraph H is body-connected
if every pair of vertices v, v′ ∈ V is body-connected in H. A body-connected
component of a dihypergraph H is a maximal subset of V where any pair of
vertices is body-connected. This is the case for instance of the dihypergraph
H = ({1, 2, 3}, {(12, 3), (13, 2)}) we discussed earlier.

Observe that a body reduced to a singleton always satisfies condition of
Definition 1. Thus, unit arcs have no impact on a split.

Proposition 1. A dihypergraph H has a split iff it is not body-connected.

Proof. Suppose that H has a non trivial split (V1,V2), and let v ∈ V1 and
v′ ∈ V2. Assume the existence of a body-path v = v1, e1, v2, ..., vk, ek, vk+1 = v′.
Such a body-path exists if there is i ∈ [k] such that ei = (Bi, hi) and Bi∩V1 6= ∅
and Bi∩V2 6= ∅. But, the arc ei = (Bi, hi) cannot satisfy conditions of Definition
1. Then v, v′ are not body-connected and thus H is not body-connected.

Conversely, suppose that H is not body-connected and let C be a body-
connected component ofH. We show that (C,V \C) is a split. Let e = (B, h) ∈ E.
Since C is a body-connected component, either B ∩ C = ∅ or (V \C) ∩ B = ∅.
Hence (C,V \C) is a split. ut

It is important to note that body-connectivity is not inherited. That is,
a subhypergraph induced by a body-connected component may not be body-
connected. Consider the dihypergraph in Figure 1 with the split V1 = {1, 2, 3}
and V2 = {4, 5, 6, 7}. Then 5 and 6 are body-connected in H but not in H[V2].
Therefore, body-connected components may be decomposed too. The main idea
of the H-decomposition is to recursively apply the split operation until we reach
a trivial dihypergraph.

3.2 H-tree of a dihypergraph

Based on the split operation, we define the H-decomposition of a dihypergraph.
We recursively split a dihypergraph into smaller dihypergraphs until we reach
a trivial dihypergraph. This recursive decomposition can be conveniently repre-
sented by a full rooted binary tree T . An interior node of the tree corresponds to
a split (V1,V2) whose children correspond to the H-decomposition of H[V1] and
H[V2]. The leaves of the tree represent the ground set. Since the splits (V1,V2)
and (V2,V1) are equivalent, the children of a node are not ordered.

Definition 2 (H-tree). Let H = (V,E) be a dihypergraph, T be a full rooted
binary tree. Then (T, λ) is a H-tree of H if there exists a labelling map λ : T →
V∪2E satisfying the following conditions:

(i) λ(v) ∈ V if v is a leaf of T ,
(ii) λ(v) ⊆ E if v is an interior node (possibly λ(v) = ∅),
(iii) for any (B, h) ∈ λ(v), elements of B are labels of leaves in the subtree of one

child of v and h is the label of a leaf in the subtree of the other child.
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(iv) the set {λ(v) | v ∈ T} is a full partition of V∪E and may contain the
emptyset.

If such labelling exists we call the dihypergraph hierarchically decomposable (H-
decomposable for short), and H-indecomposable otherwise.

Figure 2 shows a H-tree for the dihypergraph in Figure 1.

1 2

3

4 5 6 7

∅

(12, 3)

∅∅

(54, 6), (5, 7)

(56, 2), (23, 7)

Fig. 2: A H-decomposition for the dihypergraph in Figure 1

There are two interesting cases where a H-decomposition of a dihypergraph
H can be computed easily (see Figure 3).

– H has no arcs. Here, any full rooted binary tree whose leaves are labelled by
a permutation of V and any interior node by ∅ is a H-tree of H.

– H is a digraph. It is the same as the previous case, except that an arc (b, h)
will be in the label of the ancestor of the leaves labelled by b and h.

However, there are also some dihypergraphs that cannot be H-decomposed.

1 2 3 4

∅ ∅

∅

1 2 3 4

(1, 2) (3, 4)

(4, 1), (2, 3)

Fig. 3: Hierarchical decompositions for the empty dihypergraphs H1 = ([4], ∅),
and for the directed graph H2 = ([4], {(1, 2), (2, 3), (3, 4), (4, 1)})

Proposition 2. If H is H-decomposable then it is not body-connected.

Proof. Suppose that H is H-decomposable, and let (T, λ) be a H-tree with root
r. Let (Vl,Vr) be the split of V corresponding to r, i.e., Vl corresponds to the
leaves of the left subtree of r and Vr to those of the right subtree. Then according
to Proposition 1, H is not body-connected. ut

Now, we show that H-decomposability is hereditary, i.e., if a dihypergraph
H has a H-tree then any of its subhypergraphs has a H-decomposition too.

Proposition 3. Let H = (V,E) be a dihypergraph and U ⊆ V. If H is H-
decomposable, so is H[U ].
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Proof. Let H = (V,E) be a dihypergraph, U ⊆ V and (T, λ) a H-tree. We
construct a subtree not necessarily induced by T which corresponds to a H[U ]-
tree. We start from the root r of T and apply the following operation for any
interior node v: if the sets of leaves of the left child and those of the right one
intersect both U , then keep v with label λ(v) = λ(v)∩E(H[U ]). Otherwise, there
is a child of v whose set of leaves do not intersect U , in this case replace v by
the child whose set of leaves intersects U . The obtained subtree has U as the set
of leaves, and the set of labels of the internal nodes are exactly E(H[U ]). ut

The following theorem gives the strategy of the algorithm for recognizing
which hypergraphs have a H-decomposition.

Theorem 1. Let H = (V,E) be a non body-connected dihypergraph and C a
body-connected component of H. Then H is H-decomposable if and only if both
H[C] and H[V \C] are H-decomposable.

Proof. The only if part directly follows from Proposition 3. Let us show the if
part. Let C be a body-connected component of H and let (T1, λ1) be a H[C]-tree
and (T2, λ2) a H[V \C]-tree. We consider a new tree (T, λ) such that T has root
r with left subtree T1 and right subtree T2. As for λ, we put λ(v) = λ1(v) if
v ∈ T1, λ(v) = λ2(v) if v ∈ T2 and λ(r) = {e ∈ E | e /∈ E(H[C]) ∪ E(H[V \C])}.
In words, λ(r) contains any arc which is not fully contained in C or V \C. It is
clear that conditions (i), (ii), (iv) of Definition 2 are fulfilled for (T, λ) as they
are for (T1, λ1), (T2, λ2) and C ∪ V \C = V. Hence, we have to check (iii). Let
e = (B, h) be an arc in λ(v). If B ∩ C 6= ∅, then B ⊆ C since C is a body-
connected component of H. As e is not an arc of H[C], it follows that h ∈ V \C.
Dually, if B ∩ C = ∅, then h ∈ C since e is not in H[V \C]. Condition (iii) is
satisfied and (T, λ) is a H-tree. ut

Theorem 1 suggests a recursive algorithm which returns a H-tree for H if
it is H-decomposable. If H is reduced to a vertex v, we output a tree which is
a leaf with label v. Otherwise, we compute a body-connected component C of
H if H is not body-connected. We label the corresponding node by the arcs of
H[C,V \C], and we recursively call the algorithm on H[C] and H[V \C].

This strategy is formalized in Algorithm 1, whose correctness and complexity
are studied in Theorem 2.

Theorem 2. Given a dihypergraph H = (V,E), Algorithm BuildTree computes
a H-tree if it exists and returns FAIL otherwise in polynomial time and space in
the size of H.

Proof. First, we show by induction on |V | that the algorithm returns a H-tree
iff H is H-decomposable by. Clearly, if H is reduced to a vertex v, the algorithm
returns a H-tree corresponding to a leaf with label v.

Now, assume that the algorithm is correct for dihypergraphs with |V | <
n, n ∈ N, and consider a dihypergraph H with |V | = n. Suppose H is H-
decomposable. By Proposition 1, H is not body-connected. Let C be a body-
connected component of H. Inductively, the algorithm is correct for H[C] and
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Algorithm 1: BuildTree
Input: A dihypergraph H = (V,E)
Output: A H-tree, if it exists, FAIL otherwise

1 if H has one vertex then
2 create a new leaf r with λ(r) the unique vertex in H;
3 return r ;

4 else
5 compute a body-connected component C of H ;
6 if |C| = |V | then
7 stop and return FAIL ;

8 else
9 let r be a new node with λ(r) = E \(E(H[C]) ∪ E(H[V \C])) ;

10 left(r) = BuildTree(H[C]) ;
11 right(r) = BuildTree(H[V \C]) ;
12 return r ;

H[V \C] since 1 ≤ |C| < n. From Theorem 1, we have that both H[C] and
H[V \C] are H-decomposable. By induction the algorithm computes a H[C]-tree
(T1, λ1) and a H[V \C]-tree (T2, λ2). Hence, the algorithm returns a labelled tree
(T, λ) with root r whose label is λ(r) = E \(E(H[C])∪E(H[V \C])) and children
T1 and T2. This tree satisfies all conditions to be a H-tree. Thus the algorithm
computes a H-tree for any H-decomposable dihypergraph.

Now suppose H is not H-decomposable. We have two cases:

1. H is body-connected and the algorithm returns FAIL in Line 7.
2. H is not body-connected. The algorithm chooses a body-connected com-

ponent C with 1 ≤ |C| < n. By Theorem 1, either H[C] or H[V \C] is
H-indecomposable. Thus by induction, the algorithm will return FAIL for
the input H[C] or H[V \C] in Lines 11-12. Since the algorithm stops, the
output of the algorithm is FAIL.

Hence, the algorithm fails if the input dihypergraph H is H-indecomposable. We
conclude that the algorithm returns a H-tree if and only if the input dihyper-
graph H is H-decomposable.

Now we show that the total time and space complexity of the algorithm are
polynomial. The space required for the algorithm is bounded by the size of the
dihypergraph and the size of the H-tree. As the size of the H-tree is bounded
by O(|H |), the overall space is bounded by O(|H |).

The time complexity is bounded by the sum of the costs of all nodes (or
calls) of the search tree. The number of calls is bounded by O(|V |), the size of
the search tree. The cost of a call is dominated by the computation of a body-
connected component of the input H. For this, we use union-find data structure
of [TR84], which runs in almost linear time, i.e., O(|H | · α(|H |, |V |)) where
α(., .) is the inverse Ackermann function. The almost linear comes from the fact
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that α(|V |) ≤ 4 for any practical dihypergraph (see [TR84]). Thus the total
time complexity is O(|V |(|H | · α(|H |, |V |)). ut

It is worth noticing, that the obtained H-tree by Algorithm 1 depends on
the choice of a body-connected component in line 5. Thus, there may be several
H-trees for a given dihypergraph. Figure 4 shows two possible H-trees for the
dihypergraph H = (V,E) with V = [8] and E = {(12, 3), (23, 4), (34, 5), (56, 7),
(67, 8)}. Then, a question arises: are all H-trees equivalently interesting? In par-
ticular, a balanced H-tree is a good candidate as the balancing is a common
desirable property for decomposition trees to obtain efficient algorithms.

1 2

3

4

56

7

8

∅ ∅

(56, 7)

(67, 8)

(12, 3)

(23, 4)

(34, 5)

5 6

7

4 8 3

2 1

∅

(56, 7)

∅

∅

(12, 3)

(23, 4)

(34, 5), (67, 8)

Fig. 4: Two possible H-trees of the same dihypergraph

3.3 Extension of the H-decomposition

As seen before, there are dihypergraphs that cannot have a split and thus a H-
decomposition into trivial hypergraphs. Such dihypergraphs are body-connected,
and will be called irreducible H-factors (H-factors for short) in the rest of the
paper. Now we describe a slight modification of Algorithm 1 to obtain a H-
decomposition of dihypergraphs into H-factors. Instead of returning FAIL in line
7 in Algorithm BuildTree, we replace it by the following:

7’ create a new leaf r with λ(r) = E and return r;

Figure 5 illustrates the H-decomposition of a dihypergraph, where the leftmost
leaf corresponds to a non-trivial H-factor. Now, any dihypergraph has a H-
decomposition into H-factors. Then, the decomposition can be applied to any
objects encoded by dihypergraphs, as we will show for closure systems in the
next section.
4 H-decomposition of a closure system into H-factors

In this section, we show that the H-decomposition introduced in the previous
section can be applied to decompose closure systems when they are represented
by dihypergraphs [Wil17,AL17].

We first recall definitions for closure systems and lattice theory [Grä11]. A
partially ordered set L = (L,≤) is a reflexive, anti-symmetric and transitive
binary relation ≤ on a set L. For x, y ∈ L, we say that x and y are comparable
if x ≤ y or y ≤ x. An upper bound of x, y is an element u ∈ L such that x ≤ u,
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4 5 6

(3, 4) (5, 6)

(6, 1)

(12, 3), (23, 1)

(13, 2)

Fig. 5: H-decomposition into H-factors

y ≤ u. If for any upper bound u′ 6= u, u ≤ u′, then u is the join of x, y, written
x∨ y. Lower bounds and the meet x∧ y are defined dually. We say that L is a
lattice if for any x, y ∈ L, both x∨ y and x∧ y exist. A meet-sublattice L′ of L
is a lattice included in L such that for any x, y ∈ L′, x∧ y ∈ L′. It is a sublattice
of L if moreover x ∨ y ∈ L′.

A closure system F on a finite set V is a family of subsets of V which contains
V and is closed under intersection, that is for any F1, F2 in the family F, F1∩F2

also belongs to F. A subset F of V which is in F is called a closed set. It is well
known that a closure system ordered by set containment is a lattice and that any
lattice can be associated to a closure system [Grä11]. The projection or trace of
a closure system F over U ⊆ V, denoted F : U , is the closure system we obtain
by intersecting each F ∈ F with U , i.e., F : U = {F ∩ U | F ∈ F}. The direct
product of two closure systems F1,F2 on disjoint V1,V2 is the pairwise union
of their closed sets, that is F1×F2 = {F1 ∪ F2 | F1 ∈ F1, F2 ∈ F2}.

To compute the closure system associated to a dihypergraph H, we recall the
forward chaining method. Let H be a dihypergraph and X ⊆ V, we construct a
chain of subsets of V, X = X0 ⊂ X1 ⊂ ... ⊂ Xk = XH, where Xi = Xi−1 ∪ {h |
B ⊆ Xi−1, (B, h) ∈ E} with i > 0. The subset XH is called a closed set. Note
that a subset X of V is closed if for any arc (B, h), B ⊆ X implies h ∈ X. The
family of closed sets FH = {XH | X ⊆ V} is a closure system. A closure system
can be represented by several dihypergraphs.

Naturally, we wish to extend the H-decomposition of a dihypergraph H to
a decomposition of the closure system FH, also called H-decomposition. The
H-decomposition of FH is obtained from the H-decomposition of H, where the
label of a node of its H-tree is replaced by the closure system associated to the
dihypergraph induced by its subtree. The closure systems corresponding to leaves
are the irreducible H-factors of the input closure system. Figure 6 illustrates the
H-decomposition of the closure system associated to the H-decomposition of the
dihypergraph in Figure 5.

Theorem 3. Let (V1,V2) be a split of H, F1 and F2 the closure systems cor-
responding to H[V1] and H[V2] respectively. Then,

1. If F ∈ FH then Fi = F ∩Vi ∈ Fi, i = {1, 2}. Moreover, FH ⊆ F1 × F2.
2. If H[V1,V2] has no arc then FH = F1 × F2.
3. If B ⊆ V1 for any arc (B, h) H[V1,V2], then FH : Vi = Fi for i ∈ {1, 2}.
4. If B ⊆ V2 for any arc (B, h) of H[V1,V2], then FH : Vi = Fi for i ∈ {1, 2}.
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Fig. 6: The H-decomposition of the closure system corresponding to the dihyper-
graph in Figure 5

Proof. Consider a split (V1,V2) of H, F1 and F2 the closure systems correspond-
ing to H[V1] and H[V2]. We will prove 1, 3 and 2. Items 3, 4 are similar.

1. Let F ∈ FH with Fi = F ∩ Vi and (B, h) an arc of H[Vi] for i ∈ {1, 2}.
Suppose B ⊆ Fi and h 6∈ Fi. Then we also have B ⊆ F and h 6∈ F which
contradicts F ∈ FH, as (B, h) is an arc of H.

3. Let F ∈ F1, we show that FH satisfies FH ∩ V1 = F . Let (B, h) an arc of
H. We distinguish 3 cases:
(a) B ⊆ V2. Then B 6⊆ F and (B, h) has no effect on the forward chaining.
(b) (B, h) is in H[V1]. Then B ⊆ F implies h ∈ F as it is closed in H[V1].
(c) (B, h) is an arc of H[V1,V2]. Then B ⊆ V1 and h ∈ V2. As there is no

arc outside H[V1] with head in V1 the forward chaining cannot add an
element from V1.

So F ∈ FH : V1 and F1 ⊆ F : V1. The reverse inclusion holds by item 1. As
for F2, we have F2 ⊆ F as B ⊆ V1 for any arc (B, h) of H[V1,V2].

2. Since H has no arc, it satisfies 3 and 4. We deduce that FH : V1 = F1 and
FH : V2 = F2. Thus FH ⊆ F1 × F2. For the other inclusion, let F1 ∈ F1

and F2 ∈ F2. We show that F1 ∪ F2 ∈ FH. Let (B, h) be an arc of H with
B ⊆ F1∪F2. As H[V1,V2] has no arc, (B, h) is an arc of H[V1] or H[V2]. As
F1, F2 are closed for H[V1], H[V2] (resp.), it follows that F1 ∪ F2 ∈ FH. ut

According to Theorem 3 1, any closure system is a subset of the product of
its H-factors closure systems. So the idea is to compute in parallel F1 and F2

for every split (V1,V2) in the H-tree, and then use the dihypergraph H[V1,V2]
to compute FH. But this strategy is expensive, since the size of F1 and F2 may
be exponential in the size of FH. Indeed, take H with V = {u1, . . . , un, z} and
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E =
⋃n

i=1{(ui, z), (z, ui)}. Then, (V \{z}, {z}) is a split of H with H[V \{z}] =
(V \{z}, ∅). Hence FV \{z} = 2V \{z} has exponential size, while FH = {∅,V}.
Observe that this explosion cannot happen if F1 and F2 are traces of FH.
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Fig. 7

To conclude this section, we relate H-decomposition to the subdirect product
decomposition. Consider the closure system FH in Figure 7(a) encoded by the
unique dihypergraph H = ({1, 2, 3}, {(2, 1), (13, 2)}). It is known that it cannot
be decomposed using the subdirect product. Clearly H is not body-connected
and V1 = {1, 3} et V2 = {2} is the unique split where F1 = {∅, 1, 3, 13} and
F2 = {∅, 2} are traces. But FH is not a sublattice of F1×F2, since (1, 3) ∈ F1×F2

the upper bound of 1 and 3 is not preserved in FH. However, systems of Figure
7(b), (c) and (d) are subdirectly irreducible and H-factors too. Hence, we end
the section with the following.

Corollary 1. Every closure system is a meet-sublattice of the direct product of
its H-factors.

Proof. This follows from Theorem 3 (i) and the fact that a closure system is
closed under intersection. ut

5 Conclusion

In this paper we studied a hierarchical decomposition for dihypergraphs based
on a partitioning operation called a split. We gave a polynomial time and space
algorithm to find such a decomposition if it exists. We also discussed application
of this decomposition to closure systems and lattices.

For future research, we are interested in characterizing classes of closure
systems which have a hierarchical decomposition. It seems that it is already
the case for lower-bounded lattices, which include the widely studied Tamari
lattices [Gey94,Mar92]. Another future application is the translation between
representations of closure systems [Kha95,DNV19].

Acknowledgment Authors are grateful to the anonymous reviewers for their remarks
and suggestions.
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