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Abstract. We consider the problem of distributing a collection of indi-
visible objects among agents in a manner that satisfies some desirable
notions of fairness and efficiency. We allow agents to “share” goods in
order to achieve efficiency and fairness goals which may be otherwise
impossible to attain. In this context, our goal is to find allocations that
minimize the “amount of sharing”. We follow up on recent work demon-
strating that finding fair allocations with minimum sharing is tractable
when valuations are non-degenerate, a notion which captures scenarios
that are “far from identical”. This result holds for any fixed number of
agents. We show that the usefulness of non-degeneracy does not scale
to the setting of many agents. In particular, we demonstrate that the
problem of finding fractionally Pareto optimal and envy-free allocations
is NP-complete even for instances with constant degeneracy and no shar-
ing. We also demonstrate an alterate approach to enumerating distinct
consumption graphs for allocations with a small number of sharings.
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1 Introduction

The task of fairly distributing indivisible goods among interested agents is chal-
lenging already for the simplest possible scenario: one object valued by two or
more people. We deal with the case when m objects are to be allocated amongst
n agents, respecting certain notions of fairness and efficiency. Every agent at-
tributes a value to each object, stating the extent to which he wants the object.

A natural and well-studied notion of fairness is envy-freeness, where everyone
values their bundle of objects at least as much as they value others’. Some
notion of efficiency are: completeness, which requires all items to be allocated
and fractionally Pareto Optimal(fPO), where no agent can be made better off
without making another worse off. The opening example already shows that there
are instances where no allocation is simultaneously complete and envy-free(EF).
This has led to several notions of “workarounds”: approximate envy-freeness (e.g,
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requiring allocations to be envy-free up to the removal of one good [2,7], or any
good [3], or using hidden goods [6]), subsidy (introducing money to compensate
for envy [1]), donating items (this involves giving up on completeness, but to a
limited extent [4]), and sharing (wherein we allow for some goods to be shared
between agents [9,8]). Our focus is on the settings, where sharing goods appears
to be the most reasonable of all workarounds (for instance, when high valued
goods are involved), and the question of interest is to find allocations that meet
our goals of fairness and efficiency with minimum sharing.

In a recent development, Sandomirskiy and Segal-Halevi [8] show that the case
of identical valuation is in fact the “hardest” — they propose a notion of
degeneracy(d) which captures the degree of similarity across agent valuations.
We refer to the setting of low degeneracy, the ones where valuations are generally
dissimilar, hence, less conflicting, as a scenario involving amicable agents. One
of the key results in [8] is that finding allocations that are both fPO and EF is
tractable for a constant number of amicable agents. In contrast, it was shown
that the problem remains NP-hard for instances of high degeneracy.

Our Contributions. We investigate the complexity of finding fPO and EF al-
locations for amicable agents, from the perspective of the number of agents.
For example, can the running time be improved to (n +m)O(d), which would
increase the realm of tractability to scenarios with any number of agents and
constant degeneracy, or more ambitiously, O(2O(d) · (m+ n)O(1)), which would
make the problem tractable for instances with any number of agents and de-
generacy logarithmic in (n +m)? Our main contribution here is to show that
even the former goal is unlikely to be achievable: when the number of agents
is unbounded, the problem of finding allocations that are fPO and EF remains
strongly NP-complete for instances with degeneracy one, even for the specific
question of allocations with no sharings. Our result also has consequences for
the problem of finding EF allocations, which is weakly NP-complete by a reduc-
tion from Partition [8]. It turns out that the arguments in the reverse direction
of our reduction do not require the allocation in question to be fPO, allowing us
to obtain a stronger hardness result.

We also revisit the algorithm for finding fPO+EF allocations from [8]. The algo-
rithm relies on enumerating certain consumption graphs corresponding to fPO
allocations that fix the sharing structure of a potential solution. We propose
an alternate method for generating the relevant consumption graphs that takes
advantage of the upper bound on the number of sharings upfront. This leads to
a slightly different bound that leads to a better exponential term at the cost of a
worse polynomial factor. Although the difference in the bound is not significant,
we believe our approach lends additional understanding to the structure of class
of graphs based on fPO allocations.
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2 Preliminaries

Allocations and Sharing. We use A = {a1, . . . ,an} to denote a set of agents and
G = {g1, . . . ,gm} to denote a collection of objects. A bundle of objects is a vector
b = (bj)j∈[m] ∈ [0, 1]m, where the component bj represents the portion of gj in
the bundle. The total amount of each object is normalized to one. An allocation
z is a collection of bundles (zi)i∈[n], one for each agent, with the condition that
all the objects are fully allocated. Note that an allocation can be identified with
the matrix z := (zi,j)i∈[n],j∈[m], where zi,j take values from [0,1].

If zi,j 6= 1, then the object gj is shared between two or more agents. We define
total number of sharings as the number of times that an object is shared, i.e:

#s?(z) =
∑
j∈[m]

(∣∣{i ∈ [n] : zi,j > 0}
∣∣− 1

)
.

Value and Utility. For every i ∈ [n], j ∈ [m], vi,j denotes agent ai’s value for
the entire object gj. In the setting of additive utilities, the valuations naturally
lead us to an utility function over bundles defined as ui(b) =

∑
j∈[m] vi,j · bj.

The matrix v = (vi,j)i∈[n],j∈[m] is called the valuation matrix.

We recall the notion of degeneracy that was proposed in [9,8]. To this end, we
say that two goods gp,gq are valued similarly by a pair of agents i, j if there
exists a constant r such that vi,p · vj,q = vi,q · vj,p = r. If the valuations in
question are all non-zero, then the value-ratios of goods gp and gq by the agents
i and j equals the constant r. Now, we define the similarity between a pair of
agents i and j as:

sv(i, j) = max
r>0

∣∣{k ∈ [m] : vi,k = r · vj,k
}∣∣− 1.

Note that the similarity of a pair of agents captures the notion of the largest num-
ber of goods that the agents value similarly when considered pairwise. This finally
leads us to the notion of degeneracy defined as d(v) = maxi,j∈[n],i 6=j sv(i, j). Val-
uations for which d(v) = 0 are called non-degenerate. Also, note that if any two
agents have the same valuations for all goods, then d(v) = m− 1.

Fairness and Efficiency. An allocation z = (zi)i∈[n] is called envy-free (EF) if
every agent prefers her bundle to the bundles of others. Formally, for all i, j ∈ [n]:
ui(zi) > ui(zj). An allocation z is Pareto-dominated by an allocation y if y
gives at least the same utility to all agents and strictly more to at least one. An
allocation z is fractionally Pareto-optimal (fPO) if no feasible y dominates it.

Computational Questions. For the fairness concept EF and an efficiency concept
fPO, Minimal Sharing problem is the following. Given (A,G, v, t ∈ N) as input,
the question is if there exists an allocation where the total number of sharings
is at most t.
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3 Hardness for Instances of Constant Degeneracy

We define here, a structured version of Satisfiability problem called Linear
Near-Exact Satisfiability (LNES), which is known to be NP-complete [5].
An LNES instance consists of 4p core clauses (p ∈ N) and p auxiliary clauses:
C = {U1,V1,U′

1,V ′
1, · · · ,Up,Vp,U′

p,V ′
p}∪ {C1, · · · ,Cp}. The set of variables con-

sists of p main variables x1, . . . , xp and 4p shadow variables y1, . . . ,y4p. Each
core clause consists of two literals and ∀ i ∈ [p],Ui∩Vi = {xi} and U′

i∩V ′
i = {x̄i}.

Each shadow variable occurs as a positive literal in an auxiliary clause and as
a negative literal in a core clause. An auxiliary clause consists of four literals,
each corresponding to a positive occurrence of a shadow variable. We will use
ui, vi,u

′
i, and v′i to refer to the shadow variables in the core clauses Ui,Vi,U

′
i,

and V ′
i, respectively. The LNES problem asks whether, given a set of such

clauses, there exists an assignment τ of truth values to the variables such that
exactly one literal in every core clause and exactly two literals in every auxiliary
clause evaluate to true under τ. The main result of this section is the following:

Theorem 1. (EF,fPO)-Minimal Sharing is NP-hard even when restricted to
inputs with bounded valuations, degeneracy one, and no sharing.

Proof. (Sketch) We reduce from LNES. Let C be an instance of LNES as de-
scribed above. For each main variable xi we introduce three agents: {ai, āi,di},
and the goods {gi, ḡi,hi}. We refer to di as the dummy agent and ai and āi as
the key agents associated with xi. Also, we refer to hi as the trigger good and gi
and ḡi as consolation goods. For the shadow variables ui, vi,u

′
i, v

′
i, we introduce

four shadow agents agents: bi, ci,b
′
i, c

′
i and four essential goods: ri, si, r

′
i, s

′
i. Fi-

nally, for each auxiliary clause Cj, we introduce two backup goods f1j and f2j .
Note that our instance consists of 7p agents and 9p goods. Thus the size of the
valuation matrix is N := 63 · p2. We let L = 4000 · p5.

Let w = (wi,j)i∈[n],j∈[m] denote the (7p × 9p) matrix whose entries are given
by wi,j = (i− 1) ·m+ j. Intuitively, we can think of these values as being small
enough to be negligible, and we will obtain our final valuation matrix by starting
from w and “overwriting” some entries to reflect the fact that certain goods are
valued highly by certain agents. This is done to ensure that the final valuation
matrix has low degeneracy, and hence, the agents are amicable. We modify the
matrix w as described below. For i ∈ [p]:

– The dummy agent di has a high value L for the consolation goods gi and
ḡi. Also, they value the four essential goods associated with them at zero.

– The first key agent ai has a somewhat high value L
3 for the consolation good

gi and the essential goods ri and si, and a high value L for hi.
– The second key agent āi has a somewhat high value L

3 for the consolation
good ḡi and the essential goods r′i and s′i, and also has a high value L for
the trigger good hi.
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Fig. 1. The overall schematic of the construction in the proof of Theorem 1. The entries
? indicate small values. In this example, the literal corresponding to the agent bi, i.e,
ui, belongs to the auxiliary clause Cj corresponding to the backup goods f1j and f2j .

– The shadow agents have a high value L for their associated essential goods
and the backup good which represents an auxiliary clause that contains the
associated shadow variable. Also, bi (respectively, ci) values the consola-
tion good gi and the essential good si (respectively, ri) at zero. And b′i
(respectively, c′i) values the consolation good ḡi and the essential good s′i
(respectively, r′i) at zero.

The valuation matrix is depicted in the Figure 1. We ask if this instance admits
an allocation with zero sharing. Note that the degeneracy of the valuation matrix
is indeed one, contributed by the values that shadow agents have for the backup
goods. We claim that if there exist an assignment for the LNES instance, then
we have an EF and fPO allocation for the above fair division instance, and vice-
versa. We defer to the detailed arguments in the full version of the paper. ut

4 Concluding Remarks

We demonstrated the hardness of finding fPO+EF allocations even for instances
with constant degeneracy, with an unbounded number of agents. We note that
running times of the form dO(n) · poly(m,n) are “weakly ruled out” because of
the hardness result in [8]. However, all the hardness results combined so far do not
rule out the possibility of an algorithm with a running time of cO(d+n) ·mO(1),
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which would imply strongly polynomial running times for instances where (d+n)
is bounded by O(logm). One framework to rule out such a possibility would be
parameterized complexity, where one might attempt demonstrating W-hardness
in the combined parameter (n,d). On a related note, we show that instances
that have bounded degeneracy and a bounded number of values in the valuation
matrix are essentially bounded — we refer the reader to the full version of the
paper for a more detailed discussion on bounded valuations as well as remarks
on enumerating the consumption graphs.
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