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Abstract

English. Direct speech translation (ST)
has shown to be a complex task requir-
ing knowledge transfer from its sub-tasks:
automatic speech recognition (ASR) and
machine translation (MT). For MT, one of
the most promising techniques to transfer
knowledge is knowledge distillation. In
this paper, we compare the different solu-
tions to distill knowledge in a sequence-to-
sequence task like ST. Moreover, we ana-
lyze eventual drawbacks of this approach
and how to alleviate them maintaining the
benefits in terms of translation quality.

Italiano. È stato dimostrato che la speech
translation (ST) diretta è un’operazione
complessa che richiede l’adozione di tec-
niche di knowledge transfer sia da au-
tomatic speech recognition (ASR) che da
machine translation (MT). Per quanto
riguarda MT, una delle tecniche più
promettenti è la knowledge distillation
(KD). In questo lavoro, confrontiamo di-
verse possibili soluzioni di KD per adde-
strare modelli sequence-to-sequence come
quelli di ST. Inoltre, analizziamo eventuali
problemi causati da questa tecnica e come
attenuarli mantenendo i benefici in termini
di qualità della traduzione.

1 Introduction

Speech translation (ST) refers to the process
of translating utterances in one language into text
in a different language. Direct ST is an emerg-
ing paradigm that consists in translating without
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intermediate representations (Bérard et al., 2016;
Weiss et al., 2017). It is a newer and alternative ap-
proach to cascade solutions (Stentiford and Steer,
1988; Waibel et al., 1991), in which the input au-
dio is first transcribed with an automatic speech
recognition (ASR) model and then the transcript is
translated into the target language with a machine
translation (MT) model.

The rise of the direct ST paradigm is moti-
vated by its theoretical and practical advantages,
namely: i) during the translation phase it has ac-
cess to information present in the audio that is lost
in its transcripts (eg. prosody, characteristic of the
speaker1), ii) there is no error propagation (in cas-
cade systems the errors introduced by the ASR are
propagated to the MT, which has no cues to re-
cover them), iii) the latency is lower (as data flows
through a single system instead of two), and iv) the
management is easier (as there is a single model
to maintain and no integration between separate
modules is needed).

On the downside, direct ST suffers from the
lack of large ST training corpora. This problem
has been addressed by researchers through transfer
learning from the high-resource sub-tasks (Bérard
et al., 2018; Bansal et al., 2019; Liu et al., 2019),
multi-task trainings (Weiss et al., 2017; Anasta-
sopoulos and Chiang, 2018; Bahar et al., 2019a),
and the proposal of data augmentation techniques
(Jia et al., 2019; Bahar et al., 2019b; Nguyen et al.,
2020). In this work, we focus on the transfer learn-
ing from MT. The classic approach consists in pre-
training the decoder with that of an MT model. Its
benefit, however, is controversial: indeed, (Bahar
et al., 2019a) showed that it is effective only with

1For instance, the pitch of the voice is a cue for the sex
of the speaker. Although the gender is a social aspect and
does not depend on physical attributes, in many cases sex and
gender coincide, so systems relying on this are likely to have
a better accuracy than those that do not have access to any
information regarding the speaker (Bentivogli et al., 2020;
Gaido et al., 2020b).



the addition of an adapter layer, but this has not
been confirmed in (Gaido et al., 2020a), while in
(Inaguma et al., 2020) it always brought improve-
ments. Another, more promising possibility con-
sists in distilling knowledge from an MT model.

Knowledge distillation (KD) is a knowledge
transfer technique introduced for model compres-
sion (Hinton et al., 2015). A small student model
is trained computing the KL-divergence (Kullback
and Leibler, 1951) with the output probability dis-
tribution of a big teacher model. Although KD
was introduced in the context of image processing,
its effectiveness suggested its adoption in other
fields. Specifically, Liu et al. (2019) showed that
using an MT system as teacher brings significant
improvements to direct ST models. However, they
did not compare the different methods to distill
knowledge in sequence-to-sequence models (Kim
and Rush, 2016) and they did not analyze possible
negative effects of adopting this technique.

In this paper, we analyze different sequence-to-
sequence KD techniques (word level, sequence-
level, sequence interpolation) and their combina-
tion in the context of direct ST. Then, we study
the effect of the best technique on a strong system
trained on a large amount of data to reach state-
of-the-art results. We show that word-level KD is
the best approach and that fine-tuning the resulting
model without KD brings further improvements.
Finally, we analyze the limitations and the prob-
lems present in models trained with KD, which are
partly solved by the final finetuning.

2 Sequence-level Knowledge Distillation

We focus on distilling knowledge from an MT
model to an ST model. This is helpful due to the
better results achieved by MT, which is an easier
task than ST, as it does not involve the recognition
of the audio content, and it also benefits from the
availability of large training corpora. Our student
(ST) model is trained to produce the same output
distribution of the teacher (MT) model when the
latter is fed with the transcript of the utterances
passed as input to the ST model. As KD was intro-
duced in the context of classification tasks, while
ST and MT are sequence-to-sequence generation
tasks, an adaptation is required for its application.
Kim and Rush (2016) introduced three methods to
distill knowledge in sequence-to-sequence mod-
els: i) word-level KD, ii) sequence-level KD, and
iii) sequence interpolation.

Word-level KD (Word-KD) refers to comput-
ing the KL-divergence between the distribution of
the teacher and student models on each token to
be predicted. As recomputing the teacher output
at each iteration is computationally expensive (it
needs a forward pass of the MT model), we ex-
plored the possibility to pre-compute and store the
teacher outputs. To this aim, we experimented
with truncating the output distribution to have a
lower memory footprint, as proposed in MT (Tan
et al., 2019).
Sequence-level KD (Seq-KD) consists in consid-
ering as target the output generated by the teacher
model using the beam search.
Sequence interpolation (Seq-Inter) is similar
to Seq-KD, but the target is the sentence with the
highest BLEU score (Papineni et al., 2002) with
respect to the ground truth among the n-best gen-
erated by the beam search with the teacher model.

As done in (Kim and Rush, 2016), we also com-
bine these methods to analyze whether they are
complementary or not. Finally, we experiment
with fine-tuning the model trained with KD on the
reference translations.

3 Experimental Settings

We performed preliminary experiments on a lim-
ited amount of data to compare the three KD meth-
ods. Then, we created a model exploiting all the
available corpora with the best technique to ana-
lyze the KD behavior in a real scenario.

3.1 Data

We first experiment using only Librispeech (Ko-
cabiyikoglu et al., 2018), an ST corpus with En-
glish audio, transcripts and French translations.
We use the (audio, transcript) pairs for the ASR
pre-training, the (transcript, translation) pairs to
train the MT teacher, and the (audio, translation)
pairs for the ST training.

Then, we built an English-Italian model. In
addition to Librispeech, the ASR pre-training in-
volves TED-LIUM 3 (Hernandez et al., 2018),
Mozilla Common Voice,2 How2 (Sanabria et al.,
2018) and the en-it section of MuST-C (Di Gangi
et al., 2019a). The MT teacher is trained on the
OPUS datasets (Tiedemann, 2016), cleaned using
the ModernMT framework (Bertoldi et al., 2017).3

2https://voice.mozilla.org/
3With the CleaningPipelineMain class.



For ST, we use the en-it section of MuST-C and
Europarl-ST (Iranzo-Sánchez et al., 2020).

We pre-process the input audio extracting a 40-
dimensional feature vector from a span of 25 ms
every 10 ms using Mel filter bank. During this pre-
processing performed with XNMT (Neubig et al.,
2018), we also apply speaker normalization. The
text is tokenized and the punctuation is normalized
with Moses (Koehn et al., 2007). We create 8,000
shared BPE merge rules on the MT data of each
experiment and apply them to divide the text into
sub-word units. Samples lasting more than 20 sec-
onds are discarded in order to avoid out of memory
issues during training.

3.2 Models

For ST and ASR we use the S-Transformer archi-
tecture (Di Gangi et al., 2019b; Di Gangi et al.,
2019c) with logarithmic distance penalty in the en-
coder. In particular, in the experiments on Lib-
rispeech we train a small model using the basic
configuration by Di Gangi et al. (2019b), while in
the experiment with all the data we follow the BIG
configuration. In the second case, we also slightly
modify the architecture to improve performance
by removing the 2D attention layers and chang-
ing the number of Transformer Encoder layers and
Transformer Decoder layers to be respectively 11
and 4 in ST and 8 and 6 in the ASR pre-training
(Gaido et al., 2020a). The different number of lay-
ers between ASR and ST is motivated by the idea
of having adaptation layers (Jia et al., 2019; Bahar
et al., 2019a).

For MT we use a Transformer with 6 layers for
both the encoder and the decoder. In the prelimi-
nary experiments, we use a small model with 512
hidden features in the attention layers, 2,048 hid-
den units in the feed-forward layers and 8 attention
heads; in the experiment with more data we double
all these parameters.

3.3 Training

We optimize our models with Adam (Kingma and
Ba, 2015) using betas (0.9, 0.98). The learning
rate increases linearly for 4,000 steps starting from
1e-7 to 5e-3. Then it decays according to the in-
verse square root policy. In fine-tunings, the learn-
ing rate is fixed at 1e-4. A 0.1 dropout is applied
and the total batch size is 64. When we do not
use KD, the loss is label smoothed cross entropy
(Szegedy et al., 2016) with 0.1 smoothing factor.

In the final training with all the data, we apply
SpecAugment (Park et al., 2019) with probability
0.5, 13 frequency masking pars, 20 time masking
pars, 2 frequency masking num, and 2 time mask-
ing num. We also increase the overall batch size to
512. Moreover, the ASR pre-training is performed
as a multi-task training in which we add a CTC
loss (predicting the output transcripts) on the en-
coder output (Kim et al., 2017).

Our code is based on the Fairseq library (Ott
et al., 2019), which relies on PyTorch (Paszke
et al., 2019), and it is available open source
at https://github.com/mgaido91/
FBK-fairseq-ST. The models are trained on
8 GPU K80 with 11 GB of RAM.

4 Results

First, we experiment truncating the output distri-
bution generated by the teacher model. Table 1
shows that truncating the output to few top tokens
does not affect significantly the performance. On
the contrary, the best result is obtained using the
top 8 tokens. Hence, all our experiments with
Word-KD use the top 8 tokens of the teacher.

Top K BLEU
4 16.43
8 16.50

64 16.37
1024 16.34

Table 1: Results with different K values, where K
is the number of tokens considered for Word-KD.

Then, we try different values for the tempera-
ture T parameter. The temperature is a parameter
used to sharpen (if T < 1) or soften (if T > 1) the
output distribution. In particular, by adding the
temperature, the softmax function that converts
the logits zi into probabilities pi becomes:

pi =
ezi/T∑
(ezi/T )

(1)

A higher temperature has been claimed to help
learning the so-called dark knowledge (Hinton et
al., 2015), one of the possible reasons alluded to
justify the success of KD. Indeed, with a high tem-
perature, the cost function is similar to minimizing
the squared distance between the logits produced
by the student and teacher networks. So logits
with very negative values – which are basically ig-
nored with low temperature – become important
to be learnt by the student network. For a demon-



stration, please refer to (Hinton et al., 2015). Ta-
ble 2 reports the BLEU score for different values
of T and indicates that the default T = 1 is the
best value. This result suggests that, in ST, the
networks do not have the capacity of MT models
trained on the same data. So focusing on the mode
of the probability distribution works best.

T BLEU
1.0 16.50
4.0 16.11
8.0 14.27

Table 2: Results with different temperatures (T ).

BLEU
Baseline 9.4
Word-KD 16.5
Seq-KD 13.4
Seq-Inter 13.3
Seq-KD + Word-KD 15.7
Word-KD + FT Seq-KD 16.7
Seq-KD + FT Word-KD 16.8
Word-KD + FT w/o KD 16.8

Table 3: Results of the small model on Librispeech
with different KD methods and combining them
in a single training or in consecutive trainings
through a fine-tuning (FT).

Then, we compare the different sequence-level
KD techniques. We also combine them either
in the same training or in consecutive trainings
through a fine-tuning (FT). The results are pre-
sented in Table 3. We can notice that all the
methods improve significantly over the baseline:
KD makes the training easier and more effective.
Among them, Word-KD achieves the best results
by a large margin. Combining it with another
method in the same training is harmful (Seq-KD
+ Word-KD), while a fine-tuning on a different
KD method or without KD (i.e. using the ground-
truth target and label smoothed cross entropy) im-
proves results by up to 0.3 BLEU (Seq-KD + FT
Word-KD and Word-KD + FT w/o KD). These
results confirm the choice by (Liu et al., 2019), but
differ from those of (Kim and Rush, 2016). So, we
can conclude that the best sequence-to-sequence
KD technique is task-dependent and that the best
option to distill knowledge from MT to ST is the
word-level KD.

To validate the effectiveness of KD in a real
case, we create a model translating English utter-
ances into Italian text leveraging all the available
corpora for each task. Our ASR pre-trained model
scores 10.21 WER on the MuST-C test set, while

the teacher MT model scores 30.3 BLEU on the
Italian reference for same test set. We train our
ST model first on the ASR corpora for which we
generated the target with the MT model (result-
ing in a Seq-KD + Word-KD training). Note that
we could not use this data without Seq-KD or
Seq-Inter, hence we opted for the best train-
ing including one of them (Seq-KD + Word-KD).
Second, we fine-tune the model on the ST corpora
with Word-KD. Third, we fine-tune without KD
as in the case leading to the best result (Table 3).
So, our training is: Seq-KD + Word-KD (on ASR
data) + FT Word-KD + FT w/o KD. After the first
two steps, our ST model scores 22.8 BLEU on the
MuST-C test set, while after the final fine-tuning
the result is it scores 27.7 BLEU. This highlights
the importance of fine-tuning without KD.

5 Analysis

We analyze the outputs of the en-it model to assess
whether, despite the benefits in terms of transla-
tion quality, KD introduces limitations or issues.
Namely, we checked whether the lack of access
of the MT teacher to information present in the
audio and not in the text (such as the gender4 of
the speaker) hinders the ability of the final model
to exploit such knowledge. Moreover, we com-
pared the output generated by the model before
fine-tuning without KD and after it to determine
the reasons of the significant BLEU improvement.

Direct ST systems have been shown to be able
to exploit the audio to determine the gender of
the speaker and reflect it better in the translations
into languages rich of gender marked words (Ben-
tivogli et al., 2020). This is not possible for an MT
system that has no clue regarding the speaker’s
gender. We tested the performance of our models
on the category 1 of the MuST-SHE test set (Ben-
tivogli et al., 2020) (which contains gender marked
word related to the speaker) to check whether dis-
tilling knowledge from MT harms this advantage
of ST systems or not. Table 4 shows that, indeed,
systems trained with KD inherit the bias from the
MT system and, although the final fine-tuning mit-
igates the issue, the final model has a higher gen-
der bias than a base ST system without KD (re-
garding the words related to the speaker).

The better translation of speaker’s gender
marked words does not explain the big BLEU im-

4This is true if the gender identity coincides with the bio-
logical sex. This assumption holds true in nearly all our data.



Female Male Bias
BLEU Corr. Wrong Diff. Corr. Wrong Diff. Diff. M - Diff. F

Base ST (Bentivogli et al., 2020) 21.5 26.7 27.2 -0.5 46.3 6.8 39.5 40.0
MT 30.3 10.8 55.5 -44.7 54.4 7.1 47.3 92.0
Seq-KD + Word-KD + FT Word-KD 22.8 12.3 46.5 -34.2 45.4 8.1 37.3 71.5

+ FT w/o KD 27.7 19.8 39.0 -19.2 43.2 10.5 32.7 51.9

Table 4: Accuracy on Category 1 of the MuST-SHE test set of a base direct ST model and models
created using KD. A high Diff. means that the model is able to recognize the speaker’s gender and the
gap between the Diff. on the two genders indicates the bias towards one of them. The reported BLEU
score refers to the MuST-C test set and shows the translation quality of the model.

provement obtained with fine-tuning. Hence, we
performed a manual analysis of sentences with
the highest TER (Snover et al., 2006) reduction.
The analysis revealed three main types of enhance-
ments, with the first being the most significant.
Samples with multiple sentences. Some utter-
ances contain more than one sentence. In this case,
the model trained with KD tends to generate the
translation of only the first sentence, ignoring the
others. This is likely caused by the fact that MT
training data is mostly sentence-level. For this rea-
son, the MT model tends to assign a high proba-
bility of the EOS symbol after the dot. The student
ST model learns to mimic this harmful behavior
and, as in ST training and test samples often in-
clude more than one sentence, to wrongly truncate
the generation once the first sentence is completed.
The fine-tuned model, instead, generates all the
sentences.
Verbal tenses. The fine-tuned model tends to pro-
duce the correct verbal tense, while before the
fine-tuning the verbal tense is often not precise,
likely because the MT model favors more generic
forms. For instance, “That meant I was going to
be on television” should be translated as “Signifi-
cava che sarei andata in televisione”. The model
before fine-tuning produces “Questo significava
che stavo andando in tv” while the fine-tuned
model uses the correct verbal tense “Questo sig-
nificava che sarei andata in televisione”. Despite
relevant for the final score, it is debatable whether
this is a real improvement of the fine-tuned model,
as in some cases both verbal tenses are acceptable
or their correctness depends on the context (e.g. in
informal conversations, the usage of conjunctive
forms is often replaced with indicative tenses).
Lexical choices. In some cases, the fine-tuned
model chooses more appropriate words, probably
thanks to the fine-tuning on in-domain data. For
instance, the reference translation for “She has
taken a course in a business school, and she has

become a veterinary doctor” is “Ha seguito un
corso in una scuola di business, ed è diventata
una veterinaria”. The corresponding utterance
was translated by the model before the fine-tuning
into “Ha frequentato una lezione di economia ed è
diventata una dottoressa veterinaria”, while after
the fine-tuning the translation is “Ha frequentato
un corso in una business school, ed è diventata
una dottoressa veterinaria”.

We can conclude that KD provides a benefit in
terms of overall translation quality, but the result-
ing ST system also learns negative behaviors (such
as the masculine default for the speaker-related
words that exacerbates the gender bias). These are
partly solved by performing a fine-tuning without
KD, which keeps (and even enhances) on the other
side the translation capabilities.

6 Conclusions

We presented and analyzed the benefits and issues
brought by distilling knowledge from an MT sys-
tem for direct ST models. We compared the dif-
ferent KD techniques and our experiments indi-
cated that the best training procedure consists in a
pre-training with word-level KD and a fine-tuning
without KD. Then, we showed that KD from MT
models causes an increased gender bias, omis-
sion of sentences in multi-sentential utterances
and more generic word/verbal-tense choices. Fi-
nally, we demonstrated that a fine-tuning helps re-
solving these issues, although the exacerbation of
gender bias is not solved, but only alleviated.
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bert Sanchis, Jorge Civera, and Alfons Juan. 2020.
Europarl-ST: A Multilingual Corpus For Speech
Translation Of Parliamentary Debates. In Proc. of
ICASSP 2020, pages 8229–8233, Barcelona, Spain.

Ye Jia, Melvin Johnson, Wolfgang Macherey, Ron J.
Weiss, Yuan Cao, Chung-Cheng Chiu, Naveen Ari,
Stella Laurenzo, and Yonghui Wu. 2019. Lever-
aging Weakly Supervised Data to Improve End-to-
End Speech-to-Text Translation. In Proc. of ICASSP
2019, pages 7180–7184, Brighton, UK.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
Level Knowledge Distillation. In Proc. of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1317–1327, Austin, Texas.



Suyoun Kim, Takaaki Hori, and Shinji Watanabe.
2017. Joint CTC-Attention based End-to-End
Speech Recognition using Multi-task Learning. In
Proc. of the 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 4835–4839, New Orleans, Louisiana.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In Proc. of 3rd
International Conference on Learning Representa-
tions (ICLR), San Diego, California.

Ali Can Kocabiyikoglu, Laurent Besacier, and Olivier
Kraif. 2018. Augmenting librispeech with French
translations: A multimodal corpus for direct speech
translation evaluation. In Proc. of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan.

Philipp Koehn, Hieu Hoang, Alexandra Birch, et al.
2007. Moses: Open Source Toolkit for Statisti-
cal Machine Translation. In Proc. of the 45th An-
nual Meeting of the Association for Computational
Linguistics Companion Volume Proceedings of the
Demo and Poster Sessions, pages 177–180, Prague,
Czech Republic.

Solomon Kullback and Richard Arthur Leibler. 1951.
On information and sufficiency. Ann. Math. Statist.,
22(1):79–86.

Yuchen Liu, Hao Xiong, Jiajun Zhang, Zhongjun He,
Hua Wu, Haifeng Wang, and Chengqing Zong.
2019. End-to-End Speech Translation with Knowl-
edge Distillation. In Proc. of Interspeech 2019,
pages 1128–1132, Graz, Austria.

Graham Neubig, Matthias Sperber, Xinyi Wang,
Matthieu Felix, Austin Matthews, Sarguna Padman-
abhan, Ye Qi, Devendra Sachan, Philip Arthur,
Pierre Godard, John Hewitt, Rachid Riad, and Lim-
ing Wang. 2018. XNMT: The eXtensible Neural
Machine Translation Toolkit. In Proc. of the 13th
Conference of the Association for Machine Transla-
tion in the Americas, pages 185–192, Boston, MA.

Thai-Son Nguyen, Sebastian Stueker, Jan Niehues,
and Alex Waibel. 2020. Improving Sequence-to-
sequence Speech Recognition Training with On-the-
fly Data Augmentation. In Proc. of the 2020 Inter-
national Conference on Acoustics, Speech, and Sig-
nal Processing – IEEE-ICASSP-2020, Barcelona,
Spain.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A Fast, Extensible
Toolkit for Sequence Modeling. In Proc. of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics (Demon-
strations), pages 48–53, Minneapolis, Minnesota.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a Method for Automatic
Evaluation of Machine Translation. In Proc. of the

40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania.

Daniel S. Park, William Chan, Yu Zhang, Chung-
Cheng Chiu, Barret Zoph, Ekin D. Cubuk, and
Quoc V. Le. 2019. SpecAugment: A Simple
Data Augmentation Method for Automatic Speech
Recognition. In Proc. of Interspeech 2019, pages
2613–2617, Graz, Austria.

Adam Paszke, Sam Gross, Francisco Massa, et al.
2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Proc. of Ad-
vances in Neural Information Processing Systems 32
(NIPS), pages 8024–8035. Curran Associates, Inc.

Ramon Sanabria, Ozan Caglayan, Shruti Palaskar,
Desmond Elliott, Loı̈c Barrault, Lucia Specia, and
Florian Metze. 2018. How2: A Large-scale
Dataset For Multimodal Language Understanding.
In Proc. of Visually Grounded Interaction and Lan-
guage (ViGIL), Montréal, Canada.
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