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Abstract. Deep learning based methods based on Generative Adver-
sarial Networks (GANs) have seen remarkable success in data synthesis
of images and text. This study investigates the use of GANs for the
generation of tabular mixed dataset. We apply Wasserstein Conditional
Generative Adversarial Network (WCGAN-GP) to the task of generat-
ing tabular synthetic data that is indistinguishable from the real data,
without incurring information leakage. The performance of WCGAN-GP
is compared against both the ground truth datasets and SMOTE using
three labelled real-world datasets from different domains. Our results
for WCGAN-GP show that the synthetic data preserves distributions
and relationships of the real data, outperforming the SMOTE approach
on both class preservation and data protection metrics. Our work is a
contribution towards the automated synthesis of tabular mixed data.

Keywords: Synthetic Data · Generative Adversarial Network · GAN ·
WCGAN-GP · Tabular Data Generation · Euclidean Distance.

1 Introduction

Real-world data is commonly used in the demonstration and evaluation of novel
technologies in areas such as software development or data analytics. Machine
learning algorithms require sample data to learn from, but data accessibility,
insufficient data and privacy constraints have set barriers to the development of
certain models. Traditionally, real-world data was anonymized using approaches
like k-anonymity, l-diversity, or t-closeness to minimize any disclosure risks. But
these privacy perturbation approaches have still been linked to poor privacy
protection and semantic suitability [4]. These approaches also result in the loss
of usability of the modified data. As a result, the generation of realistic, usable
synthetic data offers a solution to overcoming the hurdles of data dissemination.

Data Synthesis has traditionally been done via user specification of the
dataset feature characteristics and statistical distributions using a variety of com-
mercial tools such as Mockaroo4. More recently, deep learning networks (GANs)

? Supported by TU Dublin.
4 https://www.mockaroo.com/
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[13] have been applied to automatically generating a dataset based on a seeding
(real) dataset. GANs are built using an architecture of two neural networks that
compete against each other in an adversarial manner with an attempt to gen-
erate new samples. Since their inception in 2014, GANs have seen tremendous
success in synthesizing realistic images and text [11].

Early GANs suffer from training problems like vanishing gradients and mode-
collapse [21, 23], resulting in poor training performance and limited diversity in
new samples. A modified GAN variant that addresses these issues, WCGAN-
GP (Wasserstein Conditional GANs with Gradient Penalty) [14, 3] is studied for
tabular data generation in this paper and its ability to generate a high quality
data is examined.

Using three real-world datasets, the quality of data generated by WCGAN-
GP is tested on data utility and privacy metrics, and compared to the both the
ground truth datasets and Synthetic Minority Oversampling Technique (SMOTE)
[7]. We demonstrate that WCGAN-GP outperforms SMOTE in generating data
that preserves data patterns along with higher privacy protection.

The contributions of the paper are summarised as follows: (1) A comprehen-
sive proof-of-concept to showcase the success of WCGAN-GP in the generation
of synthetic tabular data. (2) A comparison of WCGAN-GP to SMOTE on data
utility and privacy metrics across different mixed-type datasets. (3) Contrary
to the belief that GANs suffer from training problems, we demonstrate that
WCGAN-GP provides a strong modelling performance and stable training on
structured data.

2 Related Works

Synthetic data can be generated in two ways. Firstly, by statistical modelling to
learn from user-specified distributions or directly from real data. Secondly, by
using deep learning to learn from the real data with minimal user inputs.

2.1 Statistical Modelling Approaches

The statistical modelling methods can be classified into process-driven and data-
driven [12]. The process-driven methods generate data using handcrafted distri-
butions and do not use real data. These methods require human intervention
and are prone to human bias [25]. The data-driven approaches generate syn-
thetic data via the automated learning of the intrinsic patterns from real data.
[9] implemented data synthesizers based on machine learning algorithms, but
the approaches pose disclosure risks if the classification accuracy is high.

SMOTE is originally developed for oversampling and address the imbalance
problem [7]. But it is also used in generating synthetic data to replace the real
data [17]. SMOTE is faster to run and can generate a good quality of synthetic
data without the need for any hyperparameter optimisation.
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2.2 Deep Generative Modelling Approaches

The success of deep generative models in the field of natural language processing
has motivated the use of neural networks for data generation. GANs have shown
remarkable performance in generating synthetic images and time-series data [8,
10]. However, GANs have had limited testing on structured data [11]. [26] use
GANs to create synthetic database and tested it on numerical data. [18] use
GANs for data generation - but three out of the four datasets are synthetically
created. Further, researchers have noted limitations with GANs when generating
labelled data [22] and proposed Conditional GANs (CGANs), where class labels
are taken into account [19]. [27] apply CGANs on a numerical data to generate
synthetic data, but the scatterplots of the synthetic data indicated signs of mode
collapse.

MedGAN [8] uses auto-encoders but is tested for binary and numeric data.
Its design does not support different data types in the same model and requires
separate models for each data type [5]. TableGAN and VEEGAN work well with
numerical data but suffer from mode collapse with categorical data [29].

Even though GANs have shown success in image generation, their training is
not easy and unstable [30]. Arjovsky et al. [1] have cited problems of vanishing
gradients. There are variants like WGAN and WGAN-GP that provide a more
stable training framework [14, 6]. [2] have noted that WGANs can still suffer from
unstable training and vanishing gradients. WGAN-GP enforces a regularization
term in the form of gradient penalty. WGAN-GP has been implemented on large-
scale image and language datasets and shown to provide superior performance
over WGANs [14]. WGAN-GP is easily extended to WCGAN-GP by inputting
the condition vector, that is target labels. This enables the GAN to learn the
distributions specific to each class label and produce higher quality samples for
both labels. The ability of WCGAN-GP to draw samples from images has been
explored but has not been tested on tabular datasets. The resultant paucity in
the current literature is something this research seeks to address.

3 WCGAN-GP Model

For the purposes of presenting our work, we present a brief overview of WCGAN-
GP here, but further details can be found in the original work of WGAN-GP
[14]. WCGAN-GP uses Wasserstein distance and Gradient Penalty to reduce the
occurrence of failure modes associated with GANs. WCGAN-GP is similar to
WGAN-GP and the only change is where critic (discriminator) and generator
are both conditioned on an extra information of class labels. In WCGAN-GP,
the discriminator is called as a critic. Rather than classifying samples as real or
fake, the critic predicts values that are large for real and small for fake samples.
The structure of WCGAN-GP is shown in Fig. 1.

WCGAN-GP uses gradient penalty to force the norm of gradients to be 1 and
comply with 1-Lipschitz constraint. This helps in overcoming the training insta-
bility of GANs that occurs when the critic outputs explosive gradients. Thus,
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the weights are clipped using the 1-Lipschitz function and the rate of change
is bounded. This metric results in faster convergence as the training provides
reasonable gradients and the critic becomes more stable and less explosive.

Fig. 1. Structure of WCGAN-GP.

4 Approach and Methodology

In this section, we used three labelled real-world datasets to evaluate WCGAN-
GP against a second synthesis technique, SMOTE. The quality of synthetic data
was then assessed using a variety of data utility and privacy metrics.

4.1 Datasets

To test our synthesis approach, we selected three real-world datasets from three
different domains - Default of Credit Card5, Cardiovascular Disease6 and Adult
Census7. These datasets contain mixed data-types and were chosen for their
differences in data type distributions, allowing us to detect whether the methods
perform better or worse for specific types of data. Further, the datasets can be
potentially categorized as medium-sized datasets and are labelled allowing us
to test that the synthesis approach preserves class data patterns. Two of the
datasets have imbalanced classes, which is a common occurrence in real-world
domains. The properties of the datasets are summarized in Table 1.

4.2 Data Pre-Processing

We performed the data preparation steps: Missing values occur in the Adult Cen-
sus dataset and imputation was done using mode substitution for both SMOTE
and WCGAN-GP. In order to generate good quality synthetic data, the input

5 https://www.kaggle.com/uciml/default-of-credit-card-clients-dataset
6 https://www.kaggle.com/sulianova/cardiovascular-disease-dataset
7 https://www.kaggle.com/uciml/adult-census-income
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Table 1. Properties of Datasets used in experiments.

Dataset # Rows # Features Categorical Features Numerical Features # Classes % Balance

Credit Card 30,000 23 9 14 2 22 : 78
Cardiovascular 70,000 11 6 5 2 50 : 50
Adult Census 31,562 14 9 5 2 24 : 76

data to the GANs needs to be in an appropriate representation. Each categorical
variables is label-encoded to convert to numerical format for both SMOTE and
WCGAN-GP. The continuous variables (including the label-encoded categori-
cal variables) were then standardized to bring all the variables into the same
range [5]. This results in faster convergence, better processing and ease of re-
producibility. It also ensures that each feature gets an equal importance and
avoid any biases due to the scale of any specific attribute. Standardization was a
crucial pre-processing step with GANs, but with SMOTE, it was not a necessity
to standardize or transform the numerical data as the results were not impacted
with this transformation.

4.3 Experiment Design

WCGAN-GP: To design the WCGAN-GP model, we used hyperparameter
tuning guidelines from GAN [13], WGAN [2] and WGAN-GP [14] sources, all of
whom have provided recommendations and guidance on parameter settings that
have been proved to be successful in many tasks. The implementation of experi-
ments was carried out using Python 3.7 and specifically, Keras and TensorFlow.
For all datasets, the same WCGAN-GP architecture was implemented.

Network Architecture: The depth of generator and critic was set to 3. For gener-
ator, the size of nodes in hidden layer were ordered in an ascending size, that is
d, d*2, d*4 (where d is 128). The critic had the same hidden nodes but ordered
in a descending size [26]. As the input was not an image, the two neural networks
did not require convolution layers and thus, were built using dense layers. Leaky
ReLU was used as the activation function for each layer except the output layer
which used linear activation [28]. The use of dropout in generator was done to
minimize the over-fitting. The batch size was 64, learning rate was 0.0001 and
Adam Optimizer was used to minimize the loss function. The momentum term
β1 and β2 were set as 0.5 and 0.9 respectively [14]. The model was trained for
5000 epochs as over-training had started to deteriorate the quality of synthetic
data. The random noise vector had a length of 32. Once the training was com-
pleted, the synthetic data was generated with an exact size as of real data. The
list of settings for WCGAN-GP model is outlined in Table 2.

Data Generation: Once the model had been trained, the trained generator was
used to produce synthetic data samples.

Reverse Transformation: As the synthetic data generated using WCGAN-GP
was in a standardized range because of the initial transformations applied on the
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Table 2. Implemented Critic and Generator Model Configurations for WCGAN-GP.

critic C generator G

Input - Dimension of real data Input - Random Noise: 32
512, Leaky RELU (alpha: 0.2) 128, Leaky RELU (alpha: 0.2) , Dropout (0.3)
256, Leaky RELU (alpha: 0.2) 256, Leaky RELU (alpha: 0.2) , Dropout (0.3)
128, Leaky RELU (alpha: 0.2) 512, Leaky RELU (alpha: 0.2) , Dropout (0.3)
Output - 1, Linear activation Output - Dimension of real data, Linear activation

Other Parameters: Learning rate: 0.0001; Adam Optimizer; Batch size: 64; Epochs: 5000

input data, the synthetic data needed to be reverse transformed (with respect to
the initial transformations) to ensure that the synthetic data looked like the real
data. The inverse transformations were specific to the initial transformations
performed for each variable and were done after the data was generated.

SMOTE: SMOTE was chosen as the comparative approach due to its popular-
ity and common usage. SMOTE does not require any parameter optimizations.
As there is no need to build or train any model, the synthetic data can be
generated instantly.

SMOTE was used to generate data using the following method. After pre-
processing, the original data (with n instances) was replicated to create copies
of the dataset and made imbalanced in a ratio of 2 to 1. A new target label
was assigned with label as 1 for majority class (2*n instances) and 0 for mi-
nority (n instances). SMOTE was run to generate synthetic data samples using
the imbalanced-learn library. This generated new synthetic samples with n new
instances. As a final step, the new samples were extracted to form a synthetic
dataset with the exact size of real data.

4.4 Evaluation Metrics

The metrics we used to determine the similarity of the synthetic datasets to the
original datasets, and their preservation of privacy are as follows:

Visual Evaluation (Utility Metric): Univariate analysis was performed to
observe the Box and Whisker plots for the numerical and histogram distributions
for categorical variables. Further, bi-variate analysis was done to compare the
scatterplots between variables in synthetic against variables in real data. These
visualisations helped to affirm whether the relationships were preserved in the
synthetic data and indicated any existence of mode collapse. Finally, the corre-
lations between the columns of each dataset were also assessed using heatmaps.

Classification Performance (Utility Metric): The synthetic data is a good
representation of the real labelled dataset if it performs in the same way as
the real data does when used to create and test a machine learning model [15].
This approach involves comparing the performance of a machine learning model
trained and tested on real (TRTR) and synthetic data (TSTS) [16].
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Decision Tree, Random Forest, Support Vector Machine, and Adaboost were
selected as the classifiers because of their common usage and not for any specific
performance on the datasets. XGBoost was chosen as it has gained popularity
in many machine learning competitions for its speed & performance [24].

The real and synthetic data were split in a 5-fold cross validation. There
were three different training-testing settings performed. Setting A REAL: train
the predictive models on real training data, test the performance of trained
model on real test set. Setting B SMOTE: For the synthetic data generated by
SMOTE, train on the generated synthetic train data and test on synthetic test
data. Setting C WCGAN-GP: For the synthetic data generated by WCGAN-
GP, train on the generated synthetic train data and test on synthetic test data.
For the evaluation metric, F1 score (harmonic mean of precision and recall) was
recorded as it is one of the widely used metrics to evaluate classification models.

Euclidean Distance to The Nearest Record (Privacy Metric): Euclidean
distance was used to evaluate the disclosure risk as it can offer perspective on
the similarity of the records between datasets [20]. Euclidean distance to nearest
record (d) is the mean distance between synthetic sample and its closest record
in original data. A record with zero distance would imply leakage of information
and low privacy. The desired outcome is a high mean and low standard devia-
tion. Although Euclidean distance was a metric used for privacy, it was only an
indicator of the level of privacy and didn’t provide any guarantees at individual
row level.

Duplicate records between Real and Synthetic (Privacy Metric): It
checked if there were any duplicates between samples in synthetic and real data.

5 Experimental Results

In this section, the results are presented and it is shown that WCGAN-GP
showed a better balance between privacy and data utility. Across all datasets,
WCGAN-GP performed on par or better than SMOTE on utility and privacy
metrics. Note that only relevant visuals and results are presented in this section.

5.1 Utility Metric: Visual Evaluation

Box-Plots: Across all datasets, the numerical samples synthesized from SMOTE
and WCGAN-GP had a similar distribution as compared with the real data.
Both the approaches were able to capture the basic properties and had a simi-
lar range, median, IQR and so on. However, WCGAN-GP model generated few
additional out-of-range values (or outliers) in the synthetic data. For instance,
the results for credit card dataset are shown in Fig. 2. ‘Age’ has more outliers
towards both the extremes and also contains negative values. This suggests the
need for synthetic data treatment after the data is generated using WCGAN-GP
to ensure that the data makes sense from logical and business perspective.
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Fig. 2. Box-plots for the numerical variables in Credit Card Dataset. Blue indicates the
real data points, orange synthetic from SMOTE and green synthetic from WCGAN-GP.

Histograms: Both SMOTE and WCGAN-GP were able to approximately cap-
ture the frequency distributions of categorical variables, but with exceptions.
The class imbalance problem was reproduced and remained intact in synthetic
datasets. For both approaches, the distributions were nearly similar in most cases
when compared with the real data. However, the frequency distributions were
not a perfect replica and did not exactly match for either approach. For instance,
Fig. 3 shows that the frequencies for ‘Workclass’, ‘Gender’, and ’Marital status’
in Adult Census data do differ by a certain magnitude, when compared against
the real data. It is observed that WCGAN-GP had a hard time capturing the
distributions as compared to SMOTE for categories with multi-levels. Similar
trend was reproduced in all the three datasets.

Fig. 3. Frequency distributions of categorical variables in Adult Census. Blue indicates
the real data, orange synthetic from SMOTE and green synthetic from WCGAN-GP.

Scatterplots: It can be seen from Fig. 4 that the generated data using SMOTE
and WCGAN-GP seemed to establish and maintain the relationships between
the variables. This pattern was repeated in all the three datasets. It is also
inferred that WCGAN-GP had not suffered from mode collapse, which is a com-
mon training problem. The samples produced were diverse enough and the model
was able to learn and reproduce the distributions of the real-world data.
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Fig. 4. Scatterplot for ’Age’ vs. ’fnlwgt’ variable in Adult Census Dataset. Blue indi-
cates records with income >50K, red indicates records with income <=50K.

Correlation Matrix: The results of correlation matrix between the columns of
each dataset are presented in Fig. 5. It is observed that the column correlations
in synthetic datasets were nearly similar to the original data correlations.

Fig. 5. Correlation Matrix using the real data and synthetically generated datasets.

5.2 Utility Metric: Classification Performance

As shown in Table 3, WCGAN-GP performed at par or better than SMOTE
in machine learning tasks. Across datasets, F1 scores of the predictive model
built on WCGAN-GP’s synthetic data was comparable to the model built on
real data. On the contrary, F1 scores of model on SMOTE’s synthetic data were
far-off from the model on real data, with the exception of cardiovascular dataset.

The quality of synthetic data by WCGAN-GP for data usability was im-
pacted by the presence of data-types in a data. Synthetic data for Credit Card
(had more numerical than categorical variables) provided comparable machine
learning performance with real data. On the contrary, the F1 scores of models on
synthetic data for Cardiovascular or Adult Census data (having more categorical
than numerical variables) were significantly different with the F1 scores of mod-
els on real data. The sub-optimal performance in these datasets could be due to
presence of more categorical variables and the gaps noted between the frequency
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distributions of categorical columns of synthetic data (from WCGAN-GP) and
real data. Overall, WCGAN-GP fared better than SMOTE in classification tasks
as the results for WCGAN-GP data were closer to the results of real data.

Table 3. F1 Scores of predictive models for Real data, Synthetic data from SMOTE,
and from WCGAN-GP on different datasets.

Classifier Credit Card Cardiovascular Adult Census

Real SMOTE GAN Real SMOTE GAN Real SMOTE GAN

Decision Tree 40% 32% 39% 63% 63% 57% 49% 60% 53%
Random Forest 47% 34% 41% 71% 70% 65% 53% 69% 62%
XgBoost 47% 23% 42% 72% 67% 67% 50% 64% 61%
AdaBoost 44% 26% 42% 71% 64% 66% 53% 64% 62%
Linear SVM 13% 2% 20% 28% 21% 27% 19% 49% 35%

Average 38% 23% 37% 61% 57% 56% 45% 61% 55%

5.3 Privacy Metric: Euclidean Distance to The Nearest Record

Table 4 shows that synthetic data using WCGAN-GP consistently had a higher
Euclidean distance as compared to the data generated using SMOTE. WCGAN-
GP achieves a better privacy-preservation performance than SMOTE as it learns
the real data distributions using neural networks and generates a privacy-preserving
version of the real dataset that excludes the sensitive information.

Table 4. Euclidean Distance, the value indicates distances (mean, standard deviation).

Dataset SMOTE WCGAN-GP

Credit Card 1.18 ± 0.95 3.07 ± 1.24
Cardiovascular 0.37 ± 0.38 0.81 ± 1.37
Adult Census 1.45 ± 0.57 2.59 ± 0.50

5.4 Privacy Metric: Duplicate Records with WCGAN-GP

There were no duplicate records between real and synthetic datasets generated
using WCGAN-GP. Whilst this is a somewhat blunt metric, it does strike out the
possibility of copied records in synthetic data. There were less than 0.1 percent
of identical matches found with SMOTE.

6 Conclusion

The main objective was to investigate the efficacy of WCGAN-GP for genera-
tion of tabular datasets with mixed data types, whilst preserving the patterns
and privacy of the seeding datasets. The results showed that WCGAN-GP of-
fer a promising framework to generate continuous and categorical data as the
synthetic data showed preservation of patterns, distributions and relationships
of the real dataset. The synthetic data from WCGAN-GP showed comparable
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performance with real data in the classification tasks, substantially better than
SMOTE. The synthetic data from WCGAN-GP also offered a better privacy
protection than SMOTE.

A potential direction for future research is to combine WCGAN-GP with
privacy preserving mechanisms like differential privacy to provide formal and
stronger privacy guarantees. Further, more nuanced metrics can be produced
and applied in future work to ensure compliance with data protection regula-
tions. Another interesting avenue for future work would be the use softmax or
Gumbel softmax to improve the quality of datasets with categorical data types.
Finally, evaluation could be expanded to including unsupervised learning tasks
like clustering and segmentation to showcase the generalizability and benefits of
WCGAN-GP for synthetic data generation.
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