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Abstract
Visually-aware recommendation leverages visual signals of product images extracted through Deep
Neural Networks to improve the recommendation performance. However, human-imperceptible adver-
sarial noise can alter recommendation outcomes, e.g., pushing/nuking specific product categories. In
this work, we provide 24 combinations of attack/defense strategies, and visual-based recommenders to
1) access performance alteration on recommendation and 2) empirically verify the effect on final users
through offline-visual metrics. The results suggest defense is not protecting recommender models as
expected, and shed light on the importance of human evaluation to identify visual attacks on recommen-
dations. Source code, data, and experimental parameters are available at https://github.com/sisinflab/
Perceptual-Rec-Mutation-of-Adv-VRs.

Keywords
Adversarial Machine Learning, Recommender Systems, Data Poisoning

1. Introduction

Recommender Systems (RSs) provide the set of the most relevant products to the customers
of online sellers. In domains such as fashion and food, visual signals associated with pictures
influence users’ decisions. Benefiting from the power of Deep Neural Networks (DNNs) in ex-
tracting high-level visual aspects from images, the class of Visual Recommender Systems (VRSs)
achieved significant success in learning high-quality recommendations. He and McAuley [1, 2]
proposed Visual Bayesian Personalized Ranking (VBPR) demonstrating terrific performance
improvement compared to BPR-MF by Rendle et al. [3] with the simple integration of image
features extracted from AlexNet [4].

Unfortunately, DNNs are vulnerable to adversarial examples [5, 6] minimal-corrupted images
crafted to fool the network. Szegedy et al. [5] formalized the adversarial generation problem by
solving a box-constrained L-BFGS. Goodfellow et al. [7] used the sign of the gradient of the loss
function to perturb the images in the Fast Gradient Sign Method (FGSM). Madry et al. [8] adapted
FGSM and Basic Iterative Method [9] to iteratively update the perturbation and get stronger
adversarial samples. Carlini and Wagner [10] (C & W) boosted the Szegedy et al. [5] strategy to
craft powerful samples able to deceiving state-of-the-art adversarial detector [11]. However, the
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a. Clean
Rec. Position: 68th

b. Attack + T
Rec. Position: 10th

LPIPS: 0.5484

c. Attack + AT
Rec. Position: 27th

LPIPS: 0.5347

d. Attack + FAT
Rec. Position: 40th

LPIPS: 0.3447

Figure 1: (a) is the image of a low-recommended product. (b, c, d) are the perturbed versions with
PGD (𝜖 = 8) applied against DNNs without defense (T), or with the Adversarial Training (AT) and
Free AT (FAT). The attacks have pushed the product towards higher ranking positions without visually-
perceptible artifacts.

Adversarial Training, proposed by Goodfellow et al. [7], has demonstrated substantial DNN’s
protection when adversarial samples are injected into the training data at a long-time training
cost. This issue has been recently addressed by Shafahi et al. [12] with the proposal of the 3−30
times faster Free Adversarial Training.

Consequently, adversarially-perturbed product images have been also shown to fool the
DNNs used in VRS to extract the visual features [13]. Tang et al. [14] tested the accuracy
degradation when VBPR is trained on noisy images (integrity attack), while Di Noia et al. [15]
demonstrated the adversary’s capability to increase (or decrease) the recommendability of a
category of products (integrity attack) even on the adversarial regularized [16] version of VBPR,
namely AMR [14].

In this paper, we investigate the efficacy of defensive mechanisms [7, 12] against powerful
attacks [7, 8, 17] when the adversary wants to alter the recommendation lists of a VRS by
poisoning the training data by inserting adversarial product images, e.g., one perturbs images
of low popular products so that they are misclassified as popular ones. Furthermore, we
provide a visual-oriented evaluation of adversarial images through offline visual metrics trying
to mimicking human evaluation to verify to what extent users might become aware of such
subtle data poisoning in the received recommendations (Figure 1).

The main contributions of this paper are twofold: (1) we verify the inefficacy of state-of-the-art
adversarial training procedure in defending the DNNs used in VRS from adversarially-poisoned
training product images; (2) we evaluate the human-perceptibility with offline measures.

2. The Threat Model

Given the set of users 𝒰 , items ℐ , the matrix of historical interactions 𝒮 , the recommendation
problem is defined as the task to suggest products by maximizing the user’s gain 𝑔(𝑢). The
state-of-the-art RS, BPR-MF [3, 18], solves 𝑔(𝑢) by maximizing a loss function over a set of
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triplets 𝒯 defined as:

ℒ𝐵𝑃𝑅 =
∑︁

(𝑢,𝑖,𝑗)∈𝒯

− ln𝜎(𝑠̂𝑢𝑖 − 𝑠̂𝑢𝑗) + 𝜆‖𝜃‖22 (1)

where 𝜆 is the regularization coefficient, 𝜎(·) is a sigmoidal function, and 𝑠̂𝑢𝑖, the predicted
preference score of the user 𝑢 on the item 𝑖 measured as 𝑠̂𝑢𝑖 = 𝑝𝑇𝑢 𝑞𝑖. Here, 𝑝𝑢 and 𝑞𝑖 are
the user-specific and item-specific latent features, respectively. Then, for each item 𝑖, 𝑥𝑖 is
the associated product image. Let 𝑓𝑖 the visual signal extracted from a DNN whose function
model is 𝐹 , i.e., 𝑓𝑖 is the output of the first fully-connected layer placed immediately after the
convolutional part. Then, He and McAuley [1] extended BPR-MF by integrating the visual
signal while measuring 𝑠̂𝑢𝑖. The new formulation is:

𝑠̂𝑢𝑖 = 𝑝𝑇𝑢 𝑞𝑖 + 𝜌𝑇𝑢 (E𝑓𝑖)⏟  ⏞  
visual signal

(2)

where 𝜌𝑢 is the user’s visual factor, and E is an embedding matrix to project 𝑓𝑖 into the same
dimensional space as for 𝜌𝑢.

The dependence of a VRS from the visual signal in Equation 2 has been exploited by adversaries
to poison the training data with the insertion of adversarial samples [14, 15, 19]. To generate
the targeted adversarial attack the optimization problem formulation is:

max
𝛿𝑖:‖𝛿𝑖‖𝑝≤𝜖

ℒ𝐹 (𝑥𝑖 + 𝛿𝑖, 𝑦𝑖) s.t. 𝑦𝑖 = 𝑚 (3)

where ℒ𝐹 is the cost function of 𝐹 , 𝛿𝑖 is the 𝜖-bounded perturbation of 𝑥𝑖 that will make the
product image be misclassified by 𝐹 as the (more popular) product category 𝑚, and ‖·‖𝑝 is
the 𝐿𝑝 norm. For instance, the adversary can poison the data adding a perturbed image of
“Jersey, T-shirt” misclassified as “Brassiere” (Fig. 1) causing a variation in the VRS since 𝑓𝑖 will
be extracted from 𝑥𝑎𝑑𝑣𝑖 = 𝑥𝑖 + 𝛿𝑖.

Recently, studies on the robustification of DNNs have shown the adversarial training by
Goodfellow et al. [7] is one of the most prominent defense technique. After the definition of the
adversary threat model (i.e., the attack strategy), the adversarial minimax formulation is:

miñ︀𝜃
∑︁

(𝑥𝑖,𝑦𝑖)∈ℐ

max
𝛿𝑖:‖𝛿𝑖‖𝑝≤𝜖

ℒ𝐹 (𝑥𝑖 + 𝛿𝑖, 𝑦𝑖) (4)

where ̃︀𝜃 represents the model parameters of the robustified network ( ̃︀𝐹 ).
Let ̃︀𝑓𝑖 the visual features of the image 𝑥𝑖 associated to a product image extracted from ̃︀𝐹 .

In this work, we want to verify if the application of adversarial training methods can limit
poisoning attacks against VRSs [14, 15] since each user-item score prediction 𝑠̂𝑢𝑖 depends oñ︀𝑓𝑖. Furthermore, we want to investigate whether the usage of adversarial trained DNNs will
make the adversarial perturbation evident to such an extent that it makes the perturbed samples
identifiable via a human evaluation.
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Table 1
𝐶𝐻𝑅@20 results on Amazon Women and Amazon Men. We mark in bold the most effective attacks.

Model Attack Amazon Women Amazon Men
T AT FAT T AT FAT

VBPR

No-Attack 0.4377 0.5108 0.3417 0.6352 0.3028 0.3702
FGSM (𝜖 = 4) 0.3860 0.6032 0.6088 0.5665 0.6029 0.5688
FGSM (𝜖 = 8) 0.4057 0.6186 0.6313 0.6052 0.5879 0.5596
PGD (𝜖 = 4) 0.4377 0.6309 0.6263 1.0936 0.6211 0.5778
PGD (𝜖 = 8) 1.4462 0.6413 0.6139 1.5736 0.6247 0.6141
C&W 0.4147 0.6280 0.5729 0.5972 0.6652 0.6444

AMR

No-Attack 0.9449 0.8342 0.5063 0.3876 0.4924 0.1070
FGSM (𝜖 = 4) 1.3173 0.7135 0.4565 0.3295 0.4332 0.4103
FGSM (𝜖 = 8) 1.2814 0.7137 0.4429 0.3053 0.4318 0.4007
PGD (𝜖 = 4) 1.1958 0.6473 0.4900 0.8064 0.4435 0.4173
PGD (𝜖 = 8) 1.2377 0.6770 0.4445 2.1264 0.4323 0.3942
C&W 1.3012 0.7159 0.4977 0.3610 0.4293 0.4378

3. Experiments

Setup. The experiments are conducted on two fashion datasets, i.e., Amazon Women and
Amazon Men made publicly available by He and McAuley [2]. They come with both users’
ratings and product pictures uploaded by the platform owner and third-party sellers (say,
the possible adversaries). Amazon Women counts 16668 users, 2981 items, and 54473 ratings,
while Amazon Men counts 24379, 7371, and 89020. We split the data following the time-aware
leave-one-out protocol [16].

To empirically study the efficacy of defenses and evaluate the visual appearance of adversarial
samples, we tested two VRS: VBPR by He and McAuley [1], and AMR by Tang et al. [14], a
VBPR extension that includes the adversarial regularizer of visual features proposed by He et al.
[16]. The complete set of experimental parameters is reported in the GitHub repository.

Evaluation of Recommendation Performance. Table 1 shows the recommendation vari-
ation before and after the attacks. We evaluate the variation of recommendation with the
𝐶𝐻𝑅@𝐾 [15], that measures the average number of a (pushed) category of items in the
top-K recommendation lists. In particular, results in Table 1 are measured on the following
source-target combinations: “Sandal”-“Running Shoe” for Amazon Men, while “Jersey, T-shirt”-
“Brassiere” for Amazon Women, where the adversary tries to push the recommendability of a
source category by perturbing the product picture to be classified as a target class, e.g., the class
of a very popular category.

Analyzing VBPR outcomes, PGD attack shows the highest variation of 𝐶𝐻𝑅@20 in the
defense-free experiments. For instance, PGD (𝜖 = 8) increases by more than 2.3 times the
𝐶𝐻𝑅@20 of the source category in the <Amazon Women, VBPR, Traditional> setting. The
same trend is not true for the defense contexts. C&W attacks have increased the 𝐶𝐻𝑅@20
by 71.09%, while PGD (𝜖 = 8) by 69.35%. Furthermore, Table 1 confirms that the adversarial
training strategies have failed in protecting VBPR since the data poisoning is always effective
in any defended settings.
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Table 2
Average values of Success Rate (𝑆𝑅), Feature Loss (𝐹𝐿) and Learned Perceptual Image Patch Similarity
(𝐿𝑃𝐼𝑃𝑆) for each <dataset, attack, defense> combination. 𝐿𝑃𝐼𝑃𝑆 is multiplied by 100. We mark in
bold the best results for each considered metric.

Dataset Attack
Image Feature Extractor

Traditional Adversarial Training Free Adversarial Training
𝑆𝑅 𝐹𝐿 𝐿𝑃𝐼𝑃𝑆 𝑆𝑅 𝐹𝐿 𝐿𝑃𝐼𝑃𝑆 𝑆𝑅 𝐹𝐿 𝐿𝑃𝐼𝑃𝑆

Amazon
Women

FGSM (𝜖 = 4) 17.70% 0.0096677 0.2388 0.00% 0.0000113 0.1353 0.00% 0.0000094 0.1041
FGSM (𝜖 = 8) 28.32% 0.0220499 2.8505 2.65% 0.0000851 1.8298 0.00% 0.0000671 1.2119
PGD (𝜖 = 4) 84.96% 0.0276645 0.1860 0.00% 0.0000119 0.1093 0.00% 0.0000102 0.0860
PGD (𝜖 = 8) 100.00% 0.1303309 1.1136 3.54% 0.0000974 0.7683 0.00% 0.0000735 0.6369
C & W 89.38% 0.0212380 0.2678 6.19% 0.0001770 0.0731 6.19% 0.0003376 0.0816

Amazon
Men

FGSM (𝜖 = 4) 65.45% 0.0140948 0.1861 18.32% 0.0000330 0.1407 15.18% 0.0000278 0.1074
FGSM (𝜖 = 8) 86.91% 0.0363190 1.7124 23.56% 0.0002658 2.2903 20.42% 0.0002320 1.2293
PGD (𝜖 = 4) 96.86% 0.0368843 0.1669 18.32% 0.0000334 0.1257 15.18% 0.0000283 0.0892
PGD (𝜖 = 8) 100.00% 0.1349854 0.6916 24.08% 0.0002801 0.7997 20.94% 0.0002371 0.6468
C & W 89.01% 0.0205172 0.2279 48.17% 0.0028022 0.2688 42.41% 0.0019080 0.1490

Investigating AMR results, the attacks are quite effective in the defense-free settings as much
as in VBPR, and confirm PGD (𝜖 = 8) as the most powerful method. Interestingly, the joint
usage of (1) adversarial training procedures on the DNN and (2) the adversarial regularization
on the recommender embeddings (APR) significantly reduced the effectiveness of the dataset
poisoning. Indeed, 75% of attacks have not increased the 𝐶𝐻𝑅@20 of the low popular category
of products.

Visual Evaluation. To investigate the efficacy of attacks in poisoning the VRS, we studied
the attack Success Rate (𝑆𝑅), the Feature Loss (𝐹𝐿), and the Learned Perceptual Image Patch
Similarity (𝐿𝑃𝐼𝑃𝑆) [20]. Given the importance that visual features hold in VRSs, 𝐹𝐿 calculates
the MSE between extracted features before and after the attack. That is, it provides a measure
of visual features’ shifting in the latent space, and how this has affected recommendation. The
idea behind 𝐿𝑃𝐼𝑃𝑆 is to produce a perceptual distance value between two similar images by
leveraging (1) knowledge extracted from convolutional layers inside state-of-the-art CNNs and
(2) collected human visual judgments about those pairs of similar images. We computed this
metric fine-tuning a VGG [21] network since Zhang et al. [20] proposed this configuration as
the best one at imitating a real human-evaluation in circumstances comparable to visual attacks.

Table 2 reports the 𝐿𝑃𝐼𝑃𝑆 results, along with 𝑆𝑅 and 𝐹𝐿 values. It is worth recalling that
a large (small) 𝐹𝐿 value stands for semantically different (similar) images from DNN’s point of
view. Similarly, a large (small) 𝐿𝑃𝐼𝑃𝑆 value means the two compared images would likely be
considered as visually different (similar) by humans.

Two general observations arise here. First, the 𝐹𝐿 is strictly correlated to the 𝑆𝑅, i.e., an
attack is successful when the extracted features are noticeably shifted in the latent space. Second,
all attack combinations are able to keep 𝐿𝑃𝐼𝑃𝑆 values within low ranges, in accordance with
the imperceptible nature of adversarial perturbations on images [5]. Thus, we connect this
obtained measure with the attack efficacy in both failing the classifier (i.e., the DNN) and the
VRS. What follows is a detailed evaluation of scenarios involving —or not— defensive techniques
for the DNN.
Defense-free Setting. In the defense-free scenario, PGD (𝜖 = 4) is the least perceptible attack
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—with the lowest 𝐿𝑃𝐼𝑃𝑆 values— even considering a near-100% 𝑆𝑅 and a successful pushing
of attacked products. On the other hand, FGSM (𝜖 = 8) fails to hide the produced perturbations,
reaching the highest perceptible visual difference on Amazon Women (2.8505). Coherently, this
setting also shows a low 𝑆𝑅 and a weak alteration of visual recommendations (see Table 1).
Defense Setting. Let us focus on the two defenses. Here, it becomes fundamental to consider

the 𝐿𝑃𝐼𝑃𝑆 value along with its corresponding 𝑆𝑅 and recommendation variations. As a matter
of fact, in a defense context, where all attacks averagely tend to perform worse at failing the DNN
classifier, a measured low average 𝐿𝑃𝐼𝑃𝑆 value might trivially mean very few images were
successfully attacked. For instance, the described situation occurs in the combination <Amazon
Men, PGD (𝜖 = 4), Adversarial Training>. However, since these attacks have still been effective
in pushing low ranked category products (as evident in Table 1), then adversaries could exploit
their hardly-human perceptibility to craft even stronger perturbations (e.g., increasing 𝜖). An
intriguing situation is when 𝐿𝑃𝐼𝑃𝑆 on the defended DNN is higher than the non-defended
one. The worst case is <Amazon Men, FGSM (𝜖 = 8), Adversarial Training>, which shows a 34%
increase of 𝐿𝑃𝐼𝑃𝑆 compared to the Traditional training. We explain this result considering
that and attack might need to produce larger perturbations to move the category of the few
correctly attacked images (about 24% in the cited example) towards the targeted one. Not only
is the attack inefficient, but it risks human identification.

4. Conclusion

We have presented an empirical study to evaluate the efficacy of defenses (i.e., Adversarial
Training and Free Adversarial Training) to protect DNNs on top of visually-aware recommender
systems when poisoning product image datasets with adversarial attacks. Experiments on
state-of-the-art visual recommenders VBPR and AMR trained on two datasets (i.e., Amazon
Women and Amazon Men) demonstrated the alarming weakness of adversarial training in pro-
tecting the recommendation performance. Furthermore, the visual evaluation suggested defense
scenarios with few successfully attacked images and barely perceptible visual artifacts that still
keep breaking recommendation performance are blind spots that adversaries could explore
deeper for their malicious purposes. Conclusively, we plan to study attack efficacy on overall
recommendation performance (accuracy and beyond-accuracy), propose novel end-to-end de-
fenses, provide a parallel in-depth study on the impact of perturbed images for humans, the
users of the platforms.
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