

ECC-BASED THREE-FACTOR AUTHENTICATION SCHEME FOR
MULTI-SERVER ENVIRONMENT

Rahul Kumar*, Mridul K. Gupta and Saru Kuamri

Chaudhry Charan Singh University, Meerut, India

Abstract
Due to advances in computing technology and constraints in the design of the authentication

protocols for single-server environment, the authentication protocols for multi-server settings

have been a preferred field of research. Recently, Ali and Pal designed a three factor-based

authentication protocol for multi-server environment using ECC and they claimed that their

protocol is secure against numerous attacks. They also asserted that their protocol is quite

efficient. In this paper, we investigate Ali and Pal's protocol and point out that their protocol is

not secure against replay attack and session-specific temporary information attack. We also

present an improvement of Ali and Pal's protocol.

Keywords 1
Multi-Server, Authentication, Replay Attack

1. Introduction

In the digital information world, users can
easily obtain various kind of services from the
distributed networks anywhere and anytime
such as online shopping, online bank and pay-
TV. Ordinary user authentication protocols are
fit to tackle security issues for the single
user/server design scenarios. Nowadays,
authentication protocols for multi-server
architectures play a prime role in the Internet
world. The multi-server system contains three
participants, including users, servers, and the
registration centre. The registration centre as
the relied third-party, administers all registered
servers and users. A multi-server authentication
scheme offers services to be accessed
from different servers with one time
registration.

 Ali and Pal [1] presented a three factor-based
authentication scheme in a multi-server
environment using ECC. This paper reviews Ali
and Pal’s protocol [1] and shows its weaknesses,
such as session-specific temporary information
leakage attack and replay attack. To conquer specific
weaknesses, we design an amended protocol.

ISIC2021: International Semantic Intelligence Conference,
February 25–27, 2021, New Delhi, India

EMAIL: rahulss.rahul1991@gmail.com (A. 1);

mkgupta2002@hotmail.com (A. 2); saryusiirohi@gmail.com (A.
3)

ORCID: 0000-0002-2673-2109 (A. 1)

©️ 2021 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

2. Preliminaries

Table 1 shows symbols and their meaning.

3. Review of Ali and Pal’s protocol

Ali and Pal’s protocol includes six phases.

Beginning from initialization phase, they

discussed server enrollment phase, user

enrollment phase, login phase, authentication

and key agreement phase and password change

phase.

3.1. Initialization Phase

To boot up the system, RC selects a

generator P of elliptic curve and chooses a

secret key y as the system parameter.

3.2. Server Enrollment Phase

The server enrolls itself at the registration

center RC. Server selects its own identity SIDj

 158

159

and transfers {SIDj} to RC through open

channel. When the message {SIDj} is received

by RC from the server, then RC evaluates AH =

h(SIDj || y). RC transmits the information {AH}

to the server through secure channel.

Table 1

Symbol Meaning

Sj jth server

RC The registration centre

Ui The user

P Generator of elliptic curve

SIDj Server’s identity

UIDi User’s identity

Bi User’s biometric

H(·) Bio-hash function

h(·) Hash function

PWi User’s password

J, Jc, Js, jsc Random numbers

T1, T2, T3, T4,
T5

Timestamps

SC Smart card

SK Session key

|| Concatenation

3.3. User Enrollment Phase

First, user selects his/her identity UIDi,

imprints Bi and forwards the message {UIDi,

H(Bi)} to RC through open channel. When a

request message is received form the user then

RC selects a random number J and evaluates

HIDi = Ench(x) (UIDi || J), Mi = H(Bi)·P, Ei =

h(UIDi || y)·P, Hi = Mi + Ei. Now RC inserts all

information {Hi, HIDi, P, Ek/Dk, h(·), H(·)} into

SC and forwards {SC} to the user. After

receiving the message {SC} from RC, user

evaluates Zi = h(UIDi || PWi || H(Bi)) and also

inserts Zi into SC.

3.4. Login Phase

User embeds SC and enters UIDj
*, PWi

* and

imprints Bi
*. Now SC evaluates Zi

* =

h(UIDi
*||PWi

*||H(Bi
*)) and checks Zi

* =? Zi. If

the equality does not hold then the connection

is disrupted by the user. Otherwise, the user

chooses a random number Jc and evaluates A1 =

Jc·P, A2 = H(B1)·P + A1, A3 = h(UIDi || A1 || SIDj

|| Hi) and user transmits the login message

{HIDi, Hi, A2, A3} to RC through open channel.

3.5. Authentication and Key
agreement Phase

 When the login request message {HIDi, Hi,

A2, A3} is received from the user then RC

evaluates Dech(x)(HIDi) = [UIDi, J], Mi
* = Hi –

h(UIDi || y)·P, A1
* = A2 – Mi

*, A3
* = h(UIDi || A1

*

|| SIDj || Hi) and checks A3
* =? A3. If the equality

does not hold then the request is dropped by RC.

Otherwise, RC chooses an arbitrary number Js

and evaluates HIDi
new = Ench(x)(UIDi || Jsc), Xi =

Ench(SIDj||y)[UIDj || A1 || H(Bi)], A4 = Jsc·P, A5 =

A4 + H(Bi) ·P, A6 = h(A4 || HIDi
new || SIDj) and

transmits the message{A5, A6, HIDi
new, Xi} to

the server through open channel.

After receiving the message {A5, A6, HIDi
new,

Xi} from RC, server evaluates Dech(SIDj||y)(Xi) =

[UIDi || A1 || H(Bi)], A4
* = A5 – H(Bi)·P, A6

* =

h(A4
* || HIDi

new || UIDi || SIDj) and checks A6
* =?

A6. If the equality does not hold then the

connection is disrupted by the server.

Otherwise, server chooses Js and evaluates A7 =

Js·P, A8 = A7 + A1, A9 = h(HIDi
new || A7 || A4 ||

H(Bi)·P) and transmits the message {HIDi
new,

A9, A8, A5} to the user.

After receiving the message {HIDi
new, A9, A8,

A5} from the server, user evaluates A7
* = A8 –

A1, A4
* = A5 – H(Bi)·P, A9

* = h(HIDi
new || A7

* ||

A4
* || H(Bi)·P) and checks A9

* =? A9. If the

equality does not hold then the connection is

disrupted by the user. Otherwise, user evaluates

SK = h(Jc·P || Jsc·P || Js·P), Ni = SK·P + h(IDi ||

H(Bi))·P. Now the user transmits message {Ni}

to the server through open channel. Note that

the user changes HIDi
new with HIDi into SC to

avoid user untraceability attack.

After receiving the message {Ni} from the

user, the server evaluates SK*
 = h(Jc·P || Jsc·P ||

Js·P), Ni
* = SK*·P + h(UIDi || H(Bi)·P) and

checks Ni
* =? Ni. If the equality does not hold

then the connection is disrupted by the server.

Otherwise, the connection is created.

160

3.6. Password Change Phase

User can modify his/her password easily

without interfering with the server. First, user

inserts his/her smartcard into a card reader and

enters UIDj
*, PWi

* and also imprints Bi
*. Now,

the smartcard reader evaluates Zi
* = h(UIDj

* ||

PWi
* || H(Bi

*)) and verifies Vi
* =? Vi. If the

equality does not hold then the connection is

ended. Otherwise, the user selects new

password PWi
new and evaluates Zi

new = h(UIDi ||

PWi
new || H(Bi

*)). Finally, it interchanges Zi with

Zi
new in memory of the smartcard.

4. Cryptanalysis of Ali and Pal’s
Protocol

In this phase, we describe the weaknesses of

Ali and Pal’s protocol.

4.1. Session-Specific Temporary
Information Leakage Attack

Ali and Pal’s protocol suffers from session-specific

temporary information attack as the explanation

follows. Suppose, if random number Jc is

compromised by any attacker ℋ, then ℋ can harm

the valid user. ℋ can compute easily other random

numbers Jsc, Js by some mechanism. By using the

information about Jc·P, Jsc·P, and Js·P, ℋ can

compute SK = h(Jc·P || Jsc·P || Js·P). It is a very

serious flaw in their protocol.

Suppose temporary random number Jc is leaked

somehow, then ℋ can evaluate session key

easily from the known temporary random

number in the following steps (also shown in

Fig.1).

Step 1: First, ℋ eavesdrops the login request

message {HIDi, Hi, A2, A3} and also other

request messages {A5, A6, HIDi
new, Xi},

{HIDi
new, A9, A8, A5} at the time of

authentication and key agreement phase.

Step 2: After this ℋ computes A1 = Jc·P and

H(Bi)*·P = A1 – A2. A2 is taken from

eavesdropped message {HIDi, Hi, A2, A3}.

Step 3: ℋ also uses eavesdropped message {A5,

A6, HIDi
new, Xi} to get A5, which is sent by

registration center to the server. Now ℋ

evaluates A4
* = H(Bi)*·P – A5 = Jsc·P. Here, Jsc

is a random number, chosen by RC.

Step 4: Now ℋ wants to compute Js. A8 is

retrieved from eavesdropped message {HIDi
new,

A9, A8, A5}, which is transmitted by the server

to the user. After getting the information A8, ℋ

can compute A7
* = A1

* – A8 = Js·P.

Step 5: After evaluating all the temporary

random numbers Jsc and Js from Jc, ℋ can find

out SK = h(Jc·P || Jsc·P || Js·P) by using these

information. Therefore, Ali and Pal’s protocol

is suffers from session-specific temporary

information attack.

If Jc is compromised and becomes known to the

attacker, then the attacker eavesdrops the

messages {HIDi, Hi, A2, A3}, {A5, A6, HIDi
new,

Xi} and {HIDi
new, A9, A8, A5} transmitted via

insecure channel. Now, the attacker has Jc, A2,

A5 and A8.

Attacker computes

A1
* = Jc ·P …………………………..……..(1)

H(Bi)*·P = A1
* – A2

A4
* = H(Bi)*·P – A5 = Jsc·P …………....……(2)

A7
* = A1

* – A8 = Js·P …………….…...….….(3)

From (1), (2) and (3), the attacker has the

information Jc ·P, Jsc·P, Js·P and he can easily

compute the session key, as

SK = h(Jc ·P || Jsc·P || Js·P)

Figure 1. Session-Specific Temporary

Information Leakage attack

4.2. Replay attack

Assuming that the login request message

{HIDi, Hi, A2, A3} is eavesdropped by ℋ,
which was sent by a legal user to the legal
server. After some time, ℋ transmits the same

login request message {HIDi, Hi, A2, A3} to the

legal server. When the login request message is

received then the server cannot recognize the

freshness of the message and evaluates

Dech(y)(HIDi) = [UIDi, J], Mi
* = Hi – h(UIDi ||

y)·P, A1
* = A2 – Mi

*, A3
* = h(UIDi || A1

* || SIDj ||

Hi) and checks A3
* =? A3. Obviously, the

equality will hold and the server accepts the

login request of the ℋ. The freshness of the

login request message is not check by the server

in Ali and Pal’s protocol. Therefore, Ali and

Pal’s protocol is suffering from replay attack.

5. The Proposed Protocol

Our proposed protocol includes six phases:

initialization phase, server enrollment phase,

user enrollment phase, login phase,

authentication and key agreement phase and

password change phase.

161

5.1. Initialization Phase

To boot up the system, RC selects a

generator P of elliptic curve and chooses a

secret key y as the system parameter.

5.2. Server Enrollment Phase

In this phase, the server enrolls itself at the

registration center RC. The server selects its

own identity SIDj and transmits the message

{SIDj} to RC through open channel. When SIDj

is picked up from the server then RC evaluates

AH = h(SIDj || y) and RC transmits the message

{AH} to the server through open channel as

shown in Figure 2.

 Sj RC

Select SIDj

 {SIDj}

 Compute MK = h(SIDj || y)

 {MK}

Figure 2. Server Enrollment Phase of the

proposed protocol

5.3. User Enrollment Phase

First, user selects his/her identity UIDi,

imprints Bi and transmits the message {UIDi,

H(Bi)} to RC through open channel. When the

request message is received from the user then

RC selects a random number J and evaluates

HIDi = Ench(x) (UIDi || J), Mi = H(Bi)·P, Ei =

h(UIDi || y)·P, Hi = Mi + Ei. Now, RC inserts all

information {Hi, HIDi, P, Ek/Dk, h(·), H(·)} into

SC and transmits {SC} to the user. After

receiving {SC} from RC, user evaluates Zi =

h(UIDi || PWi || H(Bi)) and inserts Zi into SC as

shown in Figure 3.

5.4. Login Phase

User embeds SC into the card reader and enters

UIDj
*, PWi

* and imprints Bi
*. Now SC evaluates

Zi
* = h(UIDi

*||PWi
*||H(Bi

*)) and checks Zi
* =? Zi.

If the equality does not hold then the connection

is stopped. Otherwise, user chooses a random

number Jc and evaluates A1 = Jc·P, A2 = H(B1)·P

+ A1, A3 = h(UIDi || A1 || SIDj || Hi). Now, user

transmits the login request message {HIDi, Hi,

A2, A3, T1} to RC through open channel as

shown in Figure 4.

 Uj RC

Select UIDi and imprint Bi

 {UIDi, H(Bi)}

 Choose J

 HIDi = Ench(x) (UIDi || J)

 Mi = H(Bi)·P

 Ei = h(UIDi || y)·P

 Hi = Mi + Ei

 Insert

 {Hi, HIDi, P, Ek/Dk, h(·), H(·)}

 into SC

 {SC}

Zi = h(UIDi || PWi || H(Bi))

Insert into Zi into SC

Figure 2. User Enrollment Phase of the

proposed protocol

 Uj RC

Insert SC

Enter UIDi
*, PWj

* and imprint Bi
*

Calculate Zi
* = h(UIDi

*||PWi
*||H(Bi

*))

Check Zi
* =? Zi.

Choose Jc

Compute A1 = Jc·P

A2 = H(B1)·P + A1

A3 = h(UIDi || A1 || SIDj || Hi)

 {HIDi, Hi, A2, A3, T1}

Figure 4. Login Phase of the proposed protocol

5.5. Authentication and Key
Agreement Phase

After receiving the login request message

{HIDi, Hi, A2, A3, T1} from the user, RC checks

T2 – T1 ≤ ∆T and evaluates Dech(x)(HIDi) =

[UIDi, J], Mi
* = Hi – h(UIDi || y)·P, A1

* = A2 –

Mi
*, A3

* = h(UIDi || A1
* || SIDj || Hi) and checks

A3
* =? A3. If the equality does not hold then the

connection is stopped by RC. Otherwise, RC

chooses Js and evaluates HIDi
new = Ench(x)(UIDi

|| Jsc), Xi = Ench(SIDj||y)[UIDj || A1 || H(Bi)], A4 =

Jsc·P, A5 = A4 + H(Bi) ·P, A6 = h(A4 || HIDi
new ||

SIDj). RC transmits the message {A5, A6,

HIDi
new, Xi, T2} to the server through open

channel.

When the message {A5, A6, HIDi
new, Xi, T2} is

picked up from RC then server checks T3 – T2 ≤

162

∆T and evaluates Dech(SIDj||y)(Xi) = [UIDi || A1 ||

H(Bi)], A4
* = A5 – H(Bi)·P, A6

* = h(A4
* || HIDi

new

|| UIDi || SIDj) and checks A6
* =? A6. If the

equality does not hold then the connection is

stopped by the server. Otherwise, server

chooses Js and evaluates A7 = Js·P, A8 = A7 + A1,

A9 = h(HIDi
new || A7 || A4 || H(Bi)·P). Now, server

transmits the message {HIDi
new, A9, A8, A5, T3}

to the user.

After receiving the message {HIDi
new, A9, A8,

A5, T3} from the server, user checks T4 – T3 ≤

∆T and evaluates A7
* = A8 – A1, A4

* = A5 –

H(Bi)·P, A9
* = h(HIDi

new || A7
* || A4

* || H(Bi)·P)

and checks A9
* =? A9. If the equality does not

hold then the connection is stopped by the user.

Otherwise, user evaluates SK = h(Jc·P || Jsc·P ||

Js·P || UIDi), Ni = SK·P + h(UIDi || H(Bi))·P.

Now, user transmits the message {Ni, T4} to the

server through open channel. Note that the user

replaces HIDi
new with HIDi into SC to avoid user

untraceability attack.

After receiving the message {Ni, T4} from the

user, server checks T5 – T4 ≤ ∆T and evaluates

SK*
 = h(Jc·P || Jsc·P || Js·P || UIDi), Ni

* = SK*·P

+ h(UIDi || H(Bi)·P). After that, the server

checks Ni
* =? Ni. If the equality does not hold

then the connection is stopped by the server.

Otherwise, the connection is established

between the user and the server as shown in

Figure 5.

5.6. Password Change Phase

User can modify his/her password easily

without interacting with the server. First, user

injects his/her smartcard into a card reader and

chooses UIDi
*, PWi

* and also imprints Bi
*. Now,

the card reader evaluates Vi
* = h(UIDi

* || PWi
* ||

H(Bi
*)) and verifies Vi

* =? Vi. If it is not

satisfied, then the connection is ended.

Otherwise, user selects a new Password PWi
new

and evaluates Vi
new = h(UIDi || PWi

new || H(Bi
*)).

Finally, it displaces Vi with Vi
new in the memory

of the smartcard.

6. Security Analysis
6.1. Prevents Session-Specific
Temporary Information Leakage
attack

Suppose the temporary arbitrary number Jc

is leaked by the server to the attacker ℋ then ℋ

will try to evaluate session key from the known

temporary random number in the following

manner. First, ℋ computes A1* = Jc•P,

H(Bi)*•P = A1* – A2, A4* = H(Bi)*•P – A5 =

Jsc•P and A7* = A1* – A8 = Js•P. After evaluating

the all temporary random numbers Jsc and Js

from Jc, But the session key SK = h(Jc•P || Jsc•P

|| Js•P || UIDj) could not calculate by ℋ without

knowing UIDj. Therefore, our proposed

protocol prevents session- specific temporary

information attack.

 Uj RC Sj

 Check T2 – T1 ≤ ∆T

 Evaluate

 Dech(x)(HIDi) = [UIDi, J]

 Mi
* = Hi – h(UIDi || y)·P

 A1
* = A2 – Mi

*

 A3
* = h(UIDi || A1

* || SIDj || Hi)

 Check A3
* =? A3.

 Choose Js and Evaluate

 HIDi
new = Ench(x)(UIDi || Jsc)

 Xi = Ench(SIDj||y)[UIDi || A1 || H(Bi)]

 A4 = Jsc·P, A5 = A4 + H(Bi) ·P

 A6 = h(A4 || HIDi
new || SIDj)

 {A5, A6, HIDi
new, Xi, T2}

 Check T3 – T2 ≤ ∆T

 Evaluate

 Dech(SIDj||y)(Xi) = [UIDi || A1 || H(Bi)]

 A4
* = A5 – H(Bi)·P

 A6
* = h(A4

* || HIDi
new || UIDi || SIDj)

 Check A6
* =? A6

 Choose Js and Evaluate A7 = Js·P

 A8 = A7 + A1

 A9 = h(HIDi
new || A7 || A4 || H(Bi)·P)

 {HIDi
new, A9, A8, A5, T3}

Check T4 – T3 ≤ ∆T

Evaluate A7
* = A8 – A1

A4
* = A5 – H(Bi)·P

A9
* = h(HIDi

new || A7
* || A4

* || H(Bi)·P)

Check A9
* =? A9.

Evaluate

SK = h(Jc·P || Jsc·P || Js·P || UIDi)

Ni = SK·P + h(UIDi || H(Bi)·P)

changes HIDi
new with HIDi into SC

 {Ni, T4}

 Check T5 – T4 ≤ ∆T

 Evaluate

 SK*
 = h(Jc·P || Jsc·P || Js·P || UIDi)

 Ni
* = SK*·P + h(UIDi || H(Bi)·P)

 Check Ni
* =? Ni

Figure 5. Authentication and Key Agreement

Phase

163

6.2. Replay attack

Assume that the previous login request

message {HIDi, Hi, A2, A3, T1} is eavesdropped

by an adversary, which was sent by a legal user

to the legal server. After some time, ℋ

transmits the same login request message

{HIDi, Hi, A2, A3, T1} to the legal server. When

the login request message is received by the

server then the server checks the freshness of

the timestamp and stops the connection if T1 is

not fresh. Therefore, our proposed protocol

prevents the replay attack.

7. Security and Performance
Comparison

This section describes the performance and

security comparison, along with other related

protocols [1]. Some notations are defined as TH

indicates one way hash function, TPM means scalar

point multiplication and TS indicates symmetric

decryption/encryption functions, as shown in Table

2.

Table 2 shows the computation cost

comparison of the proposed protocol with the

protocols in [1]. Ali and Pal’s protocol needs to

perform total 17 hash functions, 11 scalar

multiplication operations and 5 symmetric

encryption/decryption functions i.e., 17TH +

11TPM + 5TS. On the other hand, our proposed

protocol needs to perform 15 hash functions, 11

scalar multiplication operations and 5

symmetric encryption/decryption functions,

i.e., 15TH + 11TPM + 5TS. According to Table 2,

our proposed protocol’s computation overhead,

and Ali and Pal’s protocol are identical. The

only change is the reduction of 2 hash functions

in our proposed protocol. Nevertheless, our

protocol is secure against the attacks to which

Ali and Pal’s protocol is not resistant.

Table 3 compares the proposed protocol's

security features with the protocols in [1]. As

shown in Table 3, our protocol gives security

against replay attack and session-specific

temporary information leakage attack. Still, Ali

and Pal's protocol doesn't offer protection

against the above vulnerabilities. Therefore, our

proposed protocol is more effective and secure

than the protocol in [1].

Table 2 Comparison of Computation Cost

 Ali and Pal [4] Our protocol

Computation cost of

registration phase

4TH + 2TPM +

1TS

3TH + 2TPM +

1TS

Computation cost of

login and
authentication phase

13TH + 9TPM +

4TS

12TH + 9TPM

+ 4TS

Total computation

cost

17TH + 11TPM +

5TS

15TH + 11TPM

+ 5TS

Table 3: Comparison of Security Features
Attacks Ali and Pal

[4]

Our protocol

Prevents session

specific temporary

information leakage

attack

˟ ✓

Prevents replay
attack

˟ ✓

8. Conclusion

In this paper, we have investigated Ali and

Pal’s protocol. We have revealed that their

protocol is suffering from replay attack and

session-specific temporary information leakage

attack. To reduce these vulnerabilities, we have

proposed an improved protocol. We have used

timestamps in our proposed protocol to prevent

replay attack. Our proposed protocol is more

robust than Pal and Ali’s scheme, and there is

no extra computation needed in our scheme. We

will propose a lightweight scheme for multi-

server environment with low computation cost

and better security in future work.

9. Acknowledgements

The first author gratefully acknowledges the

financial support received from CSIR (India) in

the form of Junior Research Fellowship CSIR

award no. 09/113(0020)/2018-EMR-I.

References

[1] R. Ali, A. K. Pal, An efficient three factor–

based authentication scheme in multi-

server environment using ECC, Int. J.

Commun. Syst. 31(4) (2017) 1-22.

