CEUR-WS.org/Vol-2790/paper05.pdf

An Ontology Approach to Data Integration

Manuk Manukyan

Yerevan State University, Yerevan 0025, Armenia,
mgm@ysu.am

Abstract. In the frame of an XML-oriented data model an ontology
approach to data integration is considered. Three kinds mechanisms are
used to formalize data integration concept: reasoning rules, content dic-
tionaries and semantical constraints. We introduced the concept an inte-
grable data as ontology object which has been formalized within so-called
algebra of integrable data. The offered ontology is presented by reasoning
rules which are based on the proposed mathematical model. Mappings
from source data models into ontology are defined by means of algebraic
programs. To support the conceptual entities an algorithm to generate
mappings from relational data sources into ontology is developed.

Keywords: Data Integration, Data Warehouse, Mediator, Data Cube,
Ontology, Reasoning Rules, Metamodel, XML, OPENMath.

1 Introduction

In this paper we will consider an approach to ontology-based data in-
tegration. Ontology in informatics is understood as a formal knowledge
representation in the form of a set of concepts of some subject domain
and relations between them. Such representations are used for reason-
ing about entities of the subject domains, as well as for the domains
description [15]. Various metamodels have been developed to define on-
tology [15,22]. We consider an XML- oriented data model which is a re-
sult of strengthening the XML data model by means of the OPENMath
concept [10] as a metametamodel to support an ontology approach to
data integration. OPENMath is a formalism to represent mathematical
concepts with their semantics and is implemented as an XML applica-
tion. We have certain experience in OPENMath usage in our research to
support databases with ontological dependencies [18].

The considered XML - oriented data model was developed in the frame
of our research devoted to the problems of heterogeneous databases inte-
gration (for instance, see [16,17,20,21]). Within these works, an approach
to virtual and materialized integration of data has been developed. In [16]
the existence issues of reversible mapping of an arbitrary source data
model into a target one (canonical model) were considered. The consid-
ered approach in [16] is based on L. A. Kalinichenko’s method of commu-
tative mapping of data models, who was one of the pioneers in the area
of justifiable data models mapping for heterogeneous databases integra-
tion [14]. According to this method, the mapping of an arbitrary resource

Copyright © 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

33

data model into the canonical model is reversible, if diagram of schemas
mapping and diagram of operators mapping are commutative. To verify
the principle of commutative mapping of data models, the concept of
data model is formalized by means of the AMN formalism [1]. Finally, in
the frame of our research to heterogeneous databases integration a new
dynamic indexing structure for multidimensional data was developed to
support data materialized integration [20]. The problems of supporting
OLAP-queries were considered in [17,21]. In this work, based on our pre-
vious investigations in the area of heterogeneous databases integration,
an ontology approach to data integration has been proposed.

The paper is organized as follows: the formal bases of an ontology
definition metamodel are considered briefly in Section 2. An algebra of
integrable data and intepreatation of these data in the frame of the meta-
model are discussed in Section 3. An ontology-based data integration
concept and its mathematical model, and also formalization by meta-
model are proposed in Section 4. Some problems of mappings generation
from data sources into ontology are considered in Section 5. Related work
is presented in Section 6. The conclusion is provided in Section 7.

2 A Formalism for Defining Metamodels

‘We consider the XML - oriented data model as a best solution to use as
metamodels construction formalism after addressing some of the short-
comings. Choosing the XML data model as a metamodel construction
formalism is explained with the fact that this model is some compromise
between conventional and semi-structured DMs because in contrast to:

- semi-structured DM, the concept of database schema in the sense
of conventional DMs is supported;

- conventional DMs hard schemas, there is possibility to define more
flexible database schemas.

The weakness of XML data model is the absence of data types concept in
conventional sense. To eliminate this shortcoming and to support onto-
logical dependencies on the XML data model level, we expand the XML
data model by means of the OPENMath concept. The result of such
extension is a data model which coincides with XML data model and
which was strengthened with computational and ontological constructs
of OPENMath.

2.1 The OPENMath Concept

This section is based on works [17,18]. OPENMath is an extensible for-
malism which allows to strengthen the XML data model with ontological
and computational constructions and is oriented to represent semantic
information on the mathematical objects. OPENMath objects are such
representations of mathematical objects which assume an XML interpre-
tation. Formally, an OPENMath object is a labeled tree whose leaves are
basic OPENMath objects. The compound objects are defined in terms of
binding and application of the A-calculus [13]. A type system is built from

34

basic types and certain recursive rules whereby compound types are built
from simpler types. The basic types consist of the conventional atomic
types (for example, integer, string, boolean, etc.). To build compound
types the following type constructors are used:

o Attribution. If v is a basic object variable and ¢ is a typed object,
then attribution(v, type t) is typed object. It denotes a variable with
type t.

o Abstraction. If v is a basic object variable and t, A are typed objects,
then binding(lambda, attribution(v, type t), A) is a typed object.

o Application. If F and A are typed objects, then application(F, A)
is a typed object.

2.2 Semantic Level

OPENMath is implemented as an XML application. Its syntax is defined
by syntactical rules of XML, its grammar is partially defined by its own
DTD. Only syntactical validity of the OPENMath objects representation
can be provided on the DTD level. To check semantics, in addition to
general rules inherited by XML applications, the considered application
defines new syntactical rules. This is achieved by means of introduction
of signature files concept (semantical constraints), in which these rules
are defined. Signature files contain the signatures of basic concepts de-
fined in some content dictionary and are used to check the semantic
validity of their representations. A content dictionary is the most impor-
tant component of OPENMath concept on preservation of mathematical
information.

3 Algebra of Integrable Data

In the frame of our approach to ontology-based data integration we are
introducing the concept of integrable data as an entity of the conceptual
level [19].

3.1 Formalization of Integrable Data

Definition 1 An integrable data schema X is an attribution object and
is interpreted by a finite set of attribution objects { A1, Aa, ..., An}. Cor-
responding to each attribution object A; is a set D; (a finite, non-empty
set), 1 < i < n, called the domain of A;.

Definition 2 Let D = D1 U Dy U ... U D,,. An integrable data x on
integrable data schema X is a finite set of mappings {e1,ez2,...,ex} from
X to D with the restriction that for each mapping e € x, e[A;] must be
in Dy, 1 < i < n. The mappings are called elements.

Definition 3 A key of integrable data x is a minimal subset K of X
such that for any distinct elements e1,e2 € x, e1[K| # e[K].

35

We introduce a symbol d to denote the set of all integrable data. It is
assumed that the schema of each integrable data is a subset of the set of
all attribution objects.

Interpretation of Integrable Data In the frame of the metamodel,
the following interpretation of integrable data schema X is proposed:

attribution(X, type A), or

attribution(X, type A, S1 A1, S2 Aa,..., Sk Ak),k>1

Here type, S1, S2, ..., Sk are OPENMath symbols, and X, A, A1, Ao, ..., Ag
are OPENMath objects. In this representation, X is the name of the
atttribution object, and A represents its type (basic or compound). A
compound type by a type constructor is defined, for example:
application(sequence, Ay, A, ..., A1), 1 > 1

The symbol sequence is defined analogously as in XML Schema lan-
guage, and Ai, Ag, ..., A; are attribution objects. An integrable data x
with schema X is interpreted by means of a finite set of nested XML-
elements. An instance x of X is constructed according to the following
rules:

1. attribution(X, type basic type) = < z > value < /z >

2. attribution(X, type application(typeOp, A1, Az, ..., An)) =
< x > compound value < /x >
Compound value is constructed according to type constructor,
where Vi(1 < i < m), A; = attribution(X,, type basic type), or
A; = attribution(X;, type application(typeOp, Bi, B, ..., By)),
where B; are attribution objects, 1 < i < n.

3. Repeat the above steps in all possible ways until no more conversion
of the content of any nested XML-element in x.

Below an XML Schema element definition and its equivalent representa-
tion in the frame of the metamodel (see Fig. 1.) is considered:

< zs : element name = “MovieStar” >
< xzs : complexType >
< xs: sequence >

< xs: element name = “Name” type = “xs : string” >
< xs : element name = “Birthday” type = “xs : date” >
< wxs : element name = “Address” maxOccur = “2">

< xs: complexType >
< xs: sequence >
< xs : element name = “Street” type = “xs : string” >
< xs : element name = “City” type = “xs: string” >
< Jxzs : sequence >
< Jxzs : complexType >
< xs : element >
< Jxs : sequence >
< /Jzs : complexType >
< [xs: element >

36

attribution

/
MovieStar tybe application

1
sequence attribution attribution attnbuuon

\ s“f \

Name fype string Birthday #ype date Address type application maxOccurs \2

sequence attribution attribution
\ /

| |

\

‘ /
Street type string City type string

Fig. 1. From XML Schema to labeled tree: Transformation example.

3.2 Operations

Virtual and materialized integration of data assumes introduction of spe-
cial operations, such as filtering, joining, aggregating, etc. The proposed
operations are analogs of the corresponding operations in realtional al-
gebra. Formal definitions of these operations were offered in [19].

4 Data Integration Ontology

Our approach to ontology-based data integration concept assumes for-
malizing the mediator, data warchouse and data cube concepts by an
XML DTD. Formalization result of these concepts are so-called ontology
reasoning rules. These rules will be interpreted by means of algebraic
programs. Supporting reasoning rules assumes developing new content
dictionaries to assign informal and formal semantics of data integration
ontology basic concepts (for instance, integrable data, integrable data
schema, algebraic operations, data types of the XML Schema). Formal-
ization of basic concepts is achieved by applying the concept of OPEN-
Math content dictionaries. Also we should formalize signatures of these
basic concepts for checking semantic validity of its representations. In
this case, we will be using the OPENMath signature files concept to
formalize signatures of basic concepts.

4.1 Mathematical Model

In our case research object is the area of ontology-based data integration.
We should formalize entities of this subject domain and define relation-
ships between these mathematical objects. The proposed formalization

37

will be the mathematical basis for constructing the reasoning rules. We
differentiate three kind of reasoning rules: mediator rule, data warehouse
rule and data cube rule. A formalization of the considered subject domain
was proposed in [19].

4.2 Basic Concepts Formalization

The basic concepts such as integrable data, integrable data schema, al-
gebraic operations, are mathematical concepts. Thus, it is natural to use
the OPENMath content dictionaries to formalize these concepts. The
content dictionaries are used to define semantical information on the
basic concepts of data integration. A content dictionary which contains
representation of basic concepts of the subject domain contains two types
of information: one which is common to all content dictionaries, and one
which is restricted to a particular basic concept definition. Definition of
a new basic concept includes the name and description of the basic con-
cept, and also some optional information about this concept. To support
basic concepts of data integration and the type system of XML Schema,
two content dictionaries have been developed. Below an example of a
basic concept definition is considered:

<CDDefinition>
<Name> X < /Name>
<Description>
To support the concept of integrable data schema we introduce
the symbol X. Below we are using the Attribution symbol which has
been defined in the OPENMath.
< /Description>
<CMP> X : Attribution® — {Attribution} < /CMP>
< /CDDefinition>

The above used XML elements have obvious interpretations. Only note,
that the element ”CMP” contains the commented mathematical prop-
erty of the defined algebraic concept. The detailed description of the dic
content dictionary is given in Appendix A (analogously the zts content
dictionary for modeling the type system concept of the XML Schema is
defined). Content dictionaries contain just one part of the information
that can be associated with a basic concept in order to stepwise define
its meaning and its functionality. Specific information pertaining to the
basic concepts like the signatures is defined separately in the so-called
signature files.

4.3 Semantical Constraints

As is mentioned above, to check the semantic validity of the basic con-
cepts representations, we associate extra information with content dic-
tionaries in the form of signature files. A signature file contains the defi-
nitions of all basic concepts signatures of some content dictionary which
is associated with this file. We use Small Type System [9] to formalize
the basic concept signatures. Below the definition of the signature of the

38

above considered symbol X is provided (see the more detailed description
of the dic signature in Appendix B):

<Signature name = “X”>
<OMOB>
<OMA>
<OMS name = "mapsto” cd = "sts”/ >
<OMA>
<OMS name = "nary” cd = "sts”/ >
<OMS name = "attribution” c¢d = "sts”/ >
< /OMA>
<OMS name = "attribution” ¢d = "sts”/ >
< /OMA>
< /OMOB>
< /Signature>

In the considered definition the symbols mapsto and nary were defined
in the OPENMath. The symbol mapsto represents the construction of a
function type. The first n-1 children denote the types of the arguments,
the last denotes the return type. The symbol nary constructs a child of
mapsto which denotes an arbitrary number of copies of the argument of
nary.

4.4 Ontology as an XML Application

Based on the above discussed formalisms, an XML application to sup-
port conceptual schemas during ontology-based data integration is de-
veloped. Namely, an XML DTD was constructed based on the proposed
mathematical relationships. The proposed XML DTD is an instance of
the above considered metamodel which is an advanced XML data model
and we use it as an ontology definition language. In contrast to OWL
which is a description logic based ontology language for semantic Web,
the considered metamodel is oriented to data integration and is based
on an algebra of integrable data. Data integration concept is formalized
by means of XML elements. Content of these elements are based on the
OPENMath attribution and/or application concepts. Thus, it is possi-
ble to use a computationally complete language to support conceptual
entities (integrable data). By means of XML elements reasoning rules
(namely, mediator rule, data warehouse rule and data cube rule) were
modeled based on the proposed mathematical relationshoips. Mappings
from data sources into ontology are defined within reasoning rules and
are modeled by means of algebraic programs. The ontology concept as-
sumes a conceptual representation of the subject domain. Within this
concept, accessing and managing the data is provided by notions of the
conceptual representation. In connection with this, a problem arises to
generate a query over source data based on the conceptual representation
of the subject domain. In the next section, we will consider an algorithm
to generate a query to relational source data. In the frame of the consid-
ered approach to ontology-based data integration, the conceptual schema
is defined as an instance of the proposed XML DTD. In Appendix C an
XML DTD for modeling the reasoning rules is presented.

39

5 Mappings Generation

Our concept to ontology-based data integration assumes constructing a
mapping from arbitrary source data model into ontology. For proving the
reversibility of the mapping from arbitrary source data model into on-
tology, it is sufficient to prove the existence of a reversible mapping from
source data model into the extended metamodel. Thus, the extended
metamodel acts as the target data model when applying the method of
commutative mapping of data models of L. A. kalinichenko. A mapping
generation from source data model into ontology assumes generating a
query over data source and transforming these data into the ontology
objects (set of integrable data). In the frame of this paper we consider
some issues when constructing the mapping from relational source data
into ontology. For proving the reversibility of mapping from the relational
data model into the extended metamodel, these models have been formal-
ized by means of AMN formalism and a mapping has been built from the
relational data model to the extended metamodel. Finally, based on the
B-technology, it has been proven that the mapping from the relational
data model into the extended metamodel is reversible. Below, an algo-
rithm to generate a query to extract data from relational data sources
is proposed. The proposed algorithm is based on the in-order method of
the tree traversal.

Algorithm: Relational Data Extractor.

Input: Global Schema (a labeled tree).

Output: SQL-query which is represented by string (further as a resulting
string).

Method: Tree traversal. The following steps can be applied recursively
to any application node. Initially, the resulting string is empty.

1. The considered operation is:

a) union: The generated query is defined as union of subqueries.
The i-th subquery is constructed based on the i-th argument of
this operation.

b) minus: The generated query is defined as difference of subqueries.
The i-th subquery is constructed based on the i-th argument of
this operation.

c) join: The following query is generated:
select resulting attributes
from subquery (is defined as join expression). The i-th operand is
constructed based on the i-th argument of this operation.

d) o: The following query is generated:
select *
from subquery (is constructed based on the first argument of this
operation)
where predicate is constructed based on the second argument
of this operation.

e) m: The following query is generated:
select resulting attributes
from subquery (is constructed based on the first argument of this

40

operation)

f) ~: The following query is generated:
select resulting attributes and aggregate function (s)
from subquery (is constructed based on the first argument of this
operation)
group by list of grouping attributes (is constructed based on the
second argument of this operation).

2. If in the step 1, the argument on which the subquery is based is a
leaf node, then:

a) In the case of the union/minus operation, the following query is
generated:
select™
from leaf_name

b) In the case of the operations join, o, m and v, subquery construc-
tion is defined as leaf name.

3. The generated query is substituted in the corresponding position
of the resulting string based on the semantic of the algebraic
program. If all the application nodes were considered, then return
resulting string as the answer.

4. If in the step 1, the argument on which the subquery is based is a
non-leaf node (a subtree), then apply this algorithm recursively to
this subtree.

We are using the proposed algorithm to support the data warchouse
and data cube concepts. In the mediator case, this algorithm should be
modified. The detailed discussion of problems to support queries over
the mediator is beyond the topic of this paper.

6 Related Work

Since the end of the last century, the problems of creating “ontologically
based” data access systems have been the subject of investigations in
the field of databases and information systems. In [7] the role of ontolo-
gies in data integration is discussed. Particularly, the different aspects
to use ontology in data integration are considered (such as in metadata
representation, global conceptualization, high-level querying, declarative
mediation, and mapping support). Ontology definition metamodels (for
instance RDF, OWL, etc.) have been developed [22]. There are the fol-
lowing variants of data integration based on the ontology concept [7,11]:
Single ontology approach relies on a single global ontology that pro-
vides a uniform interface to the user. Multiple ontology approach as-
sumes defining for each data source its own local ontology and semantic
mapping between these local ontologies. Hybrid-ontology approach
combines the two preceding approaches. An example of this approach
is the work [8]. A significant contribution to the theory and practice of
data integration was made by the research group of M. Lenzerini (for
instance, see [2-6]). Their investigations were carried out in the frame of
the traditional approach of the data integration as well as in the frame

41

of the paradigm of ontology-based data access and integration. In these
investigations only relational data as source data are considered. To de-
fine ontology as well as mappings between ontology and data sources,
the description logic is used. Finally, in the frame of these investiga-
tions, a formal approach to data quality is proposed. Namely, one of the
most important dimensions (consistency) of data quality is considered.
The following papers [25,26] can be considered as some development of
the works of M. Lenzerini group. As a query language on the ontology
level SPARQL is proposed. SPARQL-program is translated into efficient
(federated) SQL-program over data sources based on the proposed op-
timisation techniques. In [8] a layered framework for the integration of
heterogeneous networked data sources (e.g., relational, XML, or RDF)
is proposed. Within this approach, a global ontology is used to mediate
among the schemas of the data sources. A query is expressed in terms
of one of the data sources or of the global ontology and is then trans-
lated into subqueries on the other data sources using mappings based
on a common vocabulary. In [23] a system to automatically generate di-
rect mappings between relational databases and given target ontologies
is developed. The considered system is based on an intermediate inter-
nal graph representation that allows the representation of both factual
knowledge and heuristically observed patterns from the input. A more
detailed analysis of approaches to data integration in traditional sense
and ontology-based data integration can be found in [12,15,24].

7 Conclusions

In the frame of an approach to ontology-based data integration, an on-
tology definition metamodel is proposed. The considered metamodel is
oriented to XML data model which has been extended by the OPEN-
Math concept. In the result of such extension, the XML data model has
been strengthened with ontological and computational constructions. We
introduced the concept of an integrable data as an ontology object which
has been formalized within so-called integrable data algebra developed
by us. The considered algebraic operations are analogs of the correpond-
ing operations in relational algebra. The interpretation of the integrable
data concept in the frame of the metamodel has been proposed. A math-
ematical model of the suggested concept of ontology-based data inte-
gration is constructed. The concepts of the integrable data algebra have
been formalized by mechanisms of content dictionary and signature files
(semantical constraints) of the OPENMath. The proposed ontology for
data integration concept is presented by reasoning rules which are based
on the considered mathematical model. The offered XML DTD is an
instance of the considered metamodel. Thus, the ontology-based data
integration concept formalization result is an ontological modeling lan-
guage which is defined as an XML application. Mappings from source
data models into ontology are defined by means of algebraic programs.
To support the conceptual entities, an algorithm to generate mappings
from relational data sources into ontology is developed. The output of
this algorithm is an SQL-program by means of which we can extract data

42

from relational sources to support the concepts of data warehouse and
data cube. It is essential, that the metamodel is extensible, which allows
to integrate arbitrary data models by using a computationally complete
language.

Acknowledgments. This work was supported by the RA MES State
Committee of Science, in the frames of the research project No. 18T-
1B341.

References

1.

2.

10.

11.

12.

13.

14.

Abrial, J.R.: The B-Book-Assigning programs to meaning. Cam-
bridge University Press, Great Britain (1996)

Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati,
R.: Tractable reasoning and efficient query answering in description
logics: The DL — Lite family. JAR 39(3), 385-429 (2007)
Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati,
R.: Ontology-based data access and integration. In: Encyclopedia of
Database Systems. pp. 1-7 (2017)

Calvanese, D., Lembo, D., Giacomo, G.D., Lenzerini, M., Poggi, A.,
Rodriguez-Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The mastro
system for ontology-based data access. Semantic Web 2(1), 43-53
(2011)

. Calvanese, D., andM. Lenzerini, G.D.G., Vardi, M.Y.: Query pro-

cessing under GLAV mappings for relational and graph databases.
In: PVLDB. pp. 61-72 (2012)

Console, M., Lenzerini, M.: Data quality in ontology-based data ac-
cess: The case of consistency. In: Twenty-Eighth AAAT Conference
on Artificial Intelligence. pp. 1020-1026. AAAT 2014 (2014)

Cruz, L.F., Xiao, H.: The role of ontologies in data integration. In-
ternational Journal of Engineering Intelligent Systems for Electrical
Engineering and Communications 14(4), 1-18 (2005)

Cruz, L.F., Xiao, H.: Ontology driven data integration in heteroge-
neous networks. In: Studies in Computational Intelligence. vol. 168,
pp. 75-98. Springer (2009)

Davenport, J.H.: A small openmath type system. ACM SIGSAM
Bulletin 34(2), 16-21 (2000)

Drawar, M.: OpenMath: An overview. ACM SIGSAM Bulletin
34(2), 2-5 (2000)

Ekaputra, F.J., Sabou, M., Serral, E., Kiesling, E., Biffl, S.:
Ontology-based integration in multi-disciplinary engineering envi-
ronments: A review. Open Joyrnal of Information Systems 4(1), 1-26
(2017)

Golshan, B., Halevy, A., Mihaila, G., Tan, W.: Data integration:
After the teenage years. In: PODS’17. pp. 101-106 (2017)

Hindley, J.R., Seldin, J.P.: Introduction to Combinators and -
Calculus. Cambridge University Press, Great Britain (1986)
Kalinichenko, L.A.: Methods and tools for equivalent data model
mapping construction. In: Advances in Database Technology-
EDBT’90. pp. 92-119. Italy, Springer (March 1990)

43

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

Kalinichenko, L.A.: Effective support of databases with ontological
dependencies: Relational languages instead of description logics. Pro-
grammirovanie 38(6), 315-326 (2012)

Manukyan, M.G.: Canonical model: Construction principles. In: ii-
WAS2014. pp. 320-329. Vietnam, ACM (December 2014)
Manukyan, M.G.: On an approach to data integration: Concept, for-
mal foundations and data model. In: CEUR-WS. vol. 2022, pp. 206—
213 (2017)

Manukyan, M.G.: On an ontological modeling language by a non-
formal example. In: CEUR-WS. vol. 2277, pp. 41-48 (2018)
Manukyan, M.G.: Ontology-based data integration. In: CEUR-WS.
vol. 2523, pp. 117-128 (2019)

Manukyan, M.G., Georgyan, G.R.: A dynamic indexing scheme for
multidimensional data. Modern Information Technologies and IT-
Education 14(1), 111-125 (2018)

Manukyan, M.G., Gevorgyan, G.R.: Canonical data model for data
warehouse. In: Communications in Computer and Information Sci-
ence. vol. 637, pp. 72-79 (2016)

OMG: Ontology definition metamodel. In: OMG Specification (2014)
Pinkel, C., Binnig, C., Jimenez-Ruiz, E., Kharlamov, E., Nikolov,
A., Schwarte, A., Heupel, C., Kraska, T.: IncMap: A journey to-
wards ontology-based integration. In: BTW 2017. pp. 145-164. Lec-
ture Notes in Informatics (2017)

Xiao, G., Calvanese, D., Kontchakov, R., Lembo, D., Poggi, A.,
Rosati, R., Zakharyaschev, M.: Ontology-based data access: A sur-
vey. In: IJCAI-18. pp. 5511-5519 (2018)

Xiao, G., Hovland, D., Bilidas, D., Rezk, M., Giese, M., Calvanese,
D.: Efficient ontology-based data integration with canonical IRIs. In:
ESWC 2018. pp. 697-713 (2018)

Xiao, G., Kontchakov, R., Cogrel, B., Calvanese, D., Botoeva, E.:
Efficient handling of SPARQL OPTIONAL for OBDA. In: ISWC
2018. pp. 354-373. Springer (2018)

A The dic Content Dictionary File

<CD>

<CDName> dic < /CDName>

<Description>

This CD defines the symbols of Algebra of Integrable Data.
< /Description>

<CDDefinition>

<Name> x < /Name>

<Description>

To support the concept of integrable data we introduce the symbol
T.
< /Description>

<CMP> z : X — adom™ < /CMP>

< /CDDefinition>
<CDDefinition>

44

<Name> adom < /Name>
<Description>
To support the concept of a domain of attribution object we introduce
the symbol adom. Below we are using the Set symbol which has been
defined in the OPENMath and denotes a set.
< /Description>
<CMP> adom : Set* — Set < /CMP>
< /CDDefinition>

<CDDefinition>
<Name> d < /Name>
<Description>
We introduced the symbol d to denote the set of all integrable data.
< /Description>
<CMP> d: 2" — Set < /CMP>
< /CDDefinition>

<CDDefinition>
<Name> union < /Name>
<Description>
An n-ary associative union operation.
< /Description>
<CMP> union : £**°*°° — d < /CMP>
< /CDDefinition>

<CDDefinition>

<Name> o < /Name>

<Description>

This symbol denoting the filtering operation.

< /Description>

<CMP> o : {z — {p: {element} — boolean}} — d < /CMP>
< /CDDefinition>

<CDDefinition>
<Name> element < /Name>
<Description> This symbol denoting the element. < /Description>
<CMP> element : X — D < /CMP>

< /CDDefinition>

<CDDefinition>
<Name> 7 < /Name>
<Description>
This symbol denoting the projection operation.
< /Description>
<CMP> 7 : z[name*] - d < /CMP>
< /CDDefinition>

<CDDefinition>
<Name>f < /Name>
<Description>
This symbol denoting the aggregate function : f € {count, sum, avg}.
< /Description>
<CMP> f : z[name] — numericalvalue < /CMP>
< /CDDefinition>

45

<CDDefinition>
<Name>~v < /Name>
<Description>
This symbol denoting the grouping operation.
< /Description>
<CMP> ~ : z[name™, (f : (element[name])* —
numericalvalue)*] — d
< /CMP>
< /CDDefinition>
< /CD>

B The dic Signature File
<CDSignatures type = "sts” c¢d = "dic” >

<! — — Definition of signature of the z symbol. —— >

<Signature name = “x” >
<OMOB>
<OMA>

<OMS name = "mapsto” cd = "sts”/ >
<OMS name = X" c¢d = "dic”/ >
<OMA>
<OMS name = "nary” cd = "sts”/ >
<OMS name = ”adom” c¢d = "dic”/ >
< /OMA>
< /OMA>
< /OMOB>
< /Signature>

<! — — Definition of signature of the d symbol. —— >
<Signature name = “d”>
<OMOB>
<OMA>
<OMS name = "mapsto” cd = "sts”/ >
<OMA>
<OMS name = "nary” cd = "sts”/ >
<OMS name = 7x” ¢d = "dic”/ >
< /OMA>
<OMS name = "Set” cd = "sts”/ >
< /OMA>
< /OMOB>
< /Signature>

<! — — Definition of signature of the union function. —— >
<Signature name = “Union” >
<OMOB>
<OMA>
<OMS name = "mapsto” cd = "sts”/ >
<OMA>
<OMS name = "nassoc” c¢d = "sts”/ >
<OMS name = ”d” c¢d = "dic”/ >

46

< /OMA>
<OMS name = 7d” cd = 7dic”/ >
< /OMA>
< /OMOB>
< /Signature>

<! — — Definition of signature of the filtering function. —— >
<Signature name = “o”>
<OMOB>
<OMA>
<OMS name = "mapsto” cd = "sts”/ >
<OMS name = 7d” ¢d = ”dic”/ >
<OMA>
<OMS name = "mapsto” cd = "sts”/ >
<OMS name = ”element” c¢d = ”dic”/ >
<OMS name = ”boolean” c¢d = "xts”/ >
< /OMA>
<OMS name = "d” ¢d = "dic”/ >
< /OMA>
< /OMOB>
< /Signature>

< /CDSignatures>

C An XML DTD for Modeling the Reasoning
Rules

<! — — include dtd for extended OPENManth objects —— >
<!ELEMENT dir (source+, (med | whse | cube))>
<!ELEMENT med (msch)+>

<!ELEMENT msch (sch, wrapper)>

<!ELEMENT sch (OMATTR)>

<!ELEMENT wrapper (OMA)>

<!ELEMENT whse (wsch, extractor)>

<!ELEMENT wsch (OMATTR)>

<!ELEMENT extractor (OMA)>

<!ELEMENT cube (ssch, mview)>

<IELEMENT ssch (OMATTR)+ >

<!ELEMENT mview (view+, granularity+) >
<IELEMENT view (OMA)>

<!ELEMENT granularity (partition)+ >

<!IELEMENT partition EMPTY >

<!ELEMENT source (OMATTR)+>

<!ATTLIST source name CDATA #REQUIRED>
<IATTLIST granularity name CDATA #REQUIRED>
<IATTLIST partition name CDATA #REQUIRED>
<!ATTLIST view name CDATA #REQUIRED>

47

