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Abstract. The article is devoted to the fundamental proЫem solution on an 
effective digital matrix signal processing development in the ftamework of re­
search work supported Ьу the Russian F ederation Ministry of Science and Нigher 
Education, related to the new materials for а new memory generation using direct 
recording methods with ultrashort laser pulses to solve proЫems provided Ьу the 
end-to-end digital technology "Neurotechnology and Artificial Intelligence". 
The paper substantiates the need to develop а new energy theory of multidimen­
sional digital representation and conversion of real signals to create fast algo­
rithms which reduce computational complexity and improve the accuracy of sig­
nal recovery. Spectral algorithms for simulation ofmultidimensional discrete de­
terministic and random bandpass signals are described using the example oftwo­
dimensional discrete basis functions and Fourier and Hartley transformations, 
considering the energy characteristics and autocoпelation functions ofthese sig­
nals. Communication equations are given for the development of two-dimen­
sional simulation algorithms for signals with а non-axial ftequency spectrum. 
Schemes of algorithms for simulating real-time bandpass signals and software 
implementation of the algorithm are presented. The developed software for the 
simulated signal characteristics research is described. These characteristics are 
the boundary ftequencies ofthe function and the shape ofthe signal power spec­
tral density. 

Keywords: high dimensional simulation algorithms, deterministic and random 
signals, spectral representation of signals, bandpass signals, Fourier functions, 
Hartley functions, power spectral density function 

1 Introduction 

The article is devoted to the fundamental proЫem solution on an effective multidimen­
sional digital signal processing development in the framework of research work sup­
ported Ьу the Russian Federation Ministry of Science and Higher Education, related to 
the new materials for а new memory generation using direct recording methods with 
ultrashort laser pulses to solve proЫems provided Ьу the end-to-end digital technology 
"Neurotechnology and Artificial Intelligence". 

Copyright © 2020 for this paper Ьу its authors. Use permitted under Creative 
Commons License Attribution 4.0 lntemational (СС ВУ 4.0). 
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The relevance of the research topic described in this article is due to the need of new 
scientific methodology development for the synthesis of high-precision and high-per­

formance algorithms for simulating deterministic and random signals of large dimen­
sions within the framework of classical and generalized coпelation theory in the spec­
tral domain of harmonic bases, using the original algorithrnic relationship of models of 
pseudo-random and deterministic signals, which will allow to create common simula­
tion models оп а single mathematical and software basis, as well as will provide an 

effective tool for statistical research of real-time systems for various purposes. 

The first section of the article justifies the need to develop а new energy theory of 
digital matrix representation and conversion of real signals to create fast algorithms that 

reduce computational complexity and improve the accuracy of signal recovery. А step­
by-step research plan is described, including experimental verification of theoretical 
results in comparison of simulation models of signals and systems. The rninirnization 
of conversion time and increasing staЬility and reliaЬility have been considered. 

The second section of the article describes spectral algorithms for simulating multi­

dimensional discrete deterministic and random bandpass signals оп the example of two­

dimensional discrete basis functions and Fourier and Hartley transformations, account­
ing the energy characteristics and autocoпelation functions of these signals. Commu­
nication equations are given that allow authors to develop two-dimensional simulation 
algorithms for signals with а non-axial frequency spectrum. 

In the third section of the article, the algorithms for simulating real-time bandpass 

signals are given. 

The fourth section contains а description of the developed software (application), 
useful for researcher having an opportunity to set and research the characteristics of the 
simulated signal. 

2 The Need to Develop а New Energy Theory of Real-Signal's 

Digital Matrix Representation and Conversion 

There are certain forms of data that are especially well studied and therefore have cer­
tain general methods of analysis, such as time series, working with large amounts of 
data [1]. In other cases, the input data is more complex in shape or size, today we сап 

get data from any source, starting from the genome [2] and ending with the media [3], 
in these cases more complex data get а more specific approach. 

Big data means not only extended in computational space but is also in time. Time 
data characteristics may render traditional algorithms fundamentally useless. New data 

could соте continuously and it could Ье not only required to Ье stored [ 4], there should 

Ье а method of dividing the input data into operational events in real time with further 

intent of using these events for forecasting [5]. Another level of complication is а mul­
tidimensional data. Finance uses а multidimensional dynarnic analysis [6], the response 
timelines to threats in computer networks [7], articulated thinking visualization, all 
these areas need new approach of research. 

One of the proЫems with multidimensional analysis stems from it being visually un­

intuitive. While it is possiЫe to imagine the nature behind time series or to locate the 
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connection between real life phenomenon and its two-, three- or even four-dimensional 
representation, higher numbers of dimensions тау often lead to confusion. However, 
computational power availaЫe today does not only allow us to finally work with data 
as Ьig as it comes but also allows us to disengage from our own Ьiases Ьу placing more 
work onto the machine. Indeed, such areas as machine learning and neural networks 
are not lirnited Ьу executing calculations preassigned Ьу the researcher but can to some 
extent choose their own mode of actions clairning levels of flexiЬility previously unat­
tainaЫe. 

Modeling and simulation grant us the aЬility to study any real time processes virtually 
saving costs for the physical experiments. The usage of higher dimensions contributes 
to the accuracy delivered Ьу the new algorithms. The usage of energy spectra places 
the scientific research for these algorithms in the well-researched area of spectral theory 
[7-10]. 

Spectral theory provides new approaches of research based on matrix mathematical 
apparatus that renders the new algorithms prepared for further automatization Ьу the 
means of tool developed in such areas as machine learning, artificial intelligence, and 
Ьig data processing. 

The authors consider the basics of the theory of spectral simulation of multi-dimen­
sional signals in harmonic bases continuing their research [ 11- 15]. Properties of two­
dimensional harmonic discrete basis functions and transformations necessary for the 
development of spectral algorithms for simulating two-dimensional signals are consid­
ered in this article as well as its experimental software realization. 

3 First Steps to the N ew Theory: Spectrum Simulation 

Algorithms for High Dimensional Discrete Determine and 

Random Bandpass Signals 

3.1 Two-Dimensional Discrete Basis Functions for Fourier's and Hartley's 

Transformation 

The two-dimensional trigonometric functions are the basis of the two-dimensional har­
monic ones: 

(1) 

where Nl and N2 - elements of common domain for defining discrete functions 
NlxN2; kl and k2 - elements of two-dimensional function's number; il and i2 - ele­
ments offunction's argument; at that k1, i1 Е [O,N1); k2,i2 Е [O,N2). 

Using functions (2.1.1) three two dimensional complete basic systems can Ье created. 
The first basis system is been created Ьу altemating the even functions: 

COS [ 2n е;:1 + ki:2) ],
and Ьу altemating odd functions: 
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where the number of even functions in it is greater than the number of odd functions. 
The corresponding spectra will have altemating even (marked Е) and odd (marked О) 
coefficients as well, presented as follows: 

(2) 

(3) 

(4) 

(5) 

are even and odd elements ofthe basis functions' power; x(i1, i2 ) - two-dimensional 
determine signal, defшed at the system ofNl xN2 points, as well as k1 Е [ О, :1

); k1 Е

[о, :2). 
А discrete two-dimensional Fourier series (inverse DFT) in а trigonometric basis has 

the following form: 

� № . . 

x(i1 , i2) = Хн(О,О) + r,:1:� Ik
2
2 :� {хн(k1, k2)cos [ 2n (

к
;:

1 
+ к;:

2
)]} +

+Хн (:1, :2) cos[n(i1 , i2)]. x(i1 , i2 ) = Хн(О,О). 
(6) 

The couple of DFTs (2), (3) and discrete two-dimensional Fourier series (6) estaЫish 
mathematically one-to-one correspondence between discrete functions x(i1 , i2) and 
Х (k1, k2). Their physical equality is illustrated Ьу Parseval's two-dimensional equation: 

the second basis system, which is а two-dimensional analog of the DEF system, is 
formed from the corresponding trigonometric functions and is equal to: 

ехр �2п (
к
;:

1 
+ 

к
;:

2
)] = cos [ 2n (

к
;:

1 
+ к;:

2
)] + jsin [ 2n (
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;:
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+

+ к;:
2)]; k1, i1 Е [О, N1); k2 , i2 Е [О, Nz).

(7) 
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The system of these functions is complete orthonormal and multiplicative. The couple 
of discrete transformations for this system has following form: 

The Parseval's two-dimensional equation is show below: 

The third basis system is formed Ьу adding trigonometric functions: 

cos [ 2n: (
к

;:1 
+ 

к

;:2)] = cos [ 2n: (
к

;:1 
+ 

к

;:2)] + sin [ 2n: (
к

;:1 
+

к;:z)],

(8) 

(9) 

(11) 

and is а two-dimensional Hartley functions' modification. This system is orthonormal 
and obeys а pair of discrete two-dimensional transformations: 

(12) 

(13) 

the given Fourier transformations are oriented to the determined signals. However, 
they will also apply to random signals y(i1, i2) with spectra Y(k1, k2). 

3.2 Energy Characteristics of Two-Dimensional Signals and their Relation to 

Fourier Coefficients 

The energy properties of deterministic two-dimensional signals, as well as their one­
dimensional counterparts, are characterized using SPDF (spectral power density func­
tion) 

S(w1, w2) = lim [-1
- IXF(w1, w2) 1

2
], 

Т1 ➔оо т1т2 

Tz ➔oo 
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where X(w1, w2) is а continuous spectrum defined on an infinite interval of two-di­
mensional values of frequency: 

(14) 

with 

At the discrete points of the ftequency range 

(16) 

where 

In the basis of complex exponential functions, the spectral coefficients are equal to 

The values ХFЕ(k1Лы1, k2Лы2), Хю(k1Лы1, k2Лы2) and XFE(k1, k2), 

Хю(k1, k2) determine the even and odd components of the coпesponding complex 
spectra. Comparing them with each other, а record of a discrete spectral density is been 
created in the form of 

However, one equation (17) is not sufficient to determine even and odd components 
of the spectrum. Therefore, we introduce а phase two-dimensional density for modeling 
ф(k1 zп-, k2 zn), Ъу setting it in the form 

Т1 Tz 
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(18) 

Then get 

Solving the equations (18) and (19), we get new equations for the relationship between 
the Fourier coefficients and the spectral density power function (SDPF): 

(20) 

These coupling equations allow to develop two-dimensional simulation algorithms 

for signals with а non-axial frequency spectrum. 
Given non-axial signals are а special case of bandpass signals, they are described in 

additional materials enclosed with the paper (zip file ), so further we consider only two­

dimensional bandpass signals whose SPDF and ACF are easily associated with Fourier 
coefficients, replacing in equations (20) and (21) the definition intervals [О, N_l) and 
[О, N _ 2 )  with [N _ lL, N _ lR] and [N _ 2L,N _ 2R], respectively. Here in а following sub­

section 2.3 there are obtained equations for two-dimensional signals' autocoпelation 

functions. 

3.3 The Two-Dimensional Signals' Autocorrelation Functions 

Suggested spectral algorithms of imitation may Ье illustrated with the help of а signal 

with а two-dimensional spectral density having the shape of а parallelepiped. Such 
spectral density is visualized on the figure 1, this spectral density is technically the 

spectral density of а bandpass two-dimensional white noise with the intensity of So. 
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-------------------�-----У 

W1 

Fig 1. Functional scheme of the two-dimensional spectral density' s visualization. 

The equation for random two-dimension signal's calculation with form shown at the 

Fig. 1 as follows: 

for the even N 1 and N2: 

for the odd N1 and N2: 

(. . ) - у; �N1R �N2R {у; (k k ) [·2 (k1 i1 k2 i2)] 
У l1, lz - F L,k -N L,k -N F 1, 2 ехр ] П: - + - + 1 - 1L 2- 2L N1 N2 
у; (N N k N N k ) [ .2 

((N1л+N1L -k1) i1 
+ F 1R + 1L - 1, 2R + 2L - - 2 ехр -] П: 

N1 
+ 

+ (N2н+;:-k2) i2) ]}. 

Even and odd Fourier coefficients and the right boundary Fourier coefficients are 

defined as follows: 

where 

287



S _ 

Т1Т2 
о- Z(N1R-N1L)(N2R-N2L) 

Considering il.ki,kz = 1 with all k1, k2 apart from k1 = NlR , k2 = N2R, where 

il.N1R,NzR = О, the coefficients are defined differently:

Algorithmic ACF is useful for evaluating the quality of random signal's simulation. 

4 Experimental Research: Software Realization ofthe Random 

Bandpass Signal Simulation Algorithm with Complex Basis 

4.1 Experimental Setup 

Accuracy can Ье measured Ьу comparing with theoretical values for а specific signal, 
and speed can depend on the mathematical form of the algorithm - formulas are com­
puted faster than complex algorithms using matrices. Mathematical equations provide 
low memory size requirements as well. А possiЫe disadvantage of the described algo­
rithms is the need for impressive mathematical training before programming. 

The output data of the software is the theoretical, algorithmic, and experimental au­
tocorrelation functions, as well as the errors, as the difference between autocorrelation 
functions, and the simulated signal itself. 

The developed application allows us to simulate signals based on specified character­
istics with the aЬility to simulate one- and two-dimensional signals. The following case 
proves the efficiency of the algorithm for one-dimensional signals' simulation. Two­
dimensional signal simulation output will Ье availaЫe in future articles. 

4.2 Functional Scheme 

The Fig. 2 shows the functional scheme descriЬing the basic path of work with the 
algorithm. The input contains borders limiting the band of the signal being generated, 
the time period, the number of discretization steps. These characteristics, also known 
as input characteristics, allow us to display the spectral density diagram. 
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Iпрнt 

InputЫock 

Computation 

Svectral densin,, 

Тheoretical 
autocorrelation 

Algorithmic 
autocorrelation 

Experimental autocorrelation 

Епоr 
calculation 

Ыосk 

Calculating 
coefficients 

+--------"' Calculating experimental 
autocorrelation 

Fig 2. Functional scheme of the algorithm. 

The spectral density is нsed to compute the theoretical and algorithmic autocorrela­

tions used to evaluate the quality of the imitation, it is also used to imitate the signal 

according to the set input characteristics and to form its experimental autocorrelation. 

4.3 The Algorithm 

The set of steps undertaken to generate the signal, its energetic characteristic and to 

estimate the quality ofthe imitation process is shown on the Fig. 3. Every step ofthe 

algorithm implements mathematical formulas described earlier. 
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Yes 

( __ s_tart __ ) 

Formin s ectral densit 

Calculating фe?retical auto­
corre1atюn 

Calculating algorithmic auto­
correlation and errors 

Acquiring the imitated signal 

Calculating experimental auto­
correlation 

Finish 

Fig 3. Flowchart ofthe random signal imitation algorithm. 

4.4 Software Implementation 

The software implementation has been done using Lazarus IDE, supporting Free Pascal 
programming language. The chosen IDE provides all the necessary mathematical func­
tions and instruments allowing to build desired interfaces. The workflow in the program 
mirrors shown at the figure 3. The user sets the input characteristics which are used to 
picture the spectral density, later the autocorrelation, the signal and the error graph are 
calculated and visualized. 
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4.5 Computational Complexity for the Complex Based Algorithm 

Computational complexity of the method used to calculate theoretical is О(М). Com­
putational complexities for calculating algorithmic and experimental are both 
O(M*(N2-Nl )). 

Thus, computational complexity reaches only O(M*(N2-Nl)), which is closer to lin­
ear time complexity rather than to О(М2) - such result may Ье deemed sufficient.

5 Comparison Between Theoretical and Experimental Results 

In the following example characteristics of the signal under generation are: coR = 61t; 
coL = З1t; Т = 2 s; N = 51; n = 4. Fig. 4 displays the spectral density printed according 
to the characteristics and generated theoretical and algorithmic autocoпelations. 

Left Ь о rder E::J 
Right bordeг � 

Т: � 
N:� 
n: E::J 

1 ,-----,-----,-- ' 
1 1 1 1 1 1 1 1 1 1 

0,8 !----+--+- +----;----- ----+--+--+--+--+ 
О,& !-----1-----1-- --i----+---- -----i-----i----j-----j-----i-
0,4 :-----�-----:-- --�-----:----- -----�-----�----�-----!-----�-

1 1 1 1 1 1 1 1 1 

0,2 :-----�-----f-- --�-----:----- -----�-----�----�-----�-----�-
' 1 1 1 1 1 1 1 1 

о -------------
о 10 15 20 25 30 35 40 45 50 

Shape: 5qua,e form v I Тheoretical autocorrelation □�

о ' ___ .J ____ ,_ ___ _, ____ ,1 ____ ,_ ___ .J ____ L ____ , ____ .J ____ ,_ ___ _, ____ ,1 ____ ,_ ___ J ____ L ____ , ____ ,1. ____ ,_ ___ .J ____ ,1_ 

-�-1: ____ :i'---:i---Jг!т---:1----iг-r:"---:1----:�-1 .:�ii-Jll 
О 10 20 30 40 50 &О 70 80 90 100 110 120 130 140 150 1&0 170 180 190 200 

Algorithmic autocorrelation 1д] О �

: 
1 

О 10 20 30 40 50 &О 70 80 90 100 110 120 130 140 150 1&0 170 180 190 200 

Fig 4. Signal's spectral density and theoretical and algorithmic autocoпelations. 

In the case of the random signal one set of characteristics can describe different sig­
nals. Three signals with characteristics coR = бп; coL = Зп; Т = 2 s; N = 51; n = 4 are 
shown on the figure 5. Three different generated experimental coпelations are shown 
on the Fig. 6. 
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1 1 1 1 1 1 1 1 1 t 1 1 1 1 1 1 1 1 1 1 
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-

1 
- -- - L - _ _ _ � _ -, 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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" 
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Fig 5. Generated random signals. 

Experimental autocorrelation � [I] D � 

О 10 20 30 40 50 60 70 &О 90 100 110 120 130 140 150 160 170 1&0 190 200 

О 10 20 30 40 50 60 70 &О 90 100 110 120 130 140 150 160 170 1&0 190 200_ 

О 10 20 30 40 50 60 70 &О 90 100 110 120 130 140 150 160 170 1&0 190 200 

Fig 6. Generated experimental autocorrelation functions. 

Graph visualization of errors between autocorrelation functions is shown at the Fig. 7. 
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1 1 1 1 1 1 1 1 0,8 - - - - - - - - - - -:- - - - - - - - - - - - - - - - - - - - - - �- - - - - - - -� - - - �- - - - - - - -:- - - - - - - - - - - -:- - - - � - - - - � - - -

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

О, - - ---- ____ , ____ ---- --- ---- ---- ___ _, ____ --------------- ____ , ____ ---- ----,----◄----►-

' 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

- ---- ____ , ____ ---- --- ---- ---- ----'---- ----L----'---- ____ , ____ ---- ____ , ____ _. ____ L - -

1 1 1 1 1 1 1 1 

' ' 

о '+----+--+---+--+---+--+----+--,__-+----+--+---+--+---+--+----+--,__-+----,---1 

О 10 20 30 40 50 60 70 00 90 100 110 120 130 140 150 160 170 180 190 200 

Fig 7. Error graph. 

The tаЫе 1 contains mean errors calculated with different input characteristics and 
allows to estimate the quality of the algorithm for different spectral densities. 

ТаЫе 1 - Errors' testing with different characteristics 

IOR = 101t; 
2 
IOR = 101t; 
3 
ЮR = 6п; 
4 

ЮR = 6п; 
4 

IOR = 101t; 
2 

Characteristics 

IOL = 2,5 1t; 

IOL = 2,5 1t; 

IOL = 3,0n; 

ЮL = 3,Оп; 

IOL = 2,51t; 

Square spectral density method 
Т = 3,2 s; N = 16; n = 

Т = 3,2 s; N = 57; n = 

Т = 2,О s; N = 51; n = 

Т = 2,О s; N = 50; n = 

Right triangle spectral density method 
Т = 3,2 s; N = 32; n = 

Mean errors 

0,03335 

0,03052 

0,04902 

0,01060 

0,03335 

The acquired mean errors meet the requirements set at the beginning of the project. 

Factor analysis shown that separate input characteristics do not affect the mean errors 
directly which was expected ftom the random signal. 

Conclusion 

This paper starts new spectra theory development for high-dimensional signal simula­

tion. First steps using two-dimensional simulation proofed new direction of research. 

The paper shows that the spectral theory provides new approaches of research based on 

matrix mathematical apparatus. The new algorithms could Ье prepared for further au­

tomatization Ъу the means of tool developed in such areas as machine learning, artificial 

intelligence, and Ьig data processing. 

The method of two-dimensional simulation of signals in а complex basis reduces 

algorithmizing to the execution of pre-derived mathematical formulas, which reduces 
the computational complexity and resource intensity of the algorithm, and the use of 

linear data structures positively affect the scalaЬility of the developed solution. The use 
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of а complex basis that more accurately describes the nature of ongoing processes pro­

vides higher simulation accuracy. 
The software solution implemented in the Lazarus environment in the Free Pascal 

language meets the requirements and allows generating deterministic and random sig­

nals, as well as evaluating the quality of simulation Ьу displaying the епоr graph and/or 

displaying the average епоr number. 

The simulation method in the Hartley basis and the software solution based on it, as 
in the case ofthe complex basis, make the algorithm less resource intensive. The soft­

ware solution is implemented in Microsoft Visual Studio using the С# language. For 

both bases, both deteпninistic and random signals сап Ье simulated (at the user's dis­

cretion), and the shape of the SPDF signal сап Ье selected: rectangular and rectangular­

triangular. The signals obtained meet the expectations for the spectruщ and when com­
pared with theoretical and algorithmic ACF, they show епоr levels ofless than 0.05. In 

future studies, it is planned to expand the choice of signal forms, as well as to test new 

methods on а wider range of tasks. It is also planned to create а library of obtained 

algorithms comЬined in а single solution that provides simulation in different bases. It 

is worth noting that formulas are easier to implement in low-level programming lan­

guages, which means that the methods listed in section 4 сап Ье used in embedded and 

rnicroprocessor technology. 
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