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Abstract  
Early old age (60-70 years old) is a particular period of life when possible habit modifications 

may occur, often related to job retirement. While taking up a more sedentary lifestyle may be 

pernicious for health, changing behavior by introducing simple exercises within daily life 

routines can effectively prevent age-related functional decline.  

This article presents the Profiling Tool, a system that provides 60-70-year-old adults with 

personalized recommendations to integrate simple activities, promoting balance, strength, and 

physical activity into their daily life. Its first implementation has been designed on information 

from literature, data from previously available longitudinal datasets, and experts' opinions. It 

has been deployed within a randomized controlled trial. Strategies for its update are based on 

model-based reinforcement learning approaches. 
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1. Introduction 

Population aging is one of the major issues of our present world. Developing preventive 

interventions is one of the keys to tackling this issue, and Artificial Intelligence (AI) can enable these 

interventions and make them more effective and efficient. 

Early old age (60-70 years old) is thought to be the right window of opportunity for prevention. In 

this period of life, habit modifications may take place, often related to job retirement. While taking up 

a more sedentary lifestyle may be pernicious for health, changing behavior by introducing simple 

exercises within daily life routines can effectively prevent age-related functional decline.  

Different mobile applications for healthy lifestyle promotion have been developed using behavioral 

change theories, and some of them have been tested within randomized controlled trials [1]–[3]. 

However, no design principle for using users' data to issue optimal recommendations has been ideated 

and put in place. Within this work, we present the Profiling Tool, a tool developed within the PreventIT 

project [4] that provides personalized recommendations to 60-70-year-old adults on strength, balance, 

and physical activities to integrate into daily life routines. Its ideation and design are based on 

psychological theories and techniques of behavioral change [5] and AI solutions for recommender 

systems [6].  
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In the following sections, we overview the PreventIT project and IT ecosystem and describe the 

Profiling Tool, including its modeling, its first implementation and deployment within a randomized 

control trial, and strategies for its update. 

2. PreventIT and the iPAS 

PreventIT stands for 'Early risk detection and prevention in aging people by self-administered ICT-

supported assessment and a behavioral change intervention, delivered by use of smartphones and 

smartwatches.' It is a European Horizon 2020 project carried out from January 2016 to March 2019 [4]. 

The project aimed to develop a proof-of-concept, unobtrusive mobile health system based on a 

personalized behavior change intervention on balance, strength, and physical activity. The intervention 

is designed for young older adults (adults between 60 and 70 years old) to prevent accelerated functional 

decline at an older age. 

The PreventIT ICT based Personalized Activity System (iPAS) is a mobile health system delivering 

the intervention on smartphones and smartwatches. It includes a smartphone and smartwatch app as 

frontend and a risk model for functional decline [7], [8], the eLiFE intervention program, a Profiling 

Tool for personalizing the intervention, and a behavior change theories-based motivational strategy 

running on a cloud-based backend (Figure 1). 

 

 
Figure 1. The PreventIT mobile health system's architecture, including risk screening for functional 
decline, profiling for personalizing the intervention, the eLiFE intervention program with balance, 
strength, physical activity integrated into daily life, and individual feedback on behavior aimed at 
increasing motivation for behavior change. A smartphone and a smartwatch are used to monitor 
behavior, deliver the intervention, and give individualized feedback on behavior. 



 

The PreventIT intervention program is based on the Lifestyle-integrated Exercise (LiFE) approach 

[9]. In LiFE, rather than using a prescribed set of exercises, activities are performed whenever the 

opportunity arises during the day. The LiFE approach allows personalizing and integrating exercise in 

daily life, and it was found to significantly reduce falls, improve physical function, decrease disability 

and improve adherence, compared with a traditional exercise program and a sham intervention [10]. In 

PreventIT, the original LiFE was adapted (aLiFE, adapted LiFE, [11]) to the needs of 60-70-year-old 

adults to make activities challenging and complex enough for a younger target population. The 

integration of the aLiFE program into the PreventIT iPAS is named eLiFE (enhanced LiFE, [12]). 

Since the LiFE program relies on users embedding balance, strength, and physical activities into 

their everyday life, it can only be successful if they change their behavior. The original LiFE concept 

is underpinned by the behavioral change concepts of habit formation, self-efficacy, skills training, and 

outcomes gained. The motivational strategy in PreventIT is based on the extension of the behavioral 

change framework supporting the intervention [5]. 

 

3. Profiling Tool 

The Profiling Tool is a tool for personalized recommendations on activities to be integrated into 

seniors' daily life routines.  

The Profiling Tool takes as input an individual's health state, a list of potential activities and 

difficulty levels, an estimate of their expected impact on the individual's health state, and contextual 

information, including the individual's preferences for the activities. On this knowledge basis, the 

Profiling Tool provides recommendations to the individual on which activities best fit their needs and 

the appropriate difficulty level for each activity.  

There are 21 types of activities in the eLiFE program with up to four difficulty levels for each 

activity, grouped into three domains: 

1. Strength domain: squatting, lunging, walking on toes, walking on heels, stair climbing, sit-to-

stand, move legs sideways, tighten muscles; 

2. Balance domain: tandem stand, one-leg stand, tandem walk, side-to-side leaning, forward-

backward leaning, stepping over objects, stepping and changing direction, square stepping and 

hopping, square jumping; 

3. Physical activity domain: walk longer, walk faster, sit less, break-up sitting. 

These same three domains describe the individual's health state. 

An expected benefit is calculated for every single eLiFE activity on the specific user profile. 

Recommendations are provided to the individual, accompanied by motivational messages, designed 

according to theoretical constructs of behavioral change (e.g., the Health Action Process Approach) [5]. 

Each day the subject selects a list of activities he/she will perform during the day and confirms the 

actually-performed activities at the end of the day. After every six months, the subject is assessed for 

his/her health state (Figure 2A). All this information about the interactions between the Profiling Tool 

and the individual and their effects is recorded by the iPAS and used by the Profiling Tool for its update. 

In the following, we give a modeling description of the Profiling Tool and its interactions with the 

user, describe the implementation of its first version within the PreventIT project, and present an 

updating strategy. 

4. Models 

To appropriately design the Profiling Tool, including its recommendation policy and updating 

strategy, we characterize the interactions between the Profiling Tool and the user in terms of two 

models, describing the preferences of the individual for the activities and the benefit of these activities 

on the health state respectively. 

4.1. Preference model 



We define the preference model as the model that describes the activities that an individual with 

specific characteristics would perform when given personalized recommendations. 

We use the subscript 𝑡 to indicate the 𝑡-th six-month time period and the subscript 𝑡 ∙ 𝑖 to indicate 

the 𝑖-th day of the 𝑡-th six-month period. 

We call 𝑥𝑡 the vector of subject's features – including their health state, 𝑑𝑡 = 𝑑(𝑥𝑡) the personalized 

recommendations issued by the Profiling Tool, and 𝑧𝑡∙𝑖 = (𝑧𝑡∙𝑖,1, 𝑧𝑡∙𝑖,2, … , 𝑧𝑡∙𝑖,𝐾)
′
 the vector expressing 

the 𝐾 = 21 activities performed by the individual. In particular, 𝑧𝑡∙𝑖,𝑘 is the number of times the subject 

has performed activity 𝑘 during day 𝑡 ∙ 𝑖. We call 𝑧𝑡 the vector expressing the number of times the 

individual has performed each activity during six months 

𝑧𝑡 = ∑ 𝑧𝑡∙𝑖
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𝑖=0

 

(1) 

Thus, the preference model that relates the cumulative selections 𝑧𝑡 with the suggestions 𝑑𝑡 can be 

expressed as 

𝑝(𝑧𝑡|𝑥𝑡, 𝑑𝑡) (2) 
Within the first version of the Profiling Tool, recommendations 𝑑𝑡 were given in the form of an 

ordered list of potential activities, sorted according to their expected benefit on the individual's health 

state. Other choices are also possible to express more quantitatively the strength of recommendation for 

each activity. For example, 𝑑𝑡 = (𝑑𝑡,1, 𝑑𝑡,2, … , 𝑑𝑡,𝐾) could be a vector of such degrees of 

recommendation for each activity, under constrains 

𝑑𝑡,𝑘 ≥ 0 (3) 

∑ 𝑑𝑡,𝑘

𝐾

𝑘=1

= 1 (4) 

A simple parametric form for the preference model (2) is 

𝑧𝑡 = 𝛿0 + 𝛿1
′𝑑𝑡 + 𝜀𝑧,𝑡 (5) 

where 𝛿0 encodes personal preferences, 𝛿1
′𝑑𝑡 encodes the influence of the recommendations, and 

𝜀𝑧,𝑡 is an error term.  

For recommendations that vary every day, the preference model can be expressed by 

𝑝(𝑧𝑡∙𝑖|𝑥𝑡 , 𝑑𝑡∙𝑖) (6) 
and the linear model (5) could be replaced by a logistic or Poisson model over 𝑧𝑡∙𝑖,𝑘. We note that 

the features of the individual 𝑥𝑡 do not change every day, as the health state is assessed once every six 

months. 

Other forms for the preference model can be borrowed by the rich literature on choice modeling, 

and random utility theory [13], and models can easily be tested on data, as quantities 𝑥, 𝑑, and 𝑧 are all 

observed and recorded in the iPAS system. 

 

4.2. Health effect model 

We define the health effect model as the model that describes the future health state 𝑥𝑡+1, based on 

the current health state 𝑥𝑡 and the activities 𝑧𝑡 performed by the individual  

𝑝(𝑥𝑡+1|𝑥𝑡, 𝑧𝑡) (7) 
Within the feature vector 𝑥, one variable 𝑦 can be chosen as the primary outcome. A simple 

parametric form of the health effect model restricted to this outcome is  

𝑦𝑡+1 = 𝑦𝑡 + 𝛼 + 𝛽′𝑧𝑡 + 𝛾′𝑥𝑡 + 𝑧𝑡
′𝜃𝑥𝑡 + 𝜀𝑦,𝑡 (8) 

where 𝛼, 𝛽, and 𝛾 are vector parameters, 𝜃 is a matrix parameter, and 𝜀𝑦,𝑡 is an error term. 

According to this model for the outcome, replacing 𝑧𝑡 with a vector having 1 in the 𝑘-th component 

and zero otherwise, we get the expected health benefit on the outcome of one unit of activity 𝑘 as 



𝛽𝑘 + ∑ 𝜃𝑘𝑗𝑥𝑗

𝑗

 (9) 

where 𝛽𝑘 is the 𝑘-th component of vector 𝛽 and 𝜃𝑘𝑗 is the entry in position (𝑘, 𝑗) of matrix 𝜃. 

 

 
Figure 2: Activity selection and health effects. Panel A: The green rectangle represents a six-month 
cycle. Panel B: direct acyclic graph (DAG) [14] for the Bayesian network of health states 𝑥𝑡 and 𝑥𝑡+1, 
recommendation 𝑑𝑡, and performed activities 𝑧𝑡. It encodes the conditional independence between 
𝑥𝑡+1 and 𝑑𝑡, given 𝑥𝑡 and 𝑧𝑡. 

 

As it is reasonable, we assume that the future health state 𝑥𝑡+1 is independent of the recommendation 

𝑑𝑡, conditional on the current health state 𝑥𝑡 and the performed activities 𝑧𝑡 (Figure 2B) 

𝑥𝑡+1 ⊥ 𝑑𝑡  | 𝑥𝑡, 𝑧𝑡 (10) 
Under this assumption, the transition probability 𝑝(𝑥𝑡+1|𝑥𝑡, 𝑑𝑡) can be expressed as 

𝑝(𝑥𝑡+1|𝑥𝑡, 𝑑𝑡) = ∫ 𝑝(𝑥𝑡+1|𝑥𝑡, 𝑧𝑡)

𝑧

𝑝(𝑧𝑡|𝑥𝑡, 𝑑𝑡)𝑑𝑧𝑡 (11) 

where we recognize the product of the preference and health effect models within the integral. 

 

5. The first version of the Profiling Tool 

The first version of the Profiling Tool was developed on knowledge from the literature, data from 

population studies on aging, and opinions from experts. It was tested in a feasibility randomized 

controlled trial (RCT) within the PreventIT study.  

5.1. Design 

This version for activity recommendation was based on four rules. 

First, the feature vector at baseline 𝑥0 was the three-score individual profile 



𝑥0 = (𝑠1, 𝑠2, 𝑠3) (12) 
each score 𝑠𝑖 ranging from 0 to 5 and expressing the prioritization of exercise on balance, strength, 

and physical activity domains. Each 𝑠𝑗 was derived comparing measures of physical performance 

against cut-offs derived from the literature [15]–[19] and data of 60-70-year-old individuals pooled 

from three longitudinal studies on aging (ActiFE Ulm [20], InCHIANTI [21], LASA [22]). More in 

particular, for each domain, we considered two-to-three variables and created categories on these 

variables using cut-off values found in the literature. After applying these categories on the pooled 

cohort, if a prevalence of at least 10% was found in each category, the cut-off was retained valid. 

Otherwise, the cut-off was derived from the tertiles of the variable on the pooled cohort. Table 1 reports 

cut-offs, scores, and summary statistics on participants of the PreventIT study.  

 

Table 1 
Prevalence of categories of the individual profile of the Profiling Tool version 1 in participants in the 
feasibility RCT (n=189) 

Assessment Cut-off scores 
(males/females) 

Profiling 
score 

Prevalence 
in males 
(n=90) 

Prevalence 
in females 

(n=99) 

Balance     

Tandem stance  Unable or 0-9.99 s  2 24 (26.7%) 34 (34.3%) 
(eyes open) Able to hold for ≥10s 0 66 (73.3%) 65 (65.7%) 

     
Tandem stance  Unable or 0-9.99 s  2 76 (84.4%) 80 (80.8%) 

(eyes closed) Able to hold for ≥10s 0 14 (15.6%) 19 (19.2%) 
     

One leg stance  Unable or 0-9.99 s 1 38 (42.2%) 41 (41.4%) 
(eyes open) Able to hold for ≥10s 0 52 (57.8%) 58 (58.6%) 

     
𝑠1: total score Balance 

median (IQR) 
 Range 0-5 2 (2-4) 2 (2-4) 

Strength     

Handgrip strength ≤40.0 kg/ ≤23.0 kg 2 23 (25.8%) 25 (25.3%) 
(max. of one hand) 40.0-47.0 kg/ 23.1-28.0kg 1 41 (46.1%) 35 (35.4%) 

 >47.0 kg/ >28.0 kg 0 25 (28.1%) 39 (39.4%) 
     

Chair stand test  Unable or ≥13 s/ ≥14.1 s 3 14 (15.6%) 10 (10.2%) 
(five times) 10.8-12.9 s/ 11.5-14.0 s  2 18 (20%) 19 (19.4%) 

  ≤10.7 s/ ≤11.4 s 0 58 (64.4%) 69 (70.4%) 
     

𝑠2: total score 
Strength 

median (IQR) 

 Range 0-5 2 (1-3) 1 (0-3) 

Physical activity     

Gait speed <1.0 m/s 2 1 (1.1%) 3 (3%) 
 ≥1.0 m/s 0 89 (98.9%) 96 (97%) 
     

Moderate/vigorous  <150 minutes 1 30 (33.7%) 30 (31.2%) 
activity per week ≥150 minutes 0 59 (66.3%) 66 (68.8%) 

     
Step count <7,499 steps/day 2 10 (11.2%) 6 (6.2%) 

 7,500-9,999 steps/day 1 13 (14.6%) 17 (17.7%) 
 ≥ 10,000 steps/day 0 66 (74.2%) 73 (76%) 



     
𝑠3: total score Physical 

activity 
median (IQR) 

 Range 0-5 1 (0-1) 1 (0-1) 

Total score user 
profile, median (IQR) 

  5 (4-7) 5 (3-7) 

Values are n (%) unless otherwise indicated. 
 

Second, suggested activities were taken from a list of 21 activities, grouped according to three 

domains. Each activity was made of up to five difficulty levels, for a total of 89 exercises. The expected 

health impact of each activity was estimated from equation (9). In particular, the offsets 𝛽𝑘 were set to 

zero, and matrix 𝜃 for the impact of each activity on each domain was filled by expert judgments with 

scores from 0 to 5. 

Third, activities marked as not pleasant by the individual were dropped off the list of 

recommendations for the following days. 

Fourth, for each suggested activity, its starting difficulty level was determined based on the 

individual's abilities assessed at the beginning of using the Profiling Tool by a trainer. The individual 

could decide at any time to downgrade the difficulty level of an activity, but they needed to train long 

enough to upgrade it. 

Resulting recommendations 𝑑0 = 𝑑(𝑥0) were given in the form of a list of activities, sorted in 

descending order according to their expected health benefit.  

The activities 𝑧𝑡∙𝑖 performed each day were registered by the iPAS system, integrating feedback 

provided by the individual at the end of the day and recordings from global positioning system (GPS) 

and inertial measurement units (IMU) sensors embedded in the mobile phone.  

A demo of this first version of the Profiling Tool is available on the Internet 

(http://taxonomy.disi.unibo.it/TaskRecommenderDemo/) [23]. 

 

5.2. Deployment 

The Profiling Tool was tested within the three-arm PreventIT feasibility RCT (n=180) on three 

clinical centers in Trondheim, Stuttgart, and Amsterdam. One arm was assigned to the iPAS system 

and the Profiling Tool (eLiFE), one was given a booklet with recommendations by a trainer on activities 

to integrate into daily life (aLiFE). At the same time, participants of the control group were provided 

general physical activity recommendations. The primary outcome 𝑦 was taken to be the Late-Life 

Function and Disability Instrument (LLFDI) [24], [25]. A detailed description of the trial protocol is 

available at [4].  

The scoring system for the individual profile showed to be appropriate in stratifying the target 

population on domains of balance and strength, whereas, in the physical activity domain, too few 

participants (< 10%) fell on the lowest categories defined on gait speed and step count (Table 1). 

On the participants of the eLiFE intervention arm that used the Profiling Tool (n=50), we evaluated 

with the iPAS system whether the ranking that was suggested by the Profiling Tool 𝑑(𝑥0) was actually 

selected by the participants. In Table 2, it can be seen that there is not a clear association between the 

ranking of activities by the Profiling Tool and the actual choice of participants from the 21 activities. 

Activities ranked higher by the Profiling Tool, such as 'Square stepping and hopping' and 'Square 

jumping,' were not more frequently selected by participants to incorporate in their intervention regime. 

The only activities that showed a significant association (p<0.05) were 'Stepping over objects,' 'Stepping 

and changing direction,' and 'Lunging,' but there is not a clear pattern in the data to explain these 

associations.   

The first evidence also shows that changes in health outcomes were modest over the RCT 

participants, making health effect models challenging to fit (data not shown). 

 

Table 2 

http://taxonomy.disi.unibo.it/TaskRecommenderDemo/


Frequency of activities ranked in the top 7 with Profiling Tool version 1 and that were actually selected 
by eLiFE participants (n=50).  

Activities Most frequent 

ranking profiling 

tool 

In top 7 based  

on profiling tool 

Actually selected 

by participants 

Chi-square test 

ranking vs. 

selected p-value 

Domain 1: Balance     

Tandem stand  21 - 25 (50.0%) 0.848 
One leg stand  10 - 34 (68.0%) 0.083 
Tandem walk  11 10 (20.0%) 24 (48.0%) 0.153 

Side-to-Side leaning  7 13 (26.0%) 9 (14.0%) 0.609 
Forwards and backwards leaning  3 23 (46.0%) 11 (22.0%) 0.685 

Stepping over objects  8 2 (4.0%) 5 (10.0%) 0.009 
Stepping and changing direction  9 9 (18.0%) 8 (16.0%) 0.039 

Square stepping and hopping  2 40 (80.0%) 3 (6.0%) 0.869 
Square jumping  1 48 (96.0%) 3 (6.0%) 0.060 

Domain 2: Strength     

Squatting  15 8 (16.0%) 26 (52.0%) 0.251 
Lunging  4 41 (82.0%) 27 (54.0%) 0.023 

Walking on toes 5 39 (78.0%) 22 (44.0%) 0.247 
Walking on heels  6 37 (74.0%) 11 (22.0%) 0.214 

Stair climbing  17 24 (48.0%) 29 (58.0%) 0.064 
Sit to stand  13 32 (64.0%) 26 (52.0%) 0.150 

Move leg sideways  20 11 (22.0%) 10 (20.0%) 0.072 
Tighten muscles  21 2 (4.0%) 11 (22.0%) 0.104 

Domain 3: Physical activity     

Walk longer  18 - 9 (18.0%) 0.948 
Walk faster  15 2 (4.0%) 5 (10.0%) 0.927 

Sit less  19 - 17 (34.0%) 0.498 
Break up sitting  12 9 (18.0%) 24 (48.0%) 0.387 

Values are n (%). 
 

6. Updating strategy 

Data collected from the iPAS (either in the above-mentioned feasibility RCT or its continuous usage) 

may refine the Profiling Tool and make it more effective. To this end, we model the interactions 

between the Profiling Tool and the subject with a Markov Decision Process (MDP) [26] 

𝑀𝐷𝑃 = {𝑇, 𝑋, 𝔇, 𝑝(𝑥𝑡+1|𝑥𝑡, 𝑑𝑡), 𝑟(𝑥𝑡, 𝑑𝑡)} (13) 
where:  

• 𝑇 is an ordered set of time points;  

• 𝑋 is the set of features characterizing the individuals;  

• 𝔇 is the set of recommendations that the Profiling Tool can issue; 

• 𝑝(𝑥𝑡+1|𝑥𝑡, 𝑑𝑡) is the transition probability between state 𝑥𝑡 ∈ 𝑋 at time 𝑡 ∈ 𝑇 to state 𝑥𝑡+1 

∈ 𝑋 at time 𝑡 + 1 ∈ 𝑇, when the Profiling Tool has issued the recommendation 𝑑𝑡 ∈  𝔇; 

• 𝑟(𝑥𝑡 , 𝑑𝑡) is the reward of being in the state 𝑥𝑡 and issuing recommendation 𝑑𝑡. 

We assume that issuing different recommendations has the same cost and thus the reward 𝑟(𝑥𝑡 , 𝑑𝑡) 

is a function of the sole health state 𝑥𝑡+1. In particular, we pose a reward equal to the primary outcome: 

𝑟(𝑥𝑡 , 𝑑𝑡) = 𝑦𝑡+1. (14) 
Considering to use the data collected during the PreventIT feasibility trial to develop a second 

version of the Profiling Tool (Figure 3A), the Markov decision problem is defined over only one period 

(𝑇 = {0,1}) and is stated as follow 



max
𝑑1:𝑋 →𝔇

𝐸[𝑟(𝑥1)|𝑥1, 𝑑1] = max
𝑑1:𝑋 → 𝔇

𝐸[𝑦2|𝑥1, 𝑑1] (15) 

= max
𝑑1:𝑋 →𝔇

∫ 𝐸[𝑦2|𝑥1, 𝑑1, 𝑧1]𝑝(𝑧1|𝑥1, 𝑑1)𝑑𝑧1

𝑧

 

= max
𝑑1:𝑋 → 𝔇

∫ 𝐸[𝑦2|𝑥1, 𝑧1]𝑝(𝑧1|𝑥1, 𝑑1)𝑑𝑧1

𝑧

 

Using the linear outcome model for 𝐸[𝑦2|𝑥1, 𝑧1] as in equation (8), and the preference selection 

model in equations (3-5), the problem (15) becomes: 

maximize 

𝑑1
′𝛿1(𝛽 + 𝜃𝑥1) (16) 

subject to  

𝑑1,𝑘 ≥ 0 ∀𝑘 (17) 

∑ 𝑑1,𝑘

𝐾

𝑘=1

= 1 (18) 

 

 
Figure 3: Update of the Profiling Tool (PT). Panel A. Quantities in black are those already collected with 
the first experimentation of the PT in PreventIT; quantities in grey are those relative to a second 
version of the PT. Panel B. Iterative updating strategy of the PT's preference and outcome models, in 
the case of iterative deployment. The inner green rectangle represents a six-month cycle with a time 
unit equal to one day, while the outer blue rectangle represents a cycle over repetitions of six-month 
cycles (i=0:179). 

Given 𝑥1 and having estimated the parameters 𝛿1, 𝛽, and 𝜃 from the data, the problem (16-18) is a 

simple linear program in the canonical form. Calling 𝑎 the vector 𝛿1(𝛽 + 𝜃𝑥1), and provided that 𝑎 has 

at least one positive component, the problem is solved by the sparse vector 𝑑∗ = (𝑑𝑘
∗ ), so that 𝑑𝑘

∗ = 1 



for 𝑘 = 𝑎𝑟𝑔 max
𝑘

𝑎𝑘, and 𝑑𝑗
∗ = 0 for all others 𝑗 ≠ 𝑘. We note that replacing constraint (3) with one 

over the L2 norm of 𝑑𝑡, makes the solution non-sparse. 

Model parameters (e.g. 𝛿0, 𝛿1, 𝛼, 𝛽, …) could be derived for a) the whole population or sets of users, 

b) in a subject-specific manner, or c) combining both approaches with mixed-effect models. We judged 

that data from the PreventIT feasibility trial are insufficient to estimate all model parameters with 

appropriate precision and robustness. Hence, model fitting can proceed according to Bayesian 

estimation using parameter values of the first version to construct prior parameter distributions. 

Otherwise, data-driven recommendations can be combined heuristically with recommendations coming 

from the first version. 

Figure 3B further shows a schema for updating the Profiling Tool beyond the second version, upon 

consecutive deployments over a time horizon 𝑇. The Profiling Tool is foreseen to evolve as more data 

accrue and update the preference and health effect models. The preference model can be updated every 

day since performed activities 𝑧𝑡∙𝑖 are recorded daily, while the health effect model is updated with a 

six-month periodicity. 

Focusing on the slower update periodicity and following the conceptual framework usually 

employed with MDPs, we define a cumulative reward 

𝑅(𝑥0) = 𝐸 [∑  𝑟(𝑥𝑡 , 𝑎𝑡)

𝑇

𝑡=0

| 𝑥0] = 𝐸 [∑  𝑦𝑡

𝑇

𝑡=1

| 𝑥0] 

 

(19) 

Considering the recommendation function  

𝑑𝑡: 𝑋 →  𝔇 

 
(20) 

that possibly changes with time as the Profiling Tool is updated, we aim to find a recommendation 

policy  

𝜋 = (𝑑0, 𝑑1, … , 𝑑𝑇) 

 
(21) 

that maximizes 𝑅(𝑥0). 

Upon knowledge of the preference and health effect models, the transition probability is known and 

the Markov decision problem to find the optimal policy 𝜋∗ can be solved with linear programming 

techniques (e.g., backward induction, value iteration, or policy iteration algorithms). However, in the 

more general case, both the transition probability and the recommendation policy have to be learned on 

data, as long as they accrue. Reinforcement learning heuristics serve this case [27], balancing the 

tradeoff between exploiting the likely most effective recommendations and exploring others' 

effectiveness.  

 

7. Discussion 

We have presented the Profiling Tool's design and first deployment, a recommender system for 

behavioral change of 60-70-year-old adults.  

Its design was inspired by and based on psychological theories and techniques of behavioral change 

[5] and AI solutions for recommender systems [6]. Its first version was designed on information from 

the literature, data from cohorts of epidemiological studies on aging, and experts' opinions. The 

mathematical models that describe its interactions with the user serve to analyze its functioning and 

plan updating strategies as more data get available. To the best of our knowledge, their employment is 

new in the applicative field of mobile applications for prevention. 

Analyses from its first deployment within the PreventIT feasibility RCT have provided insights. 

First of all, the individual profile scoring was shown to be satisfactory, distinguishing distribution of 

scores on the domains of balance and strength, but not on the physical activity domain, in our cohort of 

people aged 60-70 years old. 

Secondly, recommendations are only loosely associated with actually-selected activities. In the 

PreventIT feasibility RCT, the intervention regime was put together by the participants themselves, in 

consultation with the trainer. This might have affected the decisions of participants and could have 



overruled the ranking by the Profiling Tool. Another possible cause behind this lack of correspondence 

between recommendations and user selection of activities may lie in the form the recommendations 

were provided. More specifically, recommendations were ordered list of activities without any 

indication of the strength of recommendation associated with each activity. For future developments, 

we could test whether recommendations become more convincing by expressing the strength of 

recommendation more quantitatively or by presenting a limited number (e.g., only the top 7 rankings) 

of activities. It is further suggested to explore different strategies for planning the intervention regime 

and sending motivational messages accompanying the recommendations.  

Preliminary analyses have also shown that health changes could be small over six months for a 

highly functional target population, making health effect models challenging to estimate. This issue 

could be solved by deploying the tool on a population which is broader and more heterogeneous. 
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