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ABSTRACT
Nowadays, manufacturing industries have to shorten the time
to market to satisfy customers’ needs and survive in globally
competitive contexts. For these reasons, all the steps required
to create new products need to be optimized as much as pos-
sible to minimize the overall execution time. Technologies like
CAD (Computer-Aided Design) and CAE (Computer-Aided En-
gineering) are useful in this process. At the same time, Finite
Element Methods are fundamental because they allow perform-
ing simulations, not only of mechanical components but also of
an entire manufacturing process. Doing so, there is the possi-
bility to avoid errors which would entail the need to carry out
further operations and, therefore, increase execution time during
the product’s creation. In the context of heavy simulations per-
formed on High-Performance Computing (HPC) architectures, it
is challenging to estimate each job’s pending time, i.e., the time
between the job submission and the job execution starting time.
This information could support the optimization of the resource
requests, drastically reducing the waiting times needed to obtain
the simulations’ results. This paper presents an innovative and
hierarchical data-driven methodology to estimate the discretized
value of pending time, i.e., estimating the range time that a job
will have to wait before the necessary hardware resources are
supplied for its execution. A large set of experiments have been
performed on a real dataset collected in an Italian industrial con-
text to assess the proposed approach’s effectiveness in correctly
and accurately predict the pending time’s discretized value. This
work is a preliminary step towards implementing a scheduling
system based on machine learning techniques.

KEYWORDS
Data-driven methodology, HPC cluster, Hierarchical Classifica-
tion Approach

1 INTRODUCTION
Nowadays, manufacturing industries make extensive usage of
physical HPC clusters[8] or online data centers to execute a huge
amount of simulations for mechanical components or entire man-
ufacturing processes. In this way, it is possible to slightly reduce
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incoming errors related to the final product, trying to shorten
the time needed for its creation. The problem is that these simu-
lations request lots of resources that are often not immediately
available, increasing the time needed to start the job execution
and, consequently, obtaining the final results. The waiting time,
but also the execution time, can also be affected by hardware,
software, node, and many other types of failures that can occur,
wasting cluster resources [11, 24]. Generally, many simulations
are needed for a single product and, for this reason, there is the
necessity to overcome these problems. The topic is significant in
the real context of software applications development in the in-
dustrial field. This requires efficient and innovative solutions that
can benefit from data analytic and machine learning techniques.
Some research studies have addressed this research issues.
The available data to be analyzed are characterized by a strong
class imbalance (both in the categorical and continuous context)
because most of the submitted jobs have limited waiting times,
while only a limited part of them request high waiting times. The
estimation of these times is challenging because it is influenced
by different factors (like, for example, the computation type, the
parameters used to run the simulations, the available resources’
usage, and many others) not known a priori.
First, we consider a set of features describing the job submis-
sion’s context. Some of them were available within the database
provided (like the amount of resources requested to run the job,
the software to use, and the submit, start and end times available
for each job). We will refer to them as the accounting data. In
contrast, other attributes related to the HPC cluster context (like
the number of jobs in the queue and the number of running jobs
at the submit time) have been identified using a feature selection
process, detailed in Section 3.2, to which we will refer to as con-
text data. It is also essential to notice that developing an effective
data-driven methodology would create a strong impact in using
HPC’s hardware resources, whose optimization would signifi-
cantly reduce software testing costs. The implemented solution
belongs to the hierarchical classification and it is composed by
three classification levels, each one characterized by thresholds
(for the definition of the local class of prediction) and training
records that depends on the results of the previous level.
The paper is organized as follows. Section 2 illustrates the related
work concerning the optimization of resources allocation in the
HPC context. In Section 3 a brief description of the data is given,
discussing the cleaning and feature engineering operations used



to build the dataset, avoiding as many outliers as possible, and
also depicting the solution implemented, describing all the main
parts that compose it and the most important features provided.
Section 4 discusses the experiments executed during the imple-
mentation process. In fact, the proposed methodology has been
validated on a real-data set collected in the context of a CNH
(an American-Italian UK-headquartered multinational corpora-
tion) HPC cluster, proving the effectiveness and accuracy of the
methodology in making correct predictions. Finally, in Section 5,
we conclude the paper by proposing some future improvements
of the proposed data-driven methodology towards implementing
a scheduling system based on machine learning techniques.

2 RELATEDWORK
Some studies have addressed fundamental aspects for the im-
provement of resources allocation. In fact, the scientific literature
has focused on two main problems: (i) the job failure prediction
and (ii) the implementation of scheduling algorithms based on
machine learning techniques.
The first approach aims to predict how a specific job will end
its execution, estimating if an error will occur or the results
will be returned. The implemented algorithms try to stop those
jobs whose termination status is predicted as a failure [9, 11, 12],
independently of its type. The study of unsuccessful jobs and
tasks execution can improve the performance and the energy
saving of an entire HPC cluster [10, 19], but request lots of data to
be used to define a pattern between the attributes and the target
variable. The most significant variables can be available from the
start, saved in different databases, or extracted from the available
data with some feature engineering processes. Anyway, it is
important to notice how parsing and transformation operations
[6] are extremely useful to obtain better prediction results. Some
failures are not so easy to predict because they are rare, meaning
that they occur fewer times than the other, but can anyway
produce lots of waste of energy and resources [14]. For example,
Liu et al. [11] implemented a system for the failure prediction
composed of two main algorithms: the first one is a job clustering
algorithm used to measure the correlation among jobs with a
various number of tasks. In contrast, the second one is a multitask
learning algorithm used to get similar information from different
correlated jobs. In this paper, however, we do not address this
problem because the data available are not sufficient to achieve
reliable results.
A parallel research approach has been devoted to studying how
a scheduler can optimize the available resources. Jassas et al. [9]
also suggested, after the analysis of finished and failed jobs be-
havior, the development of scheduling algorithms to improve the
reliability and availability of cloud applications. In large-scale
HPC, a waiting queue is needed when the system is highly em-
ployed, whereas the number of resources cannot be unlimited.
With their studies, Nurmi et al. [15] have confirmed that, despite
the prediction efficiency of a resources scheduler, the perfor-
mance is also affected by the job’s waiting time that increase
when there are limited resources.
Among the open issues in the research field of industrial software
development, the design of a data-driven HPC cluster scheduler
to optimize the resources allocation is challenging. To this aim,
this paper proposes a data-driven methodology for estimating
a job’s pending time by combining other techniques available
in the state-of-the-art appropriately. Like Park [16], we study,
design, and develop a data-driven model to improve the scheduler

performance by analyzing the jobs log file. Unlike Park, we derive
a prediction model estimating the uncertain time of the submitted
job.

3 THE PROPOSED METHODOLOGY
Here we present our data-driven methodology to derive a predic-
tive model that estimates the pending time of submitted jobs. The
proposed methodology follows the KDD (Knowledge Discovery
from Database) main steps [23], starting from the analysis of the
available data up to the deployment of a model able to predict
the time interval of the target variable with good performance.

Figure 1: Schema of the proposed methodology

Figure 1 shows the main building blocks of the proposed method-
ology. Given the small amount of data available, Data Integration,
Data Cleaning, Feature Engineering, and Data Exploration oper-
ations have been carried out, which are extremely useful respec-
tively for organizing and cleaning up the data and then perform
statistical analyses to get a broader view of the problem. Then,
we moved on to the experimental phase, called Validation in the
schema reported in Figure 1, where several tests were carried
out to understand the behavior of machine learning algorithms.
Thanks to this phase, we arrived at implementing the model later
presented in Section 3.4.

3.1 Use case description
The monitoring system running on CNH for a job submitted to
be executed on the cluster collects some types of data, including:

1) Accounting data that contain all the information about
the job submitted like the submit, start and end times, the
number of resources requested, the identifier of the user
that submitted it, and many others, for a total of about
twenty attributes.

2) HPC queues’ technical specifications.
3) Context data that have been computed using the infor-

mation from the previous two categories and containing
those attributes related to the HPC cluster context at the
time of the job submission.

Among all the variables within the accounting data table, the
attributes concerning the number of requested resources, like
the number of CPUs requested or the software to use for the
job execution, were highlighted as useful, along with the times
related to the execution itself (submit, start and end of the job),
while many others were discarded, due to a low utility for the
model learning process (like in the case of the user identifier)
or the high presence of missing values. On the other hand, the
majority of the context attributes were selected for this prediction



problem. The cardinality of accounting and context data is about
25 thousand records, after the cleaning process.
Given the difficulty of the problem, a specific analysis of the
available data was made so that the prediction categories could be
defined. Based on the results of the data exploration step and the
discussion with the domain experts, the classes of interest were
defined as follows: negligible or not (identified by a 60-seconds
threshold), greater or less than one hour, or other sub-ranges of
the last step. Through these three levels, it is possible to support
the user in deciding whether or not to submit the job at that
specific moment.

3.2 Data preparation and exploration
Some cleaning operations were necessary to remove possible
errors within the accounting data. The cleaning process involved:
1) the elimination of all those records that have not started their
execution (run time equal to 0), indicating the presence of hard-
ware problems that invalidate the execution of the job, 2) the
deletion of variables that do not provide any useful information
such as the alphanumeric identifier of the user that submitted it,
3) the removal of all the duplicate jobs present inside the dataset,
as well as 4) the deletion of those records characterized by am-
biguous attribute values that cannot be inferred or computed.
Besides, we search for a status variable associated with each
job, found inside PBS (Portable Batch System, the simulations
manager) raw files, reporting possible software problems during
the submission of the job and all those records with a value that
differs from 0were deleted. Carrying out the cleaning operations,
the data available went from 105 thousand records to just over 25
thousand, minimizing the possibility of prediction errors caused
by external conditions.
The above-mentioned dataset does not contain any reference to
the status of the HPC cluster at the submission time, data that
would be extremely useful for predicting the waiting time of a
job. For this reason, using the information regarding both queue
on which the job is launched and the submit, start, and end times
associated with its execution, a feature engineering process has
been carried out to extrapolate the attributes that allow charac-
terizing the HPC context at the submit time of each available
record. Almost all the available data were used, applying only a
selection of the data cleaning operations previously analyzed, as
jobs that cannot be useful for the prediction process hold anyway
the resources of the HPC cluster and therefore conditioned the
times of other jobs submitted later. After the entire extraction
process, we selected only the records with the information re-
lated to those jobs that were not affected by the accounting data’s
cleaning operations. With this feature engineering process, we
have extracted, for each tuple, the number of jobs that, at the
submission time, were waiting for the necessary resources, the
number of those that, instead, was in execution, the total waiting
and execution time up to that moment, the number of cores and
nodes available at the submission time.
The data preparation is a semi-supervised process that has been
executed manually, step by step. As usual, the pre-processing
is a custom pipeline requiring a strong interaction with the do-
main experts to continually assess the selected data’s quality and
remove noisy data. It includes different steps deeply dependent
on the key aspects of available data and the feedback given by
domain experts to assess each cleaning step’s correctness and the
quality of the obtained results. The proposed strategy strongly

depends on available data, and it is not easy to generalize the
procedure to be used in a different setting.
Finally, after obtaining the necessary information, exploratory
analyses were carried out on both accounting and context data
to extract as much knowledge as possible to use for the predic-
tion algorithm. We studied mainly the distribution of variables,
through tests such as Shapiro-Wilk [20] and graphical visual-
izations like bar charts or box plots [13], and also the type of
relationship between the variables, using correlation matrices,
generated with the Spearman correlation coefficient [22], and
tests such as 𝜒2(Chi-squared) and 𝜂2(Eta-squared). More specif-
ically, we studied the distribution of the target variable for the
accounting data through some clustering operations that have
highlighted the high presence of values in the low part of the
range. About the correlation matrix of the context data, reported
in Figure 2, we looked at the cells containing values greater than
0.85 or lower than −0.85 because, in this case, only one of the two
attributes should be considered, being the two highly statistically
related. Besides, the distribution analysis has been deepened
for accounting data, also performing descriptive analysis and
clustering operations.

Figure 2: Correlation matrix generated for the context
data

3.3 Data labelling
Here we discuss the distribution of the target variable, by means
of different statistical methods (see Figure 3, 4 and 5), and explain
the decision taken to define the prediction classes.
Figure 3 shows the frequency of pending time value of every job
available in the real dataset, highlighting for each classification
level, represented in Figure 3a, 3b and 3c, the thresholds applied.
It is important to notice that as levels increase, the classification
is more specific and ranges are more limited. The x-axis have a
logarithmic scale to represent all the data available, while the y-
axis have a linear scale in which the absolute frequencies of each
value are reported. The higher frequencies are observed for values
less than 60 seconds, noting that around this value, the curve
tends to flatten on frequencies close to 0. This because, for values
higher than this threshold, as also shown by the graph in Figure 4,
there is a low number of jobs compared to those belonging to the
first prediction class. On the other side, for values greater than 60
seconds the variability of the attribute increases, as shown by the
low frequencies displayed in Figure 3. The records’ distribution
in the different classes shows, in fact, a clear imbalance between
class 0 and the others, being the first class cardinality eight or
more times higher than the other classes. However, this can be
considered acceptable in a real context since, for times less than



a minute, the wait can be considered negligible, highlighting a
good CNH HPC cluster sizing.
Figure 5 shows the distribution of the target variable for each
specific prediction class. From this representation a highlighted
aspect is the presence of outliers within the clusters at the ex-
tremes, which means that boxplots are crushed on the lowest
values of the graph. On the other hand, for the other clusters,
one information that can be derived is that most of the values
belonging to each cluster tend to concentrate around the median.
From the analysis of the boxplots, in addition to the dispersion
of the data around the median, it is also clear that there is a
higher medium-low values frequency within the clusters, which
explain the downward displacement of the box. This confirms
the existence of a positive asymmetry, as already highlighted by
the bar chart shown in Figure 4.
It is possible to say, that each one of the three classification levels
of the implemented system has a specific objective:

• The first level’s objective is to identify those jobs that have
a negligible waiting time.

• The second level points to provide feedback to the user,
giving him the ability to decide whether to wait to submit
the job, considering that the threshold is an hour.

• The third manages more critical situations, specializing
the results obtained by the second level.

The choice of thresholds’ values for each classification level is
experimentally-driven, meaning that it is based entirely on the
results of experiments previously conducted, the results of which
are discussed in Section 4. The identification of the classes to be
predicted, in terms of ranges for each of them, for the first level
has been defined with a data-driven approach. An iterative pro-
cess based on classification was used, with several classes ranging
from 20 to 2. The search ended in correspondence with the best
results, identified by a binary classification with a 60-seconds
threshold. This one admits distinguishing between negligible
times and the most significative ones firstly. In fact, with a time
less than 60 seconds, every time can be considered as acceptable.
The values obtained by all the experiments (see Section 4) are
reported in Table 5, 6, 7 and 8. From the evaluation of the mod-
els, which results are reported in Table 1, we decided to use the
MLP (Multi-level Perceptron) [7] for the prediction of the first
classification level.
Considering that the results for class 0 are extremely meaningful,
with a 94% of correct predictions, we decided to apply the other
levels only to class 1. Considering the low data availability (about
six thousand records, i.e., the ones correctly classified in the first
step), we decided to perform another binary classification. The
classes thresholds have been set after performing different exper-
iment to find a good trade-off between the prediction reliability
and the number of associated records for each specific class. After
finding a compromise by using a 3, 600-seconds threshold, we
studied the behaviour of all the algorithms, obtaining the results
reported in Table 2, which highlight the suitability of the MLP as
classifier of the second level.
We decided to apply a further classification to both of the second
level classes for the third level. For the first one, whose range
goes from 60 to 3, 600 seconds, considering that the range is quite
narrow, we opted for a binary classification with a 900-seconds
threshold, thus creating classes 1.0.0 and 1.0.1, sufficient to give
users fairly precise feedback. To decide which model was the
most accurate in the assignment of records belonging to class 1.0,
an evaluation of the algorithms has been carried out, obtaining

the values shown in Table 3, from which we derived that the
Decision Tree [3] was the one that better fits the situation. For
the classification applied, instead, for the class 1.1 of the second
level, considering that the range is wide (from 3, 600 seconds up to
a few days of waiting), a binary classification was not the proper
approach. From the multi-class experiments previously executed
(discussed in Section 4.2), we noted that the one with higher
results was a 3-class classification, which shows also a great
improvement compared to the other experiments (taking into
account the results reported in Table 6). In this context, the 7, 200-
and 10, 800-seconds thresholds adopted to create classes 1.1.0,
1.1.1 and 1.1.2 were defined to meet some conditions: 1) do not
compromise too much the performance and 2) obtaining classes
to return meaningful feedback to the users. After identifying
these fundamental characteristics, we examined all the selected
algorithms and, from the results obtained and reported in Table
3, it was possible to highlight that the Decision Tree was the one
that better fits the situation.

3.4 Data modeling
The solution found is part of the category known as hierarchical
classification [21] (a specific case of ensemble learning [17]) in
which more algorithms are used to predict the belonging class.
In fact, the system created, whose schema is shown in Figure 6,
is composed of several prediction levels in which the algorithms’
training depends on the class predicted in the previous level.
Only correctly classified records are reused for the algorithm’s
training in later levels, resulting in a physiological decrease of
records each time you move to a following level.
The algorithms that make up the system are the MLP and the
Decision Tree. The first one belongs to Neural Networks. The final
model comprises several interconnected layers, each composed
of many neurons, where each connection has a weight associated.
These algorithms’ learning process is based on the adaptation of
the weights to minimize the difference between the real value
and the predicted one. These are good algorithms for real-time
predictions but are characterized by a high initialization time. On
the other hand, Decision Trees are non-parametric algorithms
able to predict the target variable value through simple conditions
inferred from the data. The final model is made up of nodes
(specific variables), branches (possible values of the variables),
and leaves (final class of prediction). This algorithm is easy to
visualize and understand why a specific value is returned but is
low-generalizable. Even a small variation of a variable value is
enough to change the final result completely.
In Figure 6 we try to schematize the operation of the hierarchi-
cal process with which the best results have been obtained. In
essence, all the steps that the system performs to assign the most
appropriate class are depicted, given the input variables provided.
As it is possible to see in Figure 6, we refer to the first level ranges
as Class 0 and 1, to the second level as Class 1.0 and 1.1 and to
the third level as Class 1.0.0, 1.0.1, 1.1.0, 1.1.1 and 1.1.2.

3.5 Model characterization
It is important to note that all the algorithms that make up the
hierarchical model must be interpretable so that, starting from
specific input values, it is clear the process for which a certain
value is returned. This is implicit for the Decision Trees used in
the third level. They are algorithms that can be interpreted by
definition, giving the possibility to draw the entire rules’ tree.
Instead, in the case of the two MLPs used for the classification



(a) First classification level (b) Second classification level (c) Third classification level

Figure 3: Representations of the records distribution considering the belonging class and the classification level

Figure 4: Distribution of records for each prediction class

Figure 5: Box-plot, for each prediction class, of the records’
distribution

Figure 6: Schema of the best classification solution found

of the first and second level, being these considered as black
box algorithms, it was necessary an intermediate step of inter-
pretability with the use of Decision Trees: the latter is provided

with the input variables of each MLP, while as target variable the
predictions made by the MLP are used. This process is outlined
in Figure 7.

Figure 7: Schema of the explanation process of the MLPs
through Decision Trees

Using these tests, the results obtained are extremely accurate
since the Decision Tree employed for the first level explains the
MLP to 99%, while the one used in the second level to 93%.

3.6 Data prediction
Every time a new job arrives, the first level MLP is used to classify
the record. If the classification result is 0, the prediction system
stops, meaning that this job will wait at most 60 seconds before
entering in execution. Differently, if the result of the classification
is 1, the system passes to the second level of the system, that will
perform a binary classification again with an MLP classifier, and
then to the third one, depending on the class predicted in the
second level, to better understand the range to which the real
pending time belongs. In fact, if the result of the second level is 0,
in the third level is performed a binary classification, while, if the
result is 1 will be performed a 3-class classification, in both cases
using a Decision Tree classifier. The different approach adopted
for the two third-level predictions derives from the difference
between the classes 1.0 and 1.1 (the first from one minute to one
hour, while the second ranges from more than one hour to a few
days of waiting), even if the number of training records is quite
the same.

3.7 Model evaluation
For the evaluation of every algorithm used in all the performed
experiments, subsequently reported in Section 4, we employed
two different strategies: (i) for the regression experiments (see
Section 4.2) we used the 𝑘-fold cross validation, (ii) while for the
classification ones we used the stratified 𝑘-fold cross validation.
Both these strategies can obtain reliable estimates of the algo-
rithms’ performance when they work with unseen data, finding
an acceptable bias-variance trade-off [18]. These techniques are
used to assure the robustness of the models’ results. This section
also defines how and when we used them, giving details on the
𝑘-parameter used in the different experiment types and the final
solution implemented.



The 𝑘-fold cross validation is a well-known state-of-the-art strat-
egy widely used in the machine learning and data mining com-
munity to estimate the performance of supervised algorithms,
assessing the validity of the experiments’ results. It is composed
by some simple steps:

1) Split the dataset into 𝑘 disjoined groups (subsets)
2) For each subset:

• Take the group as test set
• Take the remaining 𝑘 − 1 groups as training set
• Fit a model on the training set and evaluate it on the
test set

• Retain the evaluation and discard the model
3) The model performance is estimate as the average of the

𝑘 experiments executed

The stratified 𝑘-fold is a particular case of the 𝑘-fold cross valida-
tion, which retains, in each group, the same label distribution of
the entire dataset.
By using these two strategies we can ensure that the presented
results, reported in Section 4, are robustly evaluated, minimizing
the possibility of occurring errors.
The 𝑘 value is selected considering the cardinality and the type
of the available data, but, generally, 10 is a good standard value.
For the regression experiments we used a 𝑘-fold cross validation
with 𝑘 = 10 and also with 𝑘 = 20 to evaluate the models, while
for the classification ones we adopted a stratified 𝑘-fold cross
validation with 𝑘 = 20 for the majority of them. For the hierar-
chical experiments, we used both 𝑘 = 20 and 𝑘 = 30, considering
the variability of the attributes and the data cardinality for each
classification level. Because of that, in the proposed solution,
analysed in Section 3.4, we used a stratified 𝑘-fold with 𝑘 = 20
for the first two levels, while for the last one we applied this
strategy using 𝑘 = 30.

4 PRELIMINARY EXPERIMENTAL
VALIDATION

Here we discuss the experimental results performed to address
two precise objectives:

1) Evaluating the performance of the different selected algo-
rithms for the implementation of the proposed solution
levels (see Section 4.1)

2) The experimental comparison of the proposed solution
with respect to the state-of-the-art techniques (see Section
4.2)

4.1 Performance evaluation
Here we discuss the performance evaluation of the proposed
methodology. The first prediction level with a 60-seconds thresh-
old has been defined as two classes, whose cardinalities are 17, 472
records (jobs) for the first one and the remaining 7, 967 for the
second one. From the evaluation of all the selected algorithms,
using a stratified 20-fold cross-validation [23], we obtained the
results reported in Table 1. Looking at these results, the most
accurate algorithms are the KNN (k-Nearest Neighbors) [1] and
the MLP. Considering the high initialization time for both algo-
rithms, the MLP allows a faster prediction in real-time, even for
very complex networks. For this reason, it was chosen for the
first classification level.
To train the second prediction level, we used only the records that
in the first level were correctly classified as belonging to class 1.
In this case, we used a binary classification with a threshold set to

Table 1: Results for the first level classification of the best
classification approach

Algorithm Mean
Accuracy

Precision
Class 0

Precision
Class 1

Recall
Class 0

Recall
Class 1

F-measure
Class 0

F-measure
Class 1

SVM Classifier 0.895515 0.879496 0.948320 0.976763 0.704782 0.925581 0.808612
KNN Classifier 0.908408 0.899230 0.935290 0.976019 0.760136 0.936052 0.838665
Decision Tree 0.904910 0.894905 0.934796 0.976190 0.748588 0.933782 0.831393
Random Forest 0.902551 0.891687 0.935556 0.976763 0.739802 0.932288 0.826243
MLP Classifier 0.908959 0.896712 0.945873 0.980369 0.752353 0.936676 0.838087

Table 2: Results for the second level classification of the
best classification approach

Algorithm Mean
Accuracy

Precision
Class 1.0

Precision
Class 1.1

Recall
Class 1.0

Recall
Class 1.1

F-measure
Class 1.0

F-measure
Class 1.1

SVM Classifier 0.673340 0.634847 0.718535 0.725892 0.626304 0.677324 0.669257
KNN Classifier 0.648482 0.613054 0.689112 0.693395 0.608283 0.650754 0.646180
Decision Tree 0.676510 0.656513 0.695347 0.662310 0.689851 0.659398 0.692588
Random Forest 0.679847 0.662974 0.694618 0.655245 0.701865 0.659087 0.698223
MLP Classifier 0.707040 0.671890 0.745378 0.742141 0.675624 0.705270 0.708789

3, 600 seconds. Re-evaluating the algorithms with a stratified 20-
fold cross-validation, the results, shown in Table 2, were obtained.
From these values, it is evident that the MLP is the algorithm
with the best performance values among all, the reason why it
was chosen as a classifier for the second level.
Considering the results of the MLP, the algorithm that best fits
the situation, 4, 238 records have been used for the training of the
third level that are equivalent to those correctly predicted both
as class 1.0 and as 1.1, respectively 2, 101 for the first one (about
46.5% belonging to class 1.0.0 and the remaining 53.5% to class
1.0.1) and the remaining 2, 137 for the second one (about 20%
belonging to class 1.1.0, 15.5% to class 1.1.1 and the remaining
64.5% to class 1.1.2). For the third classification applied to class
1.0, it was decided to perform a binary classification using a
900-seconds threshold, thus creating the two final classes, 1.0.0
and 1.0.1. To evaluate the algorithms in this situation, we used a
stratified 30-fold cross-validation, obtaining the results reported
in the second and third columns of the Table 3. From these values,
it is possible to notice that all algorithms predict better just one
of the two classes, all except the Decision Tree that predicts both
classes well and better than all the other models. Finally, for the
third level classification applied to class 1.1, it was decided to
perform a 3-class classification using 7, 200- and 10, 800-seconds
thresholds, thus creating classes 1.1.0, 1.1.1, and 1.1.2. To evaluate
the algorithms’ performance in the prediction of these 3 classes,
a stratified 30-fold cross-validation was performed, obtaining the
results reported in the last four columns of Table 3. From these
data, we firstly discarded the SVM (Support Vector Machine)
[5] and KNN algorithms, due to the null results in class 1.1.1.
Between the other three models, to decide which one was the
best for this step, we decided to take into account the average
of the results of the three classes, since all three have the same
importance, resulting in that the Decision Tree was also in this
case, the one with better predictions’ performance.

4.2 Comparative analysis with
state-of-the-art approaches

We compared the solution with some kind of state-of-the-art
techniques to prove the effectiveness of the results obtained:

• Case 1: regression techniques.
• Case 2: single level classification techniques with balanced
classes.



Table 3: Results for the third level classification of the best
classification approach

Algorithm
F-measure
Class 1.0.0

(1)

F-measure
Class 1.0.1

(2)

F-measure
Class 1.1.0

(3)

F-measure
Class 1.1.1

(4)

F-measure
Class 1.1.2

(5)

Mean
F-measure
(3 + 4 + 5)

SVM Classifier 0.657624 0.529112 0.261386 0 0.795812 0.352399
KNN Classifier 0.519897 0.590207 0.288288 0.075631 0.757982 0.373967
Decision Tree 0.644612 0.639501 0.386555 0.233261 0.795609 0.471808
Random Forest 0.537203 0.619853 0.386684 0.250922 0.767198 0.468268
MLP Classifier 0.604927 0.569154 0.336232 0.234514 0.796296 0.455680

• Case 3: single level classification techniques where the
classes were manually defined.

• Case 4: single level binary classifications with manually
defined thresholds.

• Case 5: single level binary classifications with thresholds
defined by summing ranges from Case 2 and Case 3 exper-
iments.

• Case 6: hierarchical classification experiments with two
classification levels.

• Case 7: hierarchical classification experiment with three
classification levels.

About the Case 1, the proposed solution has been initially com-
pared with a reference baseline given by regression algorithms’
usage, considering that the target variable is a numeric real value.
In fact, we executed some k-fold cross-validation experiments,
using firstly 𝑘 = 10 and then 𝑘 = 20, and also a Holdout. From the
results of the cross-validation experiments, reported in Table 4a
and 4b, we can see that there is an improvement of the max accu-
racy, meaning that some folders are better to predict than others,
while the mean accuracy decrease, meaning that there are more
other folders with no acceptable results. Same as for the holdout,
which results, reported in Table 4c, are too low to be considered.
Established that this kind of algorithm does not achieve good
performance, we moved on to classification experiments.
The classification experiments can be grouped into two main
types: single level (Case 2, 3, 4 and 5), meaning that it is used
only one algorithm, and multi-level (Case 6 and 7), i.e., using
a hierarchical structure. We started with a single level where
the classes were defined in such a way as to have classes of the
same frequency. Unlikely, for Case 2, noticeable from the results
reported in the Table 5, independently of the number of classes,
the accuracy increases too slowly (looking the results from Table
5a to Table 5d), reason why this type of experiments was deemed
unsuccessful.
For this reason, we moved to Case 3 experiments, manually defin-
ing the classes to be predicted, depending on the feedback we
would return and on the information obtained from the previous
tests. Anyway, also from these results, reported in Table 6, we
can highlight that the F-measure increase too slowly, looking at
the results of Table 6a, 6b and 6c, while, for the last experiments,
the results represented in Table 6d show a clean improvement.
For this reason, only the information of the last experiment was
used for the creation of the ranges for the binary experiment that
made up the first level of the solution proposed with a 60-seconds
threshold.
Considering the non-relevant results with multi-class experi-
ments, we passed to Case 4 experiments and we started to study
algorithms’ behaviour with binary classifications using, firstly,
three user-defined thresholds: 900, 1, 800, and 3, 600 seconds.
From the values obtained, reported in Table 7, it is possible to
see that as the threshold increase, the results of class 1 tend to

Table 4: Results obtained from the regression experiments

(a) 10-fold cross validation

Algorithm Max Accuracy Mean Accuracy

Polynomial Regressor 0.532658 0.235069
KNN Regressor 0.400554 0.172238

Decision Tree (depth=3) 0.453951 0.270740
Decision Tree (depth=5) 0.493425 0.177651

MLP Regressor 0.532969 0.325323

(b) 20-fold cross validation

Algorithm Max Accuracy Mean Accuracy

Polynomial Regressor 0.551733 0.006580
KNN Regressor 0.581727 0.080216

Decision Tree (depth=3) 0.533837 0.200991
Decision Tree (depth=5) 0.571285 0.173368

MLP Regressor 0.630281 0.220024

(c) Holdout

Algorithm Accuracy

Polynomial Regressor 0.217887
KNN Regressor 0.119690

Decision Tree (depth=3) 0.199433
Decision Tree (depth=5) 0.149165

MLP Regressor 0.233375

Table 5: Results obtained from the classification experi-
ments with same frequency classes

(a) 20 classes

Algorithm Mean
F-measure

SVM Classifier 0.120080
KNN classifier 0.143910
Decision Tree 0.177636
Random Forest 0.170767
MLP Classifier 0.179786

(b) 10 classes

Algorithm Mean
F-measure

SVM Classifier 0.250410
KNN classifier 0.230243
Decision Tree 0.272162
Random Forest 0.265845
MLP Classifier 0.281455

(c) 7 classes

Algorithm Mean
F-measure

SVM Classifier 0.335620
KNN classifier 0.318225
Decision Tree 0.365250
Random Forest 0.370206
MLP Classifier 0.385226

(d) 4 classes

Algorithm Mean
F-measure

SVM Classifier 0.426678
KNN classifier 0.419915
Decision Tree 0.461583
Random Forest 0.465651
MLP Classifier 0.470602

decrease, related to a decrease of the number of records associ-
ated with that class, while the results of class 0 do not change
significantly.
For this reason, we defined new thresholds belonging to Case 5
experiments: 24, 30 and 582 seconds. These have been defined by
the aggregation of ranges of multi-class experiments previously
executed, considering their specific confusion matrices. In this
case, we can notice an increase in both classes results, reported in
Table 8, increasing the threshold used. The 60-seconds threshold
used inside the solution proposed as the first prediction level,
discussed in Section 3.4, also belongs to this type of experiments.



Table 6: Results obtained from the classification experi-
ments with user defined classes

(a) 7 classes

Algorithm Mean
F-measure

SVM Classifier 0.204707
KNN classifier 0.275410
Decision Tree 0.319689

Random Forest 0.323275
MLP Classifier 0.305662

(b) 6 classes

Algorithm Mean
F-measure

SVM Classifier 0.365455
KNN classifier 0.323907
Decision Tree 0.385265
Random Forest 0.380419
MLP Classifier 0.390795

(c) 5 classes

Algorithm Mean
F-measure

SVM Classifier 0.317228
KNN classifier 0.378983
Decision Tree 0.444375
Random Forest 0.436247
MLP Classifier 0.436944

(d) 3 classes

Algorithm Mean
F-measure

SVM Classifier 0.632459
KNN classifier 0.637632
Decision Tree 0.706892
Random Forest 0.673945
MLP Classifier 0.721240

Table 7: Results obtained from the binary classifications
with user defined thresholds

(a) 900 seconds threshold

Algorithm F-measure Class 0 F-measure Class 1

SVM Classifier 0.933264 0.735641
KNN classifier 0.930409 0.756369
Decision Tree 0.935545 0.775042
Random Forest 0.932919 0.757683
MLP Classifier 0.932859 0.756791

(b) 1800 seconds threshold

Algorithm F-measure Class 0 F-measure Class 1

SVM Classifier 0.940621 0.711091
KNN classifier 0.921904 0.668386
Decision Tree 0.937039 0.704289
Random Forest 0.932726 0.694544
MLP Classifier 0.940739 0.720261

(c) 3600 seconds threshold

Algorithm F-measure Class 0 F-measure Class 1

SVM Classifier 0.954124 0.675447
KNN classifier 0.927332 0.529040
Decision Tree 0.949024 0.670578
Random Forest 0.941362 0.631338
MLP Classifier 0.951396 0.684249

We discuss now the multi-level experiments, starting with two
hierarchical experiments, the first with four and the second with
five classes, both with two predictive levels (Case 6 experiments).
The schemas of these two structures are represented in Figure
8a and 8b. The results obtained, reported in the table 9a and 9b,
anyway, highlight a worsening of the F-measure values globally.
In fact, if we consider the range up to 900 seconds, we can see that
the mean F-measure of the classes in this range, for both these
two levels of hierarchical structures, is worse compared with the
solution discussed in Section 3.4. The only positive thing that can

Table 8: Results obtained from the binary classifications
thresholds deducted from previous experiments

(a) 24 seconds threshold

Algorithm F-measure Class 0 F-measure Class 1

SVM Classifier 0.842161 0.685678
KNN classifier 0.844086 0.723856
Decision Tree 0.848624 0.726922
Random Forest 0.837363 0.716383
MLP Classifier 0.850326 0.725032

(b) 30 seconds threshold

Algorithm F-measure Class 0 F-measure Class 1

SVM Classifier 0.885184 0.722498
KNN classifier 0.897168 0.781996
Decision Tree 0.904586 0.791383
Random Forest 0.900460 0.784943
MLP Classifier 0.904360 0.790468

(c) 582 seconds threshold

Algorithm F-measure Class 0 F-measure Class 1

SVM Classifier 0.925858 0.727657
KNN classifier 0.932483 0.795663
Decision Tree 0.934467 0.796841
Random Forest 0.928620 0.763013
MLP Classifier 0.933949 0.789122

be highlighted in the system shown in Figure 8b is the slightly
better result regarding the 3-class classification compared to the
proposed solution, however at the cost of a great worsening of
the performance in the preceding ranges. For these reasons, both
the experiments have been discarded.

(a) Schema of the classification experiment with 2 levels and 4
final classes

(b) Schema of the classification experiment with 2 levels and 5
final classes

Figure 8: Hierarchical experiments with two levels
schemas



Table 9: Results obtained from the hierarchical classifica-
tion experiments with 2 prediction levels

(a) 2 levels and 4 classes

Algorithm F-measure
Class 0.0

F-measure
Class 0.1

F-measure
Class 1.0

F-measure
Class 1.1

SVM Classifier 0.967544 0.281269 0.412197 0.841287
KNN classifier 0.969164 0.440555 0.431903 0.803104
Decision Tree 0.969975 0.428648 0.469654 0.816419
Random Forest 0.968557 0.403009 0.497378 0.809666
MLP Classifier 0.970665 0.414648 0.491721 0.840145

(b) 2 levels and 5 classes

Algorithm F-measure
Class 0.0

F-measure
Class 0.1

Mean F-measure
(3-classes step)

SVM Classifier 0.967544 0.281269 0.434300
KNN classifier 0.969164 0.440555 0.455720
Decision Tree 0.969975 0.428648 0.506964
Random Forest 0.968557 0.403009 0.496920
MLP Classifier 0.970665 0.414648 0.522985

Table 10: Results obtained from the hierarchical classifica-
tion experimentwith 3 prediction levels and 6 final classes

Algorithm F-measure
Class 0.0

F-measure
Class 0.1

F-measure
Class 1.0

Mean F-measure
(3-classes step)

SVM Classifier 0.967544 0.281269 0.412197 0.323296
KNN classifier 0.969164 0.440555 0.431903 0.386362
Decision Tree 0.969975 0.428648 0.469654 0.435682

Random Forest 0.968557 0.403009 0.497378 0.452004
MLP Classifier 0.970665 0.414648 0.491721 0.438479

Finally, we made a comparison with a hierarchical architecture
with three levels and six classes (Case 7 experiment), whose
schema is reported in Figure 9, based on the two levels hierarchi-
cal experiments discussed previously. In fact, we added a third
level to better predict the time range from 3, 600 seconds onward.
The obtained performance is reported in Table 10, and they are
not so good since even the results of the 3-class classification are
worse than the solution proposed in section 3.4.

Figure 9: Schema of the classification experiment with 3
levels and 6 final classes

5 CONCLUSION AND FUTURE RESEARCH
DIRECTION

This paper proposed a data-driven solution to predict, with good
accuracy, the interval in which a submitted job’s real waiting time
belongs. We preferred to address the problem as a classification

task due to the bad results obtained through regression-based
strategies (see Table 4). As reported in Section 4, the solution,
compared with other experiments, shows promising results, al-
though some classes’ performance needs to be improved. The
rather poor results associated with these classes are related to
the unbalanced available dataset, considering that, as it can be
seen from the graph in Figure 4, there is an uneven distribu-
tion between classes. In fact, the records used to predict the last
five classes are about a third compared to those used to predict
only the first one. As classification levels increase, the number
of analysed jobs decreases while the variability of the pending
time increase, therefore the available data is not sufficient to
accurately model all classes. The decrease of available jobs for
the training process is affected also by the misclassifications in
the previous levels. Moreover, the variables used to model the
multiple classification tasks did not perfectly model the problem
under analysis; thus, the problem appears to be under-modeled.
This means that the variables used to predict the categorical
waiting-time for each job are not sufficient to describe the prob-
lem optimally (the high variability of different classes in the case
of an unbalanced dataset). There is a lack of essential information
for the considered algorithms to improve the system’s classifi-
cation performance. In this regard, it was noted that little data
could describe the complexity of the job.
This work is a preliminary step towards implementing a schedul-
ing system based on machine learning techniques on what we
are currently working on. Based on the discussed experimental
results, there is room for improvements in the proposed data-
driven methodology. More specifically, we are currently working
with HPC experts to define an extended set of attributes to model
the problem addressed in this paper, understand how to get them
and where, or create a new feature engineering step similar to the
one proposed in [2] to improve the system’s overall performance.
Furthermore, we are working to extend the current methodology:
(1) to predict other types of information (e.g., the number of CPUs
necessary for a job, the termination status of the job execution)
to enhance the HPC cluster performance and (2) to estimate the
model degradation over time [4].
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