
Exploring Data Using Patterns: A Survey and Open Problems
Lukasz Golab

University of Waterloo, Canada
lgolab@uwaterloo.ca

Divesh Srivastava
AT&T Chief Data Office, USA

divesh@att.com

ABSTRACT
We present a survey of data exploration methods that extract
multi-dimensional patterns from datasets consisting of dimen-
sion and measure attributes. These patterns are designed to sum-
marize common properties of tuples associated with particular
values of the measure attributes. We provide a categorization
of the characteristics of patterns produced by various solutions
to this problem, we point out the pros, cons and performance
optimizations of existing methods, and we suggest directions for
future research.

KEYWORDS
Data exploration, Data summarization, Data explanation, Data
cube, Pattern mining

1 INTRODUCTION
Data volumes have been growing rapidly in recent years. As a
result, data-intensive methods are now common in many con-
texts, including business, science, and public governance. This
motivates the need for tools that allow users who are not neces-
sarily data management experts to explore large datasets. Such
tools range from visualization and aggregation to flexible search
interfaces such as keyword search in structured databases.

In this paper, we focus on the exploration of datasets con-
taining dimension attributes and binary or numeric measure
attributes. In traditional business datasets, dimension attributes
often describe products or employees, and measure attributes
indicate sales totals or salaries. In Internet-of-Things (IoT) and
infrastructure monitoring, dimension attributes may describe
device properties and measure attributes correspond to perfor-
mance statistics. In Web datasets, dimension attributes may de-
scribe products, with user ratings as measure attributes. Addition-
ally, in any of these applications, derived measure attributes may
exist, e.g., a binary attribute denoting whether a given record
was determined to be an outlier or to contain an error.

The data cube has traditionally been used to explore these
kinds of datasets, by allowing users to aggregate, roll-up and
drill-down using various subsets of group-by attributes. However,
in large-scale databases, the data cube may be very large and
may not immediately reveal interesting patterns and trends. This
motivates the need for more sophisticated exploration tools [17].

We observe that a large body of recent work on exploring
multi-dimensional and OLAP datasets proposes methods to iden-
tify interesting fragments of the data, summarized using patterns
over the values of the dimension attributes. We make the fol-
lowing contributions towards an understanding of these data
exploration methods.

(1) We survey recent work on data exploration using multi-
dimensional patterns and propose a categorization based
on the properties of patterns suggested for exploration:
coverage, contrast, and information.

© Copyright 2021 for this paper held by its author(s). Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

(2) We analyze the pros, cons and performance optimizations
of existing work, and we suggest open problems for future
research.

2 BACKGROUND
We are given a dataset 𝑆 with a set 𝐷 of dimension attributes
and a set𝑀 of measure attributes (also referred to as outcomes
in some prior work [6]). Let 𝐷1, 𝐷2, . . . , 𝐷𝑑 be the 𝑑 dimension
attributes and let𝑀1, 𝑀2, . . . 𝑀𝑚 be the𝑚 measure attributes. For
now, we assume, as in the majority of previous work, that the
dimension attributes are categorical, and we will comment on
ordinal and numeric dimension attributes in Section 4. Measure
attributes may be binary or numeric.

Table 1 shows a flight dataset that will serve as a running
example. For each flight, the dataset includes a record id, followed
by three dimension attributes, Day of the week, flight Origin and
flight Destination, as well as two measure attributes, a numeric
attribute denoting how late the flight was and a binary attribute
denoting whether the flight was full.

Let 𝑑𝑜𝑚(𝐷𝑖 ) be the active domain of the 𝑖th dimension at-
tribute. A pattern 𝑝 (referred to as a rule in some prior work [8])
is a tuple from 𝑑𝑜𝑚(𝐷1) ∪ {∗} × · · · × 𝑑𝑜𝑚(𝐷𝑑 ) ∪ {∗}, i.e., from
the data cube over the dimension attributes, with ‘*’ denoting all
possible values of that attribute. A tuple 𝑡 ∈ 𝑆 matches 𝑝 , denoted
by 𝑡 ≍ 𝑝 , if 𝑝 [𝐷 𝑗 ] = ‘*’ or 𝑡 [𝐷 𝑗 ] = 𝑝 [𝐷 𝑗 ] for each dimension
attribute 𝐷 𝑗 . For example, tuple 4 from Table 1 matches the pat-
terns (∗, ∗, ∗) and (∗, ∗, 𝐿𝑜𝑛𝑑𝑜𝑛), but does not match the pattern
(𝐹𝑟𝑖, ∗, ∗). Some approaches [10] support richer patterns, with
disjunctions and dimension hierarchies.

Let 𝑠𝑢𝑝 (𝑝) be the support of 𝑝 in 𝑆 , i.e., the number of tuples
matching 𝑝 , and let 𝑠𝑢𝑝𝑟 (𝑝) be the number of tuples matching
𝑝 and satisfying the predicate 𝑟 over the measure attributes. For
example, 𝑠𝑢𝑝 (∗, ∗, 𝐿𝑜𝑛𝑑𝑜𝑛) = 4 and 𝑠𝑢𝑝𝐹𝑢𝑙𝑙=0 (∗, ∗, 𝐿𝑜𝑛𝑑𝑜𝑛) =

1. Furthermore, let 𝜃𝑟 (𝑝) =
𝑠𝑢𝑝𝑟 (𝑝)
𝑠𝑢𝑝 (𝑝) , which is the fraction of

tuples matching 𝑝 that also satisfy the predicate 𝑟 . For example,
𝜃𝐹𝑢𝑙𝑙=1 (∗, ∗, 𝐿𝑜𝑛𝑑𝑜𝑛) = 3

4 .
Let 𝑠𝑢𝑚𝑀𝑖 (𝑝) be the sum of the values of a measure attribute

𝑀𝑖 over all the tuples matching 𝑝 . Let 𝑠𝑢𝑚𝑀𝑖
𝑟 (𝑝) be the sum of

the values of a measure attribute𝑀𝑖 over all the tuples matching
𝑝 and satisfying the predicate 𝑟 over the measure attributes. For
example, 𝑠𝑢𝑚𝐿𝑎𝑡𝑒 (∗, ∗, 𝐿𝑜𝑛𝑑𝑜𝑛) = 20 + 15 + 19 + 7 = 61 and
𝑠𝑢𝑚𝐿𝑎𝑡𝑒

𝐹𝑢𝑙𝑙=0 (∗, ∗, 𝐿𝑜𝑛𝑑𝑜𝑛) = 7.
We survey solutions to the following data exploration prob-

lem: given a dataset 𝑆 , produce a set or a list of patterns 𝑃 over
the dimension attributes of 𝑆 , as defined above, that summarize
common properties of tuples sharing the same values of the mea-
sure attribute(s). Users may then inspect the patterns and explore
tuples covered by the patterns. They may then extract patterns
corresponding to a smaller subset of the data that was found to
be interesting during the earlier exploration step, and so on.

The number of patterns in 𝑃 should be limited to direct the
user’s attention to the most important or interesting regions of
the data. This limit may be set explicitly by the user (in terms of
the maximum number of patterns in 𝑃 ) or implicitly by retrieving



Table 1: A flight dataset

id Day Origin Dest. Late Full
1 Fri SF London 20 1
2 Fri London LA 16 1
3 Sun Tokyo Frankfurt 10 1
4 Sun Chicago London 15 1
5 Sat Beijing Frankfurt 13 1
6 Sat Frankfurt London 19 1
7 Tue Chicago LA 5 0
8 Wed London Chicago 6 0
9 Thu SF Frankfurt 15 1
10 Mon Beijing SF 4 0
11 Mon SF London 7 0
12 Mon SF Frankfurt 5 0
13 Mon Tokyo Beijing 6 0
14 Mon Frankfurt Tokyo 4 0

the fewest possible patterns that jointly satisfy some property
such as covering some fraction of the data.

This data exploration problem has the following applications.

• Explaining the results of aggregate queries. Suppose a data
analyst issues the following query over Table 1: SELECT
SUM(Late) FROM S. Suppose the analyst wishes to under-
stand why the result, of 145, is so high. Here, interesting
patterns are those which cover tuples that make a sig-
nificant contribution to the result, i.e., those with a high
𝑠𝑢𝑚𝐿𝑎𝑡𝑒 () such as (∗, ∗, 𝐿𝑜𝑛𝑑𝑜𝑛). The analyst may then
zoom into flights landing in London and investigate po-
tential reasons for the lengthy delays.

• Analyzing outliers and data quality issues. Suppose we have
a binary measure attribute denoting whether a given tuple
contains an error or is an outlier. This attribute could be
created manually by domain experts or automatically by
identifying tuples that violate data quality rules or deviate
from the expected distribution. We may wish to produce
patterns that summarize the properties of erroneous tuples
to help determine the root cause of data quality problems.

• Feature selection and explainable AI. Before building predic-
tion models, a data scientist may explore interesting pat-
terns to understand which dimension attributes are related
to the measure attribute that is to be predicted. Further-
more, suppose a data analyst wants to understand how a
black-box model makes classification decisions. Here, the
dimension attributes are the features given to the model as
input, and, as themeasure attribute, the analyst records the
predictionsmade by themodel. The analyst may thenwant
to find interesting patterns that explain the prediction de-
cisions. For example, in Table 1, the pattern (𝑀𝑜𝑛, ∗, ∗) is
associated with tuples having 𝐹𝑢𝑙𝑙 = 0, suggesting that
flights scheduled on Mondays are usually not full1.

3 SURVEY
In this section, we provide a categorization of previous work
on data exploration using multi-dimensional patterns based on
the pattern properties and ranking strategies used for pattern
selection. We categorize these properties into three types: those

1Model explanations may be global (to summarize how classification decisions are
made) or local (to explain why a specific record was classified in a particular way).
The explanations discussed in this paper are examples of global explanations.

Table 2: Methods surveyed

Method Approach Applications
CAPE [14] Contrast Explaining queries

Data Auditor [9] Coverage Data quality analysis
Data X-ray [19] Contrast Data quality analysis

DIFF [2] Contrast Outlier analysis
Explanation tables [7] Information Feature selection

Macrobase [1] Contrast Outllier analysis
MRI [5] Coverage Explaining queries

RSExplain [15] Contrast Explaining queries
Scorpion [20] Contrast Outlier analysis
Shrink [10] Information Explaining queries

Smart Drilldown [11] Coverage Explaining queries
SURPRISE [16] Information Explaining queries

focusing on coverage, contrast and information. Table 2 catego-
rizes the surveyedmethods and lists their motivating applications,
as mentioned in the corresponding papers.

3.1 Methods Based on Coverage
The goal of these methods is to identify patterns that cover tuples
with certain values of the measure attribute. We discuss three
coverage-based methods: Data Auditor [9], MRI [5], and Smart
Drilldown [11].

Suppose we are interested in covering tuples having 𝐹𝑢𝑙𝑙 = 1
in Table 1, as a way to summarize the characteristics of full
flights. A simple coverage-oriented approach is to sort the pat-
terns according to 𝑠𝑢𝑝𝐹𝑢𝑙𝑙=1 () and output the top-ranking pat-
terns. Ignoring (∗, ∗, ∗), which always covers everything but
is not informative, the top candidates are (∗, ∗, 𝐿𝑜𝑛𝑑𝑜𝑛) and
(∗, ∗, 𝐹𝑟𝑎𝑛𝑘 𝑓 𝑢𝑟𝑡), which cover three full flights each, followed
by the following patterns that cover two such tuples each:
(𝐹𝑟𝑖, ∗, ∗), (𝑆𝑢𝑛, ∗, ∗), (𝑆𝑎𝑡, ∗, ∗) and (∗, 𝑆𝐹, ∗).

There are two problems with this simple approach: there may
be many patterns with a nonzero 𝑠𝑢𝑝𝐹𝑢𝑙𝑙=1 (𝑝), and some of these
patterns may also cover tuples with other values of the measure
attribute (here, 𝐹𝑢𝑙𝑙 = 0). To reduce the size of the output and to
ensure that each pattern co-occurs with the specified value of the
measure attribute, Data Auditor solves the following set cover
problem. Continuing with our example, Data Auditor requires
a minimum threshold for 𝜃𝐹𝑢𝑙𝑙=1 (𝑝), i.e., the fraction of tuples
covered by 𝑝 that correspond to full flights. Suppose we require
𝜃𝑟 (𝑝) ≥ 0.75. This threshold defines the candidate sets for the
set cover problem. The set cover objective is to select the fewest
such patterns that together cover a specified fraction of tuples in
𝑆 having 𝐹𝑢𝑙𝑙 = 1. Suppose this coverage fraction, which would
again be set by the user, is 0.5. The goal is then to find the fewest
patterns, as defined above, to cover half the full flights.

The set cover problem is NP-hard, and Data Auditor uses the
standard greedy heuristic that achieves a logarithmic approx-
imation ratio in the size of the solution: it iteratively chooses
the pattern that covers the most uncovered tuples (having the
desired value of the measure attribute), until the desired fraction
of such tuples has been covered. In our example, the first pattern
added to 𝑃 is either (∗, ∗, 𝐿𝑜𝑛𝑑𝑜𝑛) and (∗, ∗, 𝐹𝑟𝑎𝑛𝑘 𝑓 𝑢𝑟𝑡) - they
each cover three full flights and their 𝜃𝐹𝑢𝑙𝑙=1 (𝑝) values are 0.75
each. Suppose the set cover algorithm selects (∗, ∗, 𝐹𝑟𝑎𝑛𝑘 𝑓 𝑢𝑟𝑡).
Since there are seven full flights in the dataset and our coverage
threshold is 0.5, we need to cover one more full flight. In the next
iteration, the pattern that (has 𝜃𝐹𝑢𝑙𝑙=1 (𝑝) ≥ 0.75 and) covers the



most remaining full flights is (∗, ∗, 𝐿𝑜𝑛𝑑𝑜𝑛) and the algorithm
terminates, with 𝑃 consisting of these two patterns.

The next method, MRI, finds 𝑘 patterns that cover a user-
specified fraction of the data and satisfy additional properties
related to the variance of the measure attribute within each pat-
tern. The motivating example for MRI was to explain queries
over product reviews, with the dimension attributes correspond-
ing to information about the reviewers (such as their gender
and age) and the numeric measure attribute corresponding to
the average rating. Minimizing variance amounts to returning
patterns (having high coverage and) describing reviewers with
similar opinions. For example, when applying MRI to Table 1
with 𝐿𝑎𝑡𝑒 as the measure attribute, the pattern (∗, ∗, 𝐹𝑟𝑎𝑛𝑘 𝑓 𝑢𝑟𝑡)
is preferred over (∗, ∗, 𝐿𝑜𝑛𝑑𝑜𝑛). Both patterns cover four tuples,
but the former has a lower variance of the 𝐿𝑎𝑡𝑒 attribute within
the covered tuples.

Smart Drilldown also combines coverage with additional pat-
tern properties. Smart Drilldown produces 𝑘 patterns. In every
iteration of the algorithm, the chosen pattern maximizes the fol-
lowing objective: the number of tuples not yet covered multiplied
by the weight of the pattern corresponding to some measure of
interestingness. One simple weighting function proposed in [11]
is the number of non-star values in the pattern (i.e., more specific
patterns are considered to be more desirable). In Table 1 for ex-
ample, this weighting function prefers (𝑇𝑢𝑒,𝐶ℎ𝑖𝑐𝑎𝑔𝑜, 𝐿𝐴) over
(𝑇𝑢𝑒, ∗, ∗) – both of these patterns have a support of one, but the
former has more non-star values.

3.1.1 Performance Optimizations. A performance bottleneck
in general set cover problems results from having to keep track
of the number of uncovered elements that can be covered by
the candidate sets - this changes in every iteration, whenever
a new set is added to the solution. Data Auditor relies on the
hierarchical nature of patterns and does not generate all the pat-
terns that serve as input to greedy set cover a priori. Instead,
patterns are generated on-demand, only after all of their super-
sets have already been considered. For example, a pattern such
as (𝐹𝑟𝑖, ∗, 𝐿𝑜𝑛𝑑𝑜𝑛) would only be generated after all of its super-
sets - including (𝐹𝑟𝑖, ∗, ∗) and (∗, ∗, 𝐿𝑜𝑛𝑑𝑜𝑛) - have already been
considered. Until then, (𝐹𝑟𝑖, ∗, 𝐿𝑜𝑛𝑑𝑜𝑛) can be safely ignored: it
cannot cover more elements than its supersets and therefore is
guaranteed to not be selected by the greedy set cover heuristic
at this time. This optimization can greatly reduce the number
of generated patterns whose coverage (of uncovered elements)
must be re-computed while constructing the solution.

3.1.2 Pros and Cons. One advantage of coverage-based meth-
ods is conciseness: by design, they identify the fewest possible
patterns that cover the desired fraction of tuples of interest. On
the other hand, in Data Auditor, some trial-and-error may be
required on the user’s part to select good values for the two
required thresholds. For example, a high value of 𝜃 will ensure
that each pattern co-occurs mainly with the specified value of
the measure attribute, but will disqualify more patterns from
consideration. Similarly, MRI and Smart Drilldown require users
to set parameters for coverage and other pattern properties.

3.2 Methods based on Contrast
This is the largest group of methods, consisting of CAPE [14],
Data X-ray [19], DIFF [2], Macrobase [1], RSExplain [15] and
Scorpion [20]. (DIFF is a recent solution that generalizes many of
these related methods). Contrast-based methods usually assume

a binary measure attribute, and select patterns co-occurring with
one value of the measure attribute but not the other. These pat-
terns reflect the contrast between tuples having different values
of the measure attribute.

One could argue that interpretable classifiers such as decision
trees and rule-based methods (see, e.g., [12]) can also be used for
contrast-based data exploration. These methods identify patterns
of values of the feature attributes that have high discriminative
power in terms of the class variable (in our case, the binary
measure attribute). These patterns are therefore likely to provide
contrast as well. However, classification algorithms focus on out-
of-sample predictive power and include optimizations such as
rule pruning to avoid overfitting. On the other hand, the methods
covered in this survey focus explicitly on identifying a concise
set of interesting fragments of the data for user exploration.

Contrast-based methods can also explain the results of aggre-
gate queries. Consider the following query over Table 1: SELECT
SUM(Late) FROM S WHERE Full=1. Here, the measure attribute
corresponding to the quantity being aggregated. We then set the
binary measure attribute to one for all tuples that participate in
the query (i.e., tuples that match the WHERE predicate), and we
select patterns of tuples that contribute to the result of the query
(but would not contribute had the query been issued against the
other tuples in the dataset).

Below, we explain the pattern ranking strategies used by
contrast-based methods, with Table 1 as a running example.

Risk ratio is used by Macrobase; a related metric called
Diagnosis Cost is used by Data X-ray. It is the ratio of the
following two probabilities: 1) the probability that a tuple
with a particular value is covered by the given pattern, and
2) the probability that a tuple with this particular value
occurs outside this pattern. In our example, 𝑟𝑖𝑠𝑘𝐹𝑢𝑙𝑙=1 (𝑝) =

𝜃𝐹𝑢𝑙𝑙=1 (𝑝)
𝑠𝑢𝑝𝐹𝑢𝑙𝑙=1 (∗,∗,∗)−𝑠𝑢𝑝𝐹𝑢𝑙𝑙=1 (𝑝 )

(𝑠𝑢𝑝𝐹𝑢𝑙𝑙=1 (∗,∗,∗)−(𝑠𝑢𝑝𝐹𝑢𝑙𝑙=1 (𝑝 ) )+(𝑠𝑢𝑝𝐹𝑢𝑙𝑙=0 (∗,∗,∗)−𝑠𝑢𝑝𝐹𝑢𝑙𝑙=0 (𝑝 ) )
. For in-

stance, 𝑟𝑖𝑠𝑘𝐹𝑢𝑙𝑙=1 (∗, ∗, 𝐿𝑜𝑛𝑑𝑜𝑛) = 0.75
0.4 = 1.875, whereas

𝑟𝑖𝑠𝑘𝐹𝑢𝑙𝑙=1 (∗, 𝑆𝐹, ∗) = 0.5
0.5 = 1. This indicates that (∗, ∗, 𝐿𝑜𝑛𝑑𝑜𝑛)

represents full flights better than (∗, 𝑆𝐹, ∗).
Mean shift (supported by DIFF) computes the ratio of the

mean of the measure attribute values co-occurring with the
two values of the binary measure attribute. In our exam-

ple, 𝑚𝑒𝑎𝑛𝐿𝑎𝑡𝑒
𝐹𝑢𝑙𝑙=1 (𝑝) =

𝑠𝑢𝑚𝐿𝑎𝑡𝑒
𝐹𝑢𝑙𝑙=1 (𝑝)/𝑠𝑢𝑝𝐹𝑢𝑙𝑙=1 (𝑝)

𝑠𝑢𝑚𝐿𝑎𝑡𝑒
𝐹𝑢𝑙𝑙=0 (𝑝)/𝑠𝑢𝑝𝐹𝑢𝑙𝑙=0 (𝑝)

. For instance,

𝑚𝑒𝑎𝑛𝐿𝑎𝑡𝑒
𝐹𝑢𝑙𝑙=1 (∗, ∗, 𝐿𝑜𝑛𝑑𝑜𝑛) =

54/3
7/1 = 2.57, indicating that full

fights to London have delays that are 2.57 times longer than
non-full flights to London.

Intervention is used by RSExplain; a related metric called In-
fluence is used by Scorpion. It measures the ratio of contribution
towards the numeric measure attribute for tuples occurring with
the different values of the binary measure attribute. In our exam-

ple, 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝐿𝑎𝑡𝑒
𝐹𝑢𝑙𝑙=1 (𝑝) =

𝑠𝑢𝑚𝐿𝑎𝑡𝑒
𝐹𝑢𝑙𝑙=1 (∗,∗,∗)−𝑠𝑢𝑚

𝐿𝑎𝑡𝑒
𝐹𝑢𝑙𝑙=1 (𝑝)

𝑠𝑢𝑚𝐿𝑎𝑡𝑒
𝐹𝑢𝑙𝑙=0 (∗,∗,∗)−𝑠𝑢𝑚

𝐿𝑎𝑡𝑒
𝐹𝑢𝑙𝑙=0 (𝑝)

. For in-

stance, 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝐿𝑎𝑡𝑒
𝐹𝑢𝑙𝑙=1 (∗, ∗, 𝐿𝑜𝑛𝑑𝑜𝑛) =

108−54
37−7 = 1.8. In other

words, if flights to London were removed from the dataset then
full flights would have delays on average 1.8 times longer than
non-full flights. On the other hand, 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝐹𝑢𝑙𝑙=1 (∗, 𝑆𝐹, ∗) =
108−35
37−12 = 2.92, meaning that removing flights departing from SF
from the dataset would create a greater contrast between the
delays of full and non-full flights.

We also point out CAPE, whose goal is to find patterns whose
measure attribute values counterbalance those of the pattern
given as input. For example, the average flight delay in Table 1



Table 3: An explanation table of size four for the binary
measure attribute Full

Day Origin Dest. Full
* * * 0.5

Mon * * 0
* * London 0.75
* * Frankfurt 0.75

Table 4: An explanation table of size four for the numeric
measure attribute Late

Day Origin Dest. Late
* * * 10.4
* * London 15.3
Fri * * 18
Sat * * 16

is 10.4, but it is only 5.2 for tuples covered by (𝑀𝑜𝑛, ∗, ∗). To
counterbalance this low value, CAPE suggests related patterns
such as (𝐹𝑟𝑖, ∗, ∗) and (𝑆𝑎𝑡, ∗, ∗), whose average delays are higher.

3.2.1 Performance Optimizations. Contrast-based methods
output patterns whose scores (e.g., risk ratios) are above a user-
supplied threshold. A general optimization used by DIFF is to also
require a minimum support threshold for the extracted patterns.
This enables pruning optimizations similar to those used by the
Apriori algorithm for frequent itemset mining [3]. For example, if
(𝑊𝑒𝑑, ∗, ∗) fails to satisfy the minimum support threshold, then
all its subsets, such as (𝑊𝑒𝑑, 𝐿𝑜𝑛𝑑𝑜𝑛, ∗), can be ignored.

3.2.2 Pros and Cons. By design, contrast-based methods are
useful when exploring differences between data subsets – some-
thing that coverage-based methods do not implicitly optimize for.
On the other hand, these methods may not guarantee concise
results. One exception is Data X-ray, which performs a set-cover-
like operation on the extracted patterns as a post-processing step
to eliminate redundant patterns.

3.3 Methods based on Information
Finally, we discuss threemethods that select patterns based on the
information they provide about the distribution of the measure
attribute: Explanation Tables [7], SURPRISE [16] and Shrink [10].

Table 3 shows an explanation table of size four (i.e., containing
four patterns) for the binary measure attribute Full based on
Table 1. In addition to values of the dimension attributes, each
explanation table pattern also includes the fraction of matching
tuples that have 𝐹𝑢𝑙𝑙 = 1. The first pattern in an explanation
table is always the all-stars pattern, and, in this example, it also
indicates that half the flights in the entire dataset are full. The
next pattern suggests that no flights on Mondays are full, and the
last two patterns indicate that three-quarters of flights to London
and Frankfurt are full.

In Table 4, we show an explanation table of size four for the
measure attribute Late based on Table 1. Here, each pattern in-
cludes the average value of Late across its matching tuples. Again,
we start with the all-stars pattern, which states that flights are
10.4 minutes late on average. The next pattern indicates that
flights to London are 15.3 minutes late on average, and so on.

The greedy heuristic for constructing explanation tables used
in [6–8] iteratively selects the pattern that contains the most
information about the distribution of the measure attribute. To

Table 5: A summary of size two considered by Shrink [10]

Day Origin Dest. Late
Fri,Sun,Sat,Thu * * 15.4
Tue,Wed,Mon * * 5.3

do so, the algorithm maintains a maximum-entropy estimate of
the distribution based on the patterns that have been added to
the explanation table so far. It also keeps track of the Kullback-
Leibler (KL) divergence between this estimated distribution and
the true distribution. To quantify the information contained in
a candidate pattern 𝑝 , the algorithm computes the reduction in
KL-divergence if 𝑝 were to be added to the explanation table.

Returning to Table 3, the greedy algorithm starts by inserting
the pattern (∗, ∗, ∗||0.5). At this point, knowing only this one
piece of information, the maximum-entropy estimate of the dis-
tribution of 𝐹𝑢𝑙𝑙 is to assign 𝐹𝑢𝑙𝑙 = 0.5 to every tuple in Table 12.
Next, it turns out that (𝑀𝑜𝑛, ∗, ∗||0) gives the greatest reduction
in KL-divergence. Based on this new pattern, the maximum-
entropy estimate for tuples 10 through 14 in Table 1 changes to
𝐹𝑢𝑙𝑙 = 0. This revision causes the estimates of the first nine tuples
to change (from 0.5 to 7

9 ) in order to maintain consistency with
the first pattern, which asserts that 𝐹𝑢𝑙𝑙 = 0.5 on average over
the entire table. Given the updated maximum-entropy estimate,
the next pattern with the greatest reduction in KL-divergence is
(∗, ∗, 𝐿𝑜𝑛𝑑𝑜𝑛 | |0.75), and so on.

Similar reasoning can explain how Table 4 was created. The
first pattern asserts that flights are late by 10.4minutes on average.
Given this estimate, (∗, ∗, 𝐿𝑜𝑛𝑑𝑜𝑛 | |15.3) provides the most infor-
mation about the distribution of 𝐿𝑎𝑡𝑒 . The maximum-entropy
estimate of 𝐿𝑎𝑡𝑒 is now updated accordingly, That is, tuples 1, 4, 6
and 11, corresponding to flights to London, receive an estimate of
15.3, and the remaining tuples receive an estimate of 8.4 to main-
tain consistency with the first pattern. The next most-informative
pattern is then selected, and so on.

SURPRISE is a similar method, whose goal is to identify surpris-
ing fragments of a dataset where the distribution of the measure
attribute is different than what the user has seen so far. Sup-
pose the user queries Table 1 and finds out that flights are 10.4
minutes late on average. SURPRISE finds the most informative
non-overlapping and contained patterns, i.e., those which lead to
the greatest reduction in KL-divergence between the true distri-
bution of Late and the maximum-entropy estimated distribution.
Restricting the output to such patterns makes it easier to update
the estimated distribution. In our example, the most informa-
tive pattern is (∗, ∗, 𝐿𝑜𝑛𝑑𝑜𝑛) and its most informative subset is
(∗, 𝑆𝐹, 𝐿𝑜𝑛𝑑𝑜𝑛).

Finally, we discuss Shrink, which produces 𝑘 non-overlapping
patterns that summarize the distribution of the measure attribute
with (approximately) minimal sum of squared errors. Shrink
allows patterns with disjunctions of values and dimension hierar-
chies, and uses a greedy approach in which cells in the data cube
are merged to produce patterns with the smallest squared errors.
Table 5 shows an example of a summary with two patterns that
may be considered by Shrink based on Table 1. Given the average
values of the Late measure attribute reported by the summary,
the sum of squared errors is 77.1.

2𝐹𝑢𝑙𝑙 is a binary attribute that can only be zero or one. However, for the purpose
of measuring the divergence between the true and the estimated distributions, the
maximum-entropy estimates are allowed to be real numbers between zero and one.



3.3.1 Performance Optimizations. In contrast-based methods,
the “goodness” of a pattern usually remains static throughout the
execution of the algorithm. On the other hand, the “goodness”, i.e.,
information, of a candidate explanation table pattern is relative to
the current maximum-entropy estimate of the measure attribute.
This means that a previously un-informative pattern may be-
come informative as more patterns are added to the explanation
table. As a result, candidate patterns cannot be easily pruned.
Instead, the explanation table construction algorithm in [6–8]
uses sampling to reduce the space of candidate patterns. In every
iteration of the greedy algorithm, a random sample is drawn, and
the set of candidate patterns corresponds to only those patterns
that have a non-zero support in the sample. The intuition is that
patterns with frequently occurring combinations of dimension
attribute values are likely to be sampled and also likely to contain
information about the distribution of the measure attribute.

3.3.2 Pros and Cons. By design, information-based methods
produce informative patterns that highlight fragments of the data
with surprising distributions of the measure attribute. However,
these methods tend to be expensive, especially as the number of
dimension attributes grows.

4 CONCLUSIONS AND OPEN PROBLEMS
In this paper, we surveyed recent data exploration methods that
extract interesting or informative fragments of the data, repre-
sented as patterns over the dimension attributes. We categorized
these methods according to the properties of patterns they select.
Below, we offer suggestions for future work in this area.

Benchmarks: A performance comparison of contrast-based
methods implemented within the DIFF frameworks appears in
[2]. In terms of effectiveness, prior work reports that methods
based on information provide more information about the dis-
tribution of the measure attribute than coverage-based methods
[6, 7]; similarly, methods based on contrast provide more precise
outlier explanations than methods based on coverage [19]. Some
approaches were also evaluated through user studies against sim-
ple baselines [14]. An interesting direction for future work is to
develop a comprehensive benchmark to highlight the effective-
ness of various types of methods in various applications.

New applications: Popular motivating applications that guided
the development of prior work were outlier and data error anal-
ysis, as well as query result explanation. Recent interest in ex-
plainable AI motivates further studies on exploring the behaviour
of black-box machine learning models such as neural networks
using multi-dimensional patterns, as was suggested in [7]. Since
deep learning methods have been successful in the context of
unstructured data such as text, images and graphs, future re-
search should investigate new ways of formulating interpretable
patterns over these high-dimensional unstructured datasets.

Correlated measure attributes: Another characteristic of prior
work is that it usually formulates exploration problems involving
a single measure attribute. Pattern-based exploration of multiple
measure attributes is an interesting area for future work.

Feature reduction: In terms of performance and scalability, the
large number of possible patterns remains a challenge for many
methods, especially those based on information which cannot
leverage Apriori-like pruning strategies. This is an important
challenge for interactive methods that allow users to continu-
ously issue new exploration tasks. As a result, some techniques
such as DIFF limit the number of dimension attributes for use
in patterns and discard redundant dimension attributes such as

those functionally determined by other attributes. Distributed
versions of some methods, including DIFF [2] and Explanation
Tables [8], have also been proposed to parallelize the search for
interesting patterns. In machine learning, there exists a variety
of dimension reduction methods such as Principal Component
Analysis (PCA) and word embeddings. However, these methods
are not known for being interpretable and thus their suitability
for pattern-based exploration requires further study.

Bringing order to dimension attributes: Much of the previous
work considers categorical dimension attributes. However, there
exist methods for covering a multi-dimensional dataset using
hyper-rectangles corresponding to intervals over numeric dimen-
sion attributes [13], there exists a method to cover data anomalies
using intervals over numeric features [21], and explanation ta-
bles have recently been extended to support ordinal and numeric
dimension attributes [18]. These extensions further increase the
space of candidate patterns and require additional performance
optimizations. For example, returning to Table 1, the Day at-
tribute may lead to additional patterns with ranges or intervals
such as ( [𝑀𝑜𝑛−𝐹𝑟𝑖], ∗, ∗) or ( [𝑆𝑎𝑡 −𝑆𝑢𝑛], ∗, ∗). Techniques used
for constructing optimal histograms and optimal decision trees
may help to discover these types of patterns.

Exploring data evolution: Finally, recent work motivates the
need for tools to explore how data (and metadata) change over
time [4]. Here, patterns may summarize fragments of the data
that have changed recently or are updated often.

REFERENCES
[1] F. Abuzaid, P. Bailis, J. Ding, E. Gan, S. Madden, D. Narayanan, K. Rong, S.

Suri: MacroBase: Prioritizing Attention in Fast Data. ACM Trans. Database
Syst. 43(4): 15:1-15:45 (2018)

[2] F. Abuzaid, P. Kraft, S. Suri, E. Gan, E. Xu, A. Shenoy, A. Anathanaraya, J.
Sheu, E. Meijer, X. Wu, J. F. Naughton, P. Bailis, M. Zaharia: DIFF: A Relational
Interface for Large-Scale Data Explanation. PVLDB 12(4): 419-432 (2018)

[3] R. Agrawal, R. Srikant: Fast Algorithms for Mining Association Rules in Large
Databases. VLDB 1994: 487-499

[4] T. Bleifuss, L. Bornemann, T. Johnson, D. V. Kalashnikov, F. Naumann, D.
Srivastava: Exploring Change - A New Dimension of Data Analytics. PVLDB
12(2): 85-98 (2018)

[5] M. Das, S. Amer-Yahia, G. Das, C. Yu: MRI: Meaningful Interpretations of
Collaborative Ratings. PVLDB 4(11): 1063-1074 (2011)

[6] K. El Gebaly, P. Agrawal, L. Golab, F. Korn, D. Srivastava: Interpretable and
Informative Explanations of Outcomes. PVLDB 8(1): 61-72 (2014)

[7] K. El Gebaly, G. Feng, L. Golab, F. Korn, D. Srivastava: Explanation Tables.
IEEE Data Eng. Bull. 41(3): 43-51 (2018)

[8] G. Feng, L. Golab, D. Srivastava: Scalable Informative Rule Mining. ICDE 2017:
437-448

[9] L. Golab, H. J. Karloff, F. Korn, D. Srivastava: Data Auditor: Exploring Data
Quality and Semantics using Pattern Tableaux. PVLDB 3(2): 1641-1644 (2010)

[10] M. Golfarelli, S. Graziani, S. Rizzi: Shrink: An OLAP operation for balancing
precision and size of pivot tables. Data Knowl. Eng. 93: 19-41 (2014)

[11] M. Joglekar, H. Garcia-Molina, A. G. Parameswaran: Interactive data explo-
ration with smart drill-down. ICDE 2016: 906-917

[12] H. Lakkaraju, S. H. Bach, J. Leskovec: Interpretable Decision Sets: A Joint
Framework for Description and Prediction. KDD 2016: 1675-1684

[13] L. V. S. Lakshmanan, R. T. Ng, C. X.Wang, X. Zhou, T. Johnson: TheGeneralized
MDL Approach for Summarization. VLDB 2002: 766-777

[14] Z. Miao, Q. Zeng, C. Li, B. Glavic, O. Kennedy, S. Roy: CAPE: Explaining
Outliers by Counterbalancing. PVLDB 12(12): 1806-1809 (2019)

[15] S. Roy, D. Suciu: A formal approach to finding explanations for database
queries. SIGMOD Conference 2014: 1579-1590

[16] S. Sarawagi: User-cognizant multidimensional analysis. VLDB J. 10(2-3): 224-
239 (2001)

[17] P. Vassiliadis, P. Marcel: The Road to Highlights is Paved with Good Intentions:
Envisioning a Paradigm Shift in OLAP Modeling. DOLAP 2018.

[18] M. Vollmer, L. Golab, K. Bohm, D. Srivastava: Informative Summarization of
Numeric Data. SSDBM 2019: 97-108

[19] X. Wang, X. L. Dong, A. Meliou: Data X-Ray: A Diagnostic Tool for Data
Errors. SIGMOD Conference 2015: 1231-1245

[20] E. Wu, S. Madden: Scorpion: Explaining Away Outliers in Aggregate Queries.
PVLDB 6(8): 553-564 (2013)

[21] H. Zhang, Y. Diao, A.Meliou: EXstream: Explaining Anomalies in Event Stream
Monitoring. EDBT 2017: 156-167


	Abstract
	1 Introduction
	2 Background
	3 Survey
	3.1 Methods Based on Coverage
	3.2 Methods based on Contrast
	3.3 Methods based on Information

	4 Conclusions and Open Problems
	References

