
A Reasoning-based Defogger for Opponent Army Composition Inference under
Partial Observability

Hao Pan
QOMPLX, Inc.

1775 Tysons Blvd, Suite 800
Tysons, VA 22102

hao.pan@QOMPLX.com

Abstract

We deal with the problem of inferring the opponent army
size and composition in Real-Time Strategy (RTS) games
with partial observability. Using StarCraft R©: Brood War R©,
we propose a methodology to dynamically estimate the num-
ber of production facilities the opponent has at any given time
in a game, then in turn reason on how many army units the
opponent will produce in the near future and of which type.
We conduct case studies to demonstrate the effectiveness of
the proposed methodology and compare the results with those
from mainstream approaches.

Introduction
The first known use of the exact phrase “Fog of War” in text
dates to 1896, described as “the state of ignorance in which
commanders frequently find themselves as regards the real
strength and position, not only of their foes, but also of their
friends.”(Hale and Society 1896). In a nutshell, the Fog of
War (FoW) describes the uncertainty regarding one’s own
capability, the opponent’s capability and their intent during
a military operation. In RTS games, FoW is often simulated.
In as early as 1989, (Setear 1989) identified the key element
of simulating the Fog of War to be uncertainty. In this paper
we focus on the game StarCraft because it not only provides
the environment with partial observability, but also has large
state and action spaces, making the game itself challeng-
ing for AI researchers to design algorithms to handle vari-
ous types of uncertainty and make appropriate decisions(On-
tanón et al. 2013; Vinyals et al. 2017).

There are attempts to tackle this challenge. (Hagelbäck
and Johansson 2009) attempted to address pathfinding under
Fog of War utilizing potential field. The authors argued that
the bots equipped with Potential Fields can handle partial
observatiblity caused by FoW well by gridifying the entire
map and performing efficient exploration. In this way, a bot
can manage to navigate in a partially unknown environment
while at the same time search for enemies and choose which

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
Copyright c© 2020 for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC
BY 4.0).

one(s) to fight and where to do so. To deal with the strategy
selection problem under uncertainty, (Gehring et al. 2018)
utilized LSTM encoding and recorded game states based
on current observation every 5 seconds of game time. They
computed q-value to decide which of the 25 build orders
(BOs) to switch to. The build order is defined as the concur-
rent action sequences that, constrained by unit dependencies
and resource availability, create a certain number of units
and structures in the shortest possible time span (Churchill
and Buro 2011). These 25 BOs are a drop in the ocean, since
the game StarCraft offers a seemingly endless choice of BOs
which depend on factors such as the faction a player sides
with and which of the 45 unit types to train at a specific time.
(Fjell and Møllersen 2012) worked on extracting BOs from
replay files and employed Gaussian distribution to handle
the uncertainty in the BOs caused by the FoW.

Defogging is equally as challenging as decision making
under FoW. It should be noted that the defogger this paper
concerns is about inferring the army size and the composi-
tion of the opponent (future state prediction) under partial
observability. This is quite different than the forward model-
ing (Justesen and Risi 2017) used. In their paper, the authors
proposed a novel approach to counter an opponent’s BOs
by incorporating a Genetic Algorithm into an online plan-
ning algorithm so that the optimal BO can be found. A for-
ward model was constructed to predict the outcome of taking
some actions in a given game state. Such an outcome was
not influenced by opponent information but only by one’s
own side such as the available mineral/gas amount, currently
completed number of certain units/buildings, etc. (Synnaeve
et al. 2018) employed convolutional LSTM encoder-decoder
neural-network models to infer and predict an opponent’s
army composition under partial observability, and the Hu-
ber loss function to evaluate the accuracy of the prediction.
The results indicated that the win rates improved (by 5% in
some cases) with the proposed defogger. However, the au-
thors only compared the overall observed unit count as op-
posed to the count of each unit type.

In this paper, we propose a reasoning-based defogger to
address the following challenges: 1) handling uncertainty
under the fog of war; 2) inferring the opponent’s army com-
position (unit types and corresponding quantities) accurately



and efficiently. In the sections to follow, we present the
framework to reason about the opponent’s army composi-
tion with ECDFs to deal with the uncertainty, an entropy
measure to intelligently choose the sampling rate of the in-
formation, and a combat simulator to aid projection into the
future. We then demonstrate that the proposed approach per-
forms better than a few mainstream approaches and is able
to handle multiple unit types.

Methodology
The uncertainty brought about by the Fog of War makes de-
fogging difficult. In the game StarCraft, if one were to pre-
dict how many of unit X there will be at a future time point,
there are several questions to consider: 1) how many pro-
duction facilities (ones responsible for training unit X) does
the opponent have; 2) does the opponent have any produc-
tion facility which is ready to train unit X; 3) whether the
opponent decides to train unit X (instead of training other
types of units); 4) how reliable is the collected intelligence
of the opponent so far. And if we do believe that the op-
ponent is about to train unit X, what we are then mainly
interested in is: a) when the previous unit X was trained,
and b) how long does it take between the time the unit is
completed and the time we observe the newly-trained unit.
Aspect b) can be tricky to quantify. Sometimes an opponent
would like to stage their units for defensive purposes before
they have a sizeable army, and sometimes such waiting time
is negligible, especially when the opponent is doing a rush
build, which means moving units and attacking the enemy as
quickly as possible. We find the latter is often the case based
on our observations of games happening on the StarCraft AI
ladder called BASIL1.

The first step in addressing these questions is to turn to
the previous games vs the same opponent if such games are
available. For each of these games, we record the time his-
tory of the count of each unit type that we observe in game
as well as the actual number obtained after the game was
concluded. Then we form an empirical distribution function
(ECDF) based on such time series data at each time point, so
that we can describe the distribution reasonably well regard-
less of the number of data points. If at the current time, the
observation falls well within the distribution described by
the ECDF, we will simply use the distribution at the next
time step for prediction purposes, assuming continuity in
time. Now doing so relies on several assumptions: 1) the
opponent is following the same build order; 2) we also use
the same BO; 3) map factors such as base-to-base distances
play an insignificant role.

Regardless of the use of ECDF, the next step is the infer-
ence of the time when we’ll see the arrival of the next unit.
The arrival time of any unit can be described as:

tarrival = tstart + ttrain + ttraverse + twait

where tarrival means the time at which we observe the
unit for the very first time, tstart means the time when the
unit starts to get trained, ttrain is the time it takes to com-
plete the training, ttraverse is how long it takes for the unit to

1BASIL ranking page: https://basil.bytekeeper.org/ranking.html

traverse from its birth place to our sight, and finally twait is
the time the unit is waiting. To ease the inference on tstart,
we assume that, when the opponent chooses to train a unit of
a certain type, there are enough resources, and the opponent
is not supply blocked. ttrain is a fixed value and measured by
logical steps2. ttraverse is affected by the movement speed
of a unit and the map factors. While the movement speed is
fixed just as ttrain, there is much variation in the base-to-
base distances (which are a good indicator for determining
how far a unit needs to travel from its home to the enemy’s
base) on different maps. And finally, we assume twait is of-
ten negligible.

All of the things above are for a unit from a single pro-
duction facility. In StarCraft, a player can have more than
one production facility. Inference on the number of the op-
ponent’s production facilities can be tricky but can aid the
inference of the army composition. We do this by reasoning
on the arrival times of units. For example, with the current
knowledge being the opponent having only 1 production fa-
cility, and if we observe the arrival of 2 new units after a
time period which is only enough to train 1 unit (for the
Terran and Protoss factions, only 1 unit can be trained at a
production facility at a time), it is reasonable to infer that the
opponent has at least 2 production facilities.

Another important factor for inferring opponent army
composition is the sampling rate. How often do we collect
intelligence about the opponent? In StarCraft and with the
help of BWAPI, a bot can communicate with the game on
each frame which is roughly 42 ms long at the fastest speed
setting. But is it necessary to do something on each frame?
In StarCraft AI competitions, there are frame time limita-
tions, which means one needs to care how much computa-
tion to do per frame without slowing down the game. On the
other hand, if we sample the information infrequently, some
valuable information may eventually slip away. How can one
decide the frequency to do so? Here we use the information
entropy, or more specifically, Rényi entropy, as it is the gen-
eralization of many other entropy measures such as Shan-
non entropy and Hartley entropy. Entropy is a way to mea-
sure the information content of a system. Once we compute
the entropy value, we then apply a change point detection
algorithm (Killick, Fearnhead, and Eckley 2012) to know
whether a drastic change in entropy value happens. A change
point detection algorithm, in general, tries to segment the
data according to some statistical criteria such as penalised
likelihood and quasi-likelihood. When such a change point
is found, we’ll respond by increasing/decreasing the sam-
pling rate among the 4 levels: I) once per second, II) once
per 2 seconds, III) once per 4 seconds, and IV) once per 8
seconds.

Putting all things together, we arrive at our proposed ap-
proach for defogging: Algorithm 1 where T is the total du-
ration of a game (in seconds) and t is a specific time step. A
few things should be noted here. First, some production fa-
cilities are capable of producing multiple types of units, and
only one unit can be trained at a time. This affects both the
inference about the number of production facilities as well as

2Build times: https://liquipedia.net/starcraft/Game Speed



determining whether a certain unit type is going to be trained
next. For the sake of simplicity, we assume the worst case,
that the opponent is going to choose a unit type that would
benefit their army value the most, provided their technology
level (which is based on our scouted information) supports
that.

Algorithm 1 Our proposed approach for defogging
for t in 1 : T do

* Infer how many production facilities the opponent has
considering all unit types the opponent has
* Update the number of production facilities using
scouted information
for unit type i in all unit types do

if there is any enemy unit of type i being newly ob-
servered/destroyed currently at tcurrent then

* Increase/reduce the count of unit type i by the
number of emerging/dying ones (check unit IDs
to avoid double counting)

end if

if this is a time point to sample then
* Evaluate Rényi entropy
* Apply change point detection algorithm
* Determine sampling rate
* Compute next time to sample tnext

if ECDF is available and ECDF is applicable and
the current count falls within the distribution de-
scribed by the ECDF then

* Forecast the count by computing the mean
value of the distribution at tnext

else
if there is any newly-observed enemy unit of
unit type i and we believe the opponent will
train it next then

* Estimate the potential start time(s) of the
next new unit(s): tcurrent − ttraverse − twait

* Forecast the completion time tcmpl by
adding ttrain to the result above
* Forecast the potential losses of unit type i
until tcmpl should a skirmish happen
* Update the count of unit type i at tcmpl

end if
end if

end if
end for

end for

At each time step t, we also ask ourselves whether a skir-
mish would take place and if so, how many of the units the
opponent would lose. The simulation of such a hypotheti-
cal encounter wouldn’t be too hard as it would involve only
a few types of units and we know the timing of our army
pushing out. Here we used a combat simulator called FAP.3

Another thing to note is that, for each unit type, we check
the validity of the associated ECDF carefully by looking at

3FAP’s github page: https://github.com/N00byEdge/FAP

two things: 1) whether the standard deviation is at most half
the value of the mean; 2) whether the observed value falls
within one standard deviation from the mean. If both results
of these two tests are positive, we say the ECDF is valid and
will utilize the ECDF to predict the count of the associated
unit type. The amount of previous games used to form the
ECDF can be tricky. In a case study we will show that only
a limited amount of such games are optimal for the purposes
here.

Case Study
For our first case study, the purpose is to demonstrate the
inner working of our approach. For the sake of simplicity,
we pitch our own StarCraft AI bot called Halo4 against an
opponent which only does a single build order, and we run
10 games on a single map (Destination) to minimize the in-
fluence of map factors. The opponent name is WuliBot and
it is a competent bot which achieved the second place in the
student division in the SSCAIT5 2016/17 tournament. Wuli-
Bot does a zealot rush build exclusively so we only monitor
the count of the main unit of the build: Protoss Zealot.

Figure 1: Count of the Protoss Zealot unit from multiple
games

Figure 1 shows the count of Protoss Zealot from the 10
games we ran. The 10th game was used as the “current”
one for forecasting purposes. Our observed and the actual
counts of Protoss Zealot in this game 10 are marked as
black and red circles on Figure 1, respectively. With the met-
rics deciding whether the ECDF is applicable, we were able
to ignore the ECDFs in the period between time points 50
and 65 where the variance is excessively large. On Figure
1 we also show a few of the inferred and the actual tim-
ings of Protoss Gateway which is the production facility re-
sponsible for training Protoss Zealot. At time point 180 we
observed 3 Protoss Zealots, and after 40 seconds, we ob-
served 2 more. It is impossible that there’s only one Pro-
toss Gateway as a Protoss Zealot takes 25 seconds to train
and it would take more than 40 seconds for 2 new zealots
to appear. Therefore we arrived at the conclusion that the
opponent must have at least two Protoss Gateways at time

4Halo’s liquipedia page: https://liquipedia.net/starcraft/Halo
5SSCAIT stands for Student StarCraft AI Tournament and its

homepage: https://sscaitournament.com/



point 220. This was in fact confirmed by our scouted infor-
mation, as our scouting worker spotted 2 Protoss Gateways
at time point 180. We then update the inferred timings of the
two Protoss Gateways to time point 180. Efficient scouting
(the scouting worker covering as much enemy territory as
possible without dying) is vital to the inference here.

To examine the effect of the number of previous games
on defogging, we started by having no previous games, and
made one-step forward forecasts at each time step using the
observed values from game 10. Then we treated game 1,
games 1-2, and through to games 1-9 as the previous game(s)
to build the ECDFs, and used game 10 to perform the fore-
casting. We used Root Mean Squared Error (RMSE) to mea-
sure how good the forecast is.

Figure 2: Evolution of RMSE as a function of the number of
previous games

Figure 2 shows the evolution history of RMSE values as
the number of the available previous games increases. The
RMSE values decreases because the ECDF describing the
distribution of unit count gets better as the evidence from the
past accumulates. There is a slight upward trend in RMSE
as the number of past games approaches 9. This is largely
because the amount of noise/uncertainty is inevitably rising
as the number of games increases. Taking advantage of a
nice property of ECDF (that it works with low amounts of
data), we apply a moving window here to limit how many of
the previous games we consider.

Figure 3 shows the time history of entropy values for
game 10. As we can see, there’s a sudden increase around
time point 180, indicating that the sampling rate should be
raised. We were able to apply a change point detection algo-
rithm to identify this very time point. And this is consistent
with Figure 1 as there’s also a sudden jump in Protoss Zealot
count around that time point. It is the correct decision to in-
crease the sampling rate so that we have the count as accu-
rate as possible.

The second case study aims at comparing our proposed
approach with a few mainstream methods to perform fore-
casting for time series, namely, 1) ARIMA model; 2) neural
network; 3) growth model. For the ARIMA model, we au-
tomatically choose the orders of the Auto Regressive (AR)

Figure 3: Time history of Rényi entropy

and Moving Average (MA) terms, and the number of differ-
encing required to make the series stationary. For the neu-
ral network, we use a feed forward neural network called
multilayer perceptron (MLP) as it is fairly conventional. We
utilize an R package called “nnfor” which attempts to au-
tomatically specify autoregressive inputs and any necessary
pre-processing of the time series. With the pre-specified ar-
guments it trains multiple networks which are used to pro-
duce an ensemble forecast and a single hidden layer. For the
growth model we pick the exponential type. There are two
parameters to be estimated here: the initial state of the sys-
tem and the growth constant. We avoid the other type of the
growth model, the logistic type, since all the games run were
nowhere close to either side hitting the supply max, which is
not an ideal scenario for this type of model.

Before we performed the comparison, we also set up both
a baseline model and a full-observability model in order to
better examine how much the partial observability impacts
the forecasts. The baseline model is one obtained with zero
observability. Effectively the baseline model is trying to an-
swer the question, “what army composition do we expect
from an average Protoss opponent given a time point in a
game?”. We address this by running games using our own
bot Halo with a fixed BO against all available Protoss op-
ponents on the BASIL ladder. The baseline model is then
constructed using the statistics from these games, mainly
the mean and the variance. We do this for the two Protoss
units which are often a staple: 1) Protoss Zealot; 2) Pro-
toss Dragoon.

The full-observability model, on the other hand, was con-
structed using information as if there was full observability.
We run games pitching our bot Halo against a single oppo-
nent named Locutus using sc-docker6. After each game, sc-
docker produces a file named unit events.csv which con-
tains information such as location, unit type, and time as-
sociated with important events including unitCreate and
unitDestroy. One can then deduce the count of a unit at any
given time from such information. Figures 4 and 5 demon-

6sc-docker’s github page: https://github.com/basil-ladder/sc-
docker. This is the version the BASIL ladder uses currently



strate both the baseline and the full-observability models for
the two Protoss units. The curves denoted by games 1-3 rep-
resent the full-observability models for those games, respec-
tively. Both figures demonstrated that the baseline model
is working well. The upper bounds of the baseline model
successfully encompassed the counts of the two Protoss
units from the three full-observability models. In addition,
the baseline model has a wide coverage in time. Games 1-
3 ended much sooner compared to the average games de-
picted by the baseline model, as Locutus is notorious for its
early/mid game aggression.

Figure 4: Baseline and full-observability models for the Pro-
toss Zealot unit

Figure 5: Baseline and full-observability models for the Pro-
toss Dragoon unit

Unlike the previous study, we now choose an adaptive
opponent named Locutus which is performant and often
achieves the top place on the BASIL ladder. We ran and
chose a few games where Locutus executed a few of its main
build orders. The build orders used were: 14 nexus in game
1; proxy 2-gate zealot in game 2; 3-gate goon in game 3.

Next we apply the three mainstream methods and our pro-
posed approach to perform both one-step and twelve-step
forecasts, as we care about both the short-term and long-
term army compositions of the opponent. We then compared
the forecasts produced from the four approaches, along-
side those from the baseline model, with the “true values”,

or those from the full-observability model. Table 1 shows
the summary of RMSE values from game 1 for the Pro-
toss Dragoon unit only, as Locutus didn’t train any Pro-
toss Zealot at all. The results here suggest that our proposed
approach was able to produce the most accurate forecast as
the RMSE values are the smallest. Discussion on the causes
of such results will follow next.

Table 1: RMSE using different approaches from game 1 for
the Protoss Dragoon unit

ARIMA MLP Growth
Model Proposed Baseline

One-step forecast
RMSE 3.5 1.8 1.9 1.7 4.7

Twelve-step forecast
RMSE 4.1 4.3 9.1 3.1 9.0

We discovered a few drawbacks associated with the alter-
native approaches. For the ARIMA model, forecasts are not
ideal, as evidenced by Figure 6. The twelve-step forecast is
indicated by the blue line, with a growing variance as time
goes by. The ARIMA (0, 2, 2) model fitted here is effec-
tively applying a linear exponential smoothing which uses
a moving average to create a forecast from a time series. In
the case here, this is problematic, as the count of a unit can
change drastically because it depends on so many factors
such as combat effectiveness, the number of production fa-
cilities, the amount of available resources, etc. The moving
average part simply cannot keep up. The one-step forecast is
even worse, as indicated by the red dots, especially towards
the end of the game. One large contributing factor to this is
the fact that the quantity of the Protoss Dragoon unit is zero
from the start for a very long time (up until 28 time units).
They “dragged down” the forecasts later on, because the
moving average term of the ARIMA model (0, 2, 2) is not
sensitive to new trends. While for our proposed approach,
such dependency exists, but the updated information from
either our scout or real-time observations prevents us from
being stranded by the past data.

Figure 6: Forecasts from an ARIMA model

For the neural network model, there’s a mandatory burn-



in period. In this case study, it required at least 10 data points
for the neural network model to produce meaningful fore-
casts. Also, there’s the issue of hyperparameter tuning where
one needs to decide the number of layers and the number
of nodes on each layer for a neural network model. How-
ever, the advantage of the neural network approach is that
it would work for any game, whereas the proposed method
might have to be redesigned for a different RTS game. For
example, some games might not even have the concept of
production facilities. Regardless of performing hyperparam-
eter tuning, the computational cost is the highest using neu-
ral network models compared to other methods. While for
our approach, it works right from the beginning without re-
quiring hyperparameter tuning. Then as time goes by, it up-
dates accordingly with minimal computational cost. Figure
7 shows the forecasts from the neural network model MLP. It
is similar to the forecast from the ARIMA model earlier as it
also predicts an upward trend. The variance associated with
the forecast is much smaller, which is an improvement. The
upward trend is a bit conservative, which results in a growing
discrepancy between the forecast and the actual unit count.

Figure 7: Forecasts from an MLP model

For the growth model, we had to stick with the exponen-
tial type as the logistic type is quite sensitive to the zero
values in the early times, resulting in unsuccessful fitting
of the model. While for our approach there is no need to
choose/fit a model, as it is relatively model-free. Figure 8
shows the forecasts from the exponential growth model. The
results are not meaningful, as the predicted values are un-
reasonably huge, well beyond the maximum number of Pro-
toss Dragoon a player can possibly have, not to mention that
the fitting of the model to the training data set is poor. The
model is overly simplistic and gives almost no consideration
to limiting factors such as available supply and resources.
One may argue that the other main type of growth model
(the logistic type) may be applicable here despite its compu-
tational difficulty. However, logistic models assume that the
growth rate decreases with population abundance, which is
not necessarily true in StarCraft.

Figure 9 shows the result of our proposed approach.
First we correctly captured the growth rate of the Pro-
toss Dragoon unit, as the slope of our forecast curve is

Figure 8: Forecasts from an exponential growth model

Figure 9: Forecasts from our proposed approach

roughly matching the one from the curve representing the
true values. This is mainly because we correctly inferred the
number of production facilities the opponent had, although
there’s a slight delay on the time the opponent started to train
the unit. Also, we were successful in predicting the potential
casualties incurred upon the opponent unit.

Table 2: RMSE using different approaches from game 2 for
the Protoss Zealot unit

ARIMA MLP Growth
Model Proposed Baseline

One-step forecast
RMSE 2.1 0.8 0.9 1.0 2.9

Twelve-step forecast
RMSE 1.3 1.4 132.0 0.8 4.7

Tables 2 and 3 show the RMSE values from games 2 and
3, respectively. In both of these games, Locutus went for a
single type of unit exclusively for a really long time. The
other type of unit was only added into the army mix in the
last minutes of those games. Nonetheless, the presence of
multiple unit types still poses a challenge to the defogging.
With different build orders used by the opponent and a more



Table 3: RMSE using different approaches from game 3 for
the Protoss Dragoon unit

ARIMA MLP Growth
Model Proposed Baseline

One-step forecast
RMSE 2.4 1.7 1.7 1.2 2.6

Twelve-step forecast
RMSE 4.5 5.8 28639.0 1.1 2.1

complex army composition, our proposed approach was still
able to produce a reasonable forecast with the minimum
RMSE compared to values from other approaches in most
cases. We were successful in maintaining the accuracy of
the forecast by taking into account multiple unit types at the
same time, thus preventing us from under-/over-predicting.
For production facilities the Protoss faction possesses, it is
not possible to train more than one unit at a time. This fact
aided our inference on the number of production facilities
the opponent had, and such an inference is an advantage
other approaches do not have. Additionally in game 3, the
casualty count of Locutus’ Protoss Dragoon unit was ex-
ceedingly high. But thanks to our consideration of potential
combat outcomes, we were able to adjust our forecast ac-
cordingly.

Conclusion
In this paper we proposed a customized approach to handle
the challenge of performing defogging under partial observ-
ability. We infer the counts of different types of units the op-
ponent has by reasoning on several things, such as the num-
ber of production facilities, currently collected intelligence
about the opponent, the outcome of a future skirmish, etc.
We utilize ECDF to handle the uncertainty brought about
by the Fog of War. We also employ information entropy to
adjust the sampling rate properly. In our case studies we
demonstrated the effectiveness of our proposed approach
and illustrated its supriority over a few mainstream ones
such as ARIMA, MLP, and growth models.

There are a few things that we’d like to work on in the
future: 1) opponent build order classification/identification.
Proper opponent build order classification would allow us
to select which of the previous games should be used based
on the BO identified in the current game, thus facilitating
the forecast process; 2) opponent intent inference. Currently
we assume that the opponent would choose the unit which
would counter our army the best. In reality, things are more
complex. For example, there can be multiple such units to
choose from, or the opponent feints us by choosing to train
sub-optimal units, so that we are led to situations that are
hard to transition out of; 3) further reducing the delay in
the forecast. Although we were able to achieve good RMSE
values, there’s still a gap in time between our forecast values
and the actual ones. On top of the factors that we are already
considering such as map terrain and unit speed, there are yet
potentially important ones, into which we can dive deeper,
such as unit waiting time.

Acknowledgements
The authors would like to specifically thank Nathan Roth
(MSc) for his assisstance on the making of the authors’ Star-
Craft bot Halo. The authors would also like to thank Dan
Gant for his review on this paper and advice. The authors
are equally thankful to Dennis Waldherr and his BASIL lad-
der, as it provided an invaluable testbed-like environment for
this research.

References
Churchill, D., and Buro, M. 2011. Build order optimiza-
tion in StarCraft. The Seventh AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE)
14–19.
Fjell, M. S., and Møllersen, S. V. 2012. Opponent model-
ing and strategic reasoning in the Real-Time Strategy game
StarCraft. Master thesis, Norwegian University of Science
and Technology.
Gehring, J.; Ju, D.; Mella, V.; Gant, D.; Usunier, N.; and
Synnaeve, G. 2018. High-level strategy selection un-
der partial observability in StarCraft: Brood War. doi:
https://arxiv.org/abs/1811.08568.
Hagelbäck, J., and Johansson, S. J. 2009. Dealing with Fog
of War in a Real-Time Strategy game environment. 55 – 62.
2008 IEEE Symposium on Computational Intelligence and
Games (CIG08). doi: 10.1109/CIG.2008.5035621.
Hale, L., and Society, A. M. 1896. The Fog of War, by
Colonel Lonsdale Hale ... Tuesday, 24th March, 1896. Ed-
ward Stanford, 26 and 27, Cockspur Street, Charing Cross,
S.W.
Justesen, N., and Risi, S. 2017. Continual Online Evo-
lutionary Planning for in-game build order adaptation in
StarCraft. 187 – 194. GECCO ’17: Proceedings of the
Genetic and Evolutionary Computation Conference. doi:
https://doi.org/10.1145/3071178.3071210.
Killick, R.; Fearnhead, P.; and Eckley, I. A. 2012.
Optimal detection of changepoints with a linear
computational cost. Journal of the American Sta-
tistical Association 107’(500):1590–1598. doi:
https://doi.org/10.1080/01621459.2012.737745.
Ontanón, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.;
Churchill, D.; and Preuss, M. 2013. A survey of Real-
Time Strategy game AI research and competition in Star-
Craft. IEEE Transactions on Computational Intelligence
and AI in games 5(4):293–311.
Setear, J. K. 1989. Simulating the fog of war. Research
report, RAND Corporation.
Synnaeve, G.; Lin, Z.; Gehring, J.; Gant, D.; Mellla, V.;
Khalidov, V.; Carion, N.; and Usunier, N. 2018. Forward
modeling for partial observation strategy games - a StarCraft
defogger. Advances in Neural Information Processing Sys-
tems 31:10759 – 10770. doi: arXiv:1812.00054.
Vinyals, O.; Ewalds, T.; Bartunov, S.; Georgiev, P.; Vezhn-
evets, A. S.; Yeo, M.; Makhzani, A.; Küttler, H.; Agapiou, J.;
and Schrittwieser, J. 2017. StarCraft II: A new challenge for
Reinforcement Learning. arXiv preprint, arXiv:1708.04782.


