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Abstract. In this article, the formulation and proof of the theorem on the difference in the
ranks of the numbers represented in the Residue Number System is carried out. A method is
proposed that allows to reduce the amount of necessary calculations and increases the speed of
calculating the rank of a number relative to the method for calculating the rank of a number
based on the approximate method. To find the rank of a number in the method for calculating
the rank of a number based on the approximate method, it is necessary to calculate n operations
with numbers exceeding the modulus value; in the proposed method, it is necessary to calculate
n·(n−1)

2
operations not exceeding the value of the module.

1. Introduction
The current state of development of infocommunication technologies in the field of data
processing and transmission is characterized by the intensive introduction of new principles
and approaches to information processing. One of the ways to increase the speed of computing
facilities led to the creation of computing systems with a parallel structure. At the same time,
it became necessary and expedient to use codes with a parallel structure. These codes include
non-weigted codes - codes based on modular arithmetic, that is, codes in which numbers are
represented in the Residue Number System (RNS) [1].

The Residue Number System is a number system based on the representation of a number
as a set of residues after division by a set of coprime numbers, called the basis of the system.
The main feature of the RNS is the non-weighted representation of a number, which ensures the
independence of numeric digits and the possibility of parallel processing of numbers [2, 3].

Copyright c© 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0).



Let the RNS be given by a set of coprime bases p1, p2, . . . , pn. Then the number X can be
represented as X = (x1, x2, . . . , xn), where xi = |X|pi for all i = 1, 2, . . . , n [4]. The numbers
xi will be called the digits of the number X in this RNS. According to the Chinese remainder
theorem, the RNS allows a unique representation of any number from the interval [0, P ), where
P = p1 · p2 · . . . · pn – is a dynamic range of number representation [5].

The fundamental proposition underlying modular arithmetic is the Chinese Remainder
Theorem:

Theorem 1: Let p1, p2, . . . , pk be some natural coprime numbers and P = p1 · p2 · . . . · pk.
Any number X, such that 0 ≤ X ≤ P , can be unambiguously represented as a sequence
(x1, x2, . . . , xn), where xi = X mod pi, wherein

X =

∣∣∣∣∣
n∑

i=1

∣∣∣P−1i

∣∣∣
pi
Pixi

∣∣∣∣∣
P

, (1)

where Pi = P
pi

. The numbers Bi =
∣∣∣P−1i

∣∣∣
pi
Pi is customary to call orthogonal RNS bases since

their representation in RNS corresponds to the number 1 in position i and 0 in positions j 6= i.
The advantage of the modular representation of a number is that the operations of addition,

subtraction and multiplication are very simple and parallel. [6]. Let the numbers A and B be
given by the formula (1):

A ≡ α1 (modp1) , A ≡ α2 (modp2) , . . . , A ≡ αn (modpn)

B ≡ β1 (modp1) , B ≡ β2 (modp2) , . . . , B ≡ βn (modpn)

Then the operations of addition, multiplication and subtraction can be performed according
to the formulas

A±B = (α1, α2, . . . , αn)± (β1, β2, . . . , βn) =
= (((α1 ± β1) (modp1)) , ((α2 ± β2) (modp2)) , . . . , ((αn ± βn) (modpn)))

(2)

A ·B = (α1, α2, . . . , αn) · (β1, β2, . . . , βn) =
= (((α1 · β1) (modp1)) , ((α2 · β2) (modp2)) , . . . , ((αn · βn) (modpn)))

(3)

The operations of addition, subtraction and multiplication in the RNS are performed
independently and in parallel, therefore, based on this number system, it is possible to create
a completely homomorphic coding system. Coding systems of this type are required when
organizing cloud computing, since they allow protecting data when performing mathematical
operations remotely [7].

The range of numbers on which modular arithmetic operations can be performed is the set

of numbers P , each of which does not exceed the product of the selected moduli
n∏

i=1
pi [8, 9].

2. Algorithm for calculating the rank of a number based on the approximate
method
In order to simplify the process of converting numbers from the modular representation to the
positional representation of numbers, we will consider an approximate method that allows to go
from the expensive operation of taking the remainder in a large modulus to taking the fractional
part of a number by replacing the exact value with an approximate one, and completely correctly
implement the main classes of decision-making procedures: checking the equality (inequality) of
two values; comparison of two values (more, less) that provide a solution to the main range of
problems arising from the hardware or software implementation of real processes [10].



The essence of the approximate method is to use the relative value of the original number to
the full range of CRT, which connects the positional number X with its representation in the
residues (x1, x2, . . . , xn) by the following expression [6]:

X =

∣∣∣∣∣
n∑

i=1

P

pi

∣∣∣P−1i

∣∣∣
pi
xi

∣∣∣∣∣
P

, (4)

where xi are the smallest nonnegative residues of a number divided by moduli of the RNS

p1, p2, . . . , pn, P =
n∏

i=1
pi,
∣∣∣P−1i

∣∣∣
pi

is multiplicative inversion Pi relative to pi and for all i = 1, n

the equality P = P
pi

.

If the formula (4) is divided by the RNS range P , then we get an approximate value:

X

P
=

∣∣∣∣∣∣∣
n∑

i=1

∣∣∣P−1i

∣∣∣
pi

pi
xi

∣∣∣∣∣∣∣
1

, (5)

where for all i = 1, n the equation
|P−1

i |pi
pi

are the constants of the selected system, and xi
are digits of the number presented in the RNS, while the value of each sum is in the interval
[0, 1). The final result of the sum is determined after summing and discarding the integer part
of the number, keeping the fractional part of the sum. The fractional part can also be written
as X mod 1, because X = bXc + X mod 1. The number of digits of the fractional part of a
number is determined by the maximum possible difference between adjacent numbers. In the
work [11] it is shown that with a computational accuracy of N bits, the recovery of numbers by

the formula (5 is correct, where N = dlog2 (ρP )e and ρ = −n+
n∑

i=1
pi.

The hardware implementation of the arithmetic operations of multiplication and addition
of real numbers requires on average 3.5 times more hardware resources than performing the
same operations with integers of the same size, so we make the transition from real numbers to
integers, and the formula (5) takes view:

X =


∣∣∣∣ n∑
i=1

kixi

∣∣∣∣
2N
P

2N

 , (6)

where ki =

⌈
|P−1

i |pi2
N

pi

⌉
.

Then the operation of taking the fractional part in the formula (5) will be replaced by the
operation of taking the least significant N bits of the number in the formula (6), and the
operation of taking the residue from division by the large modulus of the RNS range P will be
replaced with multiplication and shift to the right by N bits of the number.

Let us investigate the question of the size N .
Theorem 2: [12] The formula (6) is true if N is chosen equal to:

N =

⌈
log2

((
−2n+

n∑
i=1

pi

)
P + SQ

)⌉
, (7)

where SQ =
n∑

i=1
Pi.



Proof.

Let ki =

⌈
|P−1

i |pi2
N

pi

⌉
=
|P−1

i |pi2
N

pi
+Ri, where 0 ≤ Ri <

mi−1
m1

.

Let’s calculate the value
n∑

i=1
kixi:

n∑
i=21

kixi
n−1∑
i=1

(
|P−1

i |pi2
N

pi
+Ri

)
xi =

=
n∑

i=1

|P−1
i |pi2

N

pi
xi +

n∑
i=1

Rixi = 2N
n∑

i=1

|P−1
i |pi2

N

pi
xi +

n∑
i=1

Rixi.

(8)

The value

∣∣∣∣ n∑
i=1

kixi

∣∣∣∣
2N

is equal to:

∣∣∣∣∣
n∑

i=1

kixi

∣∣∣∣∣
2N

=
n∑

i=1

kixi −
⌊

n∑
i=1

kixi
2N

⌋
· 2N (9)

Substituting (8) in (9) we get:

∣∣∣∣∣
n∑

i=1

kixi

∣∣∣∣∣
2N

= 2N
n∑

i=1

∣∣∣P−1i

∣∣∣
pi

pi
xi +

n∑
i=1

Rixi −

 n∑
i=1

∣∣∣P−1i

∣∣∣
pi

pi
xi +

n∑
i=1

Rixi

2N

 2N (10)

Substituting the formula (10) to the right side of the formula (6), we get:
∣∣∣∣ n∑
i=1

kixi

∣∣∣∣
2n
P

2N

 =

P n∑
i=1

∣∣∣P−1i

∣∣∣
pi

pi
xi +

P

2N

n∑
i=1

Rixi

−
 n∑
i=1

∣∣∣P−1i

∣∣∣
pi

pi
xi +

n∑
i=1

Rixi

2N

P (11)

Taking into account that by the Chinese remainder theorem:

X = P
n∑

i=1

∣∣∣P−1i

∣∣∣
pi

pi
xi −

 n∑
i=1

∣∣∣P−1i

∣∣∣
pi

pi
xi

P (12)

The formula (6) will be equivalent to the formula (12), if two conditions are met:

(i)

⌊
P

n∑
i=1

|P−1
i |pi
pi

xi + P
2N

n∑
i=1

Rixi

⌋
= P

n∑
i=1

|P−1
i |pi
pi

xi,

is equivalent to: P
2N

n∑
i=1

Rixi < 1.

(ii)

 n∑
i=1

|P−1
i |pi
pi

xi +

n∑
i=1

Rixi

2N

 =

⌊
n∑

i=1

|P−1
i |pi
pi

xi

⌋
, is equivalent to

n∑
i=1

Rixi

2N
< 1

P .

Conditions 1 and 2 are equivalent, therefore, it is necessary and sufficient for the following
condition to be satisfied:

n∑
i=1

Rixi

2N
<

1

P
. (13)



It follows from the inequality (13) that a necessary and sufficient condition is:

2N > P
n∑

i=1

Rixi (14)

Estimating the right side of the inequality (14), we obtain:

P
n∑

i=1
Rixi < P

n∑
i=1

mi−1
mi

(mi − 1) = P
n∑

i=1
(m1 − 1)− P

n∑
i=1

(
1− 1

mi

)
=

= −nP + P
n∑

i=1
mi − nP + SQ =

(
−2n+

n∑
i=1

mi

)
P + SQ.

(15)

It follows from the formula (15) and inequality (14), that if we choose

N =

⌈
log2

((
−2n+

n∑
i=1

pi

)
P + SQ

)⌉
,

then the formula (6) is equal.
The theorem is proved.

We show that N =

⌈
log2

((
−2n+

n∑
i=1

pi

)
P + SQ

)⌉
≤ dlog2 (ρP )e.

To do this, let’s find the difference

ρP −
((
−2n+

n∑
i=1

pi

)
P + SQ

)
= nP − SQ =

n∑
i=1

(P − Pi) > 0. (16)

From the formula (16) it follows that the obtained estimate of the value of N is more accurate
than the estimate from the work [11].

According to the Chinese Remainder Theorem, the value of X can be calculated by the
formula (4) or:

X =
n∑

i=1

Pi

∣∣∣P−1i

∣∣∣
pi
xi −

 n∑
i=1

∣∣∣P−1i

∣∣∣
pi

pi
xi


︸ ︷︷ ︸

rX

P. (17)

where rX is the rank of a number, a positive integer showing how many times the range of the
system was exceeded in transition from the representation of a number in the Residue Number
System to its representation in a system of orthogonal bases [11].

From the formula (17) it follows that calculating rX requires either using an expensive integer
division or working with real numbers with precision N to correctly determine the rank of a
number.

To effectively implement the algorithm for calculating the rank of a number, we use an
approach based on the simultaneous use of an approximate method and a modular adder, which
will significantly reduce the accuracy of calculations:

r =
⌊ n∑
i=1

kixi/2
N1

⌋
, (18)

where ki =

⌈ |P−1
i |pi2

N1

pi

⌉
.

Let us examine the question of the relationship between the values N1, r and rX .
Theorem 3:



(i) If N1 = N , then rX = r.

(ii) If N1 = dlog2 ρe, then rX = r or rX = r − 1, where ρ =
n∑

i=1
pi − n.

Proof

Let ki =

⌈
|P−1

i |pi2
N1

pi

⌉
=
|P−1

i |pi2
N1

pi
+R′ where 0 ≤ R′i ≤ mi−1

mi
.

We calculate the value
n∑

i=1
kixi:

n∑
i=1

kixi =
n∑

i=1

(
|P−1

i |pi2
N1

pi
+R′

)
xi =

n∑
i=1

|P−1
i |pi2

N1

pi
xi +

n∑
i=1

R′ixi =

= 2N1
n∑

i=1

|P−1
i |pi
pi

xi +
n∑

i=1
R′ixi

(19)

Substituting the formula (18) in (19), we get

r =


n∑

i=1
kixi

2N1

 =

 n∑
i=1

∣∣∣P−1i

∣∣∣
pi

pi
xi +

n∑
i=1

R′ixi

2N1

 (20)

From formulas (17) and (20) it follows, that r = rx for

n∑
i=1

R′ixi

2N1
< 1

P . According to the theorem
3, this inequality holds for N1 = N .

If rx = r or rx = r − 1, than from the formula (20) it follows that a sufficient condition is
n∑

i=1

R′ixi

2N1
< 1, therefore,

n∑
i=1

R′ixi < 2N1 .

Since
n∑

i=1
R′ixi <

n∑
i=1

(pi − 1) = −n+
n∑

i=1
pi = ρ, then N1 = dlog2 ρe will be sufficient to satisfy

the second condition of the theorem 3.
Example 1. Let the RNS moduli be p1 = 17, p2 = 19, p3 = 23, p4 = 25. RNS range is

P = 17 · 19 · 23 · 25 = 185 725.
We calculate Pi: P1 = P

p1
= 10 925, P2 = P

p2
= 9 775, P3 = P

p3
= 8 075, P4 = P

p4
= 7 429.

We find the value SQ : SQ = 10 925 + 9 775 + 8 075 + 7 429.
We calculate the parameters of the approximate method:

N = dlog2 14151304e = 24, N1 = dlog2 80e = 7

k1 =
∣∣∣P−11

∣∣∣
p1
P1 = 152950, k2 =

∣∣∣P−12

∣∣∣
p2
P2 = 166175

k3 =
∣∣∣P−13

∣∣∣
p3
P3 = 96900, k4 =

∣∣∣P−14

∣∣∣
p4
P4 = 141151

k1 =

⌈
|P−1

1 |p12
N

p1

⌉
= 13816531, k2 =

⌈
|P−1

2 |p22
N

p2

⌉
= 15011194

k3 =

⌈
|P−1

3 |p32
N

p3

⌉
= 8753331, k4 =

⌈
|P−1

4 |p42
N

p4

⌉
= 12750685

k1 =

⌈
|P−1

1 |p12
N1

p1

⌉
= 106, k2 =

⌈
|P−1

2 |p22
N1

p2

⌉
= 115

k3 =

⌈
|P−1

3 |p32
N1

p3

⌉
= 67, k4 =

⌈
|P−1

4 |p42
N1

p4

⌉
= 98



Let the numbers X → {16, 18, 22, 24} and Y → {1, 2, 3, 4} be given in the RNS.
1. We calculate the values X and Y using the approximate method.

16 · 13816531 + 18 · 15011194 + 22 · 8753331 + 24 · 2750685 = 749855710.
|749855710|224 = 16777182.

X =
⌊
16777182·185725

224

⌋
= 185724.

1 · 13816531 + 2 · 15011194 + 3 · 8753331 + 4 · 2750685 = 81101652.
|81101652|224 = 3661140.

Y =
⌊
3661140·185725

224

⌋
= 40529.

2. We calculate the values X and Y based on theorem 1 and the rank of the function by the
formula (18).

n∑
i=1

kixi = 16 · 152950 + 18 · 166175 + 22 · 96900 + 24 · 141151 = 10957774.

rX =
⌊
10957774
185725

⌋
= 58

X = 10957774− 58 · 185725 = 185724
n∑

i=1
kiyi = 1 · 152950 + 2 · 166175 + 3 · 96900 + 4 · 141151 = 1340604.

rY =
⌊
1340604
185725

⌋
= 7

Y = 1340604− 7 · 185725 = 40529

3. We calculate the valuesX and Y using the 1 theorem and the rank of the number calculated
using the approximate method with accuracy N .

n∑
i=1

kixi = 16 · 13816531 + 18 · 15011194 + 22 · 8753331 + 24 · 12750685 = 989855710

r =
⌊
989855710

224

⌋
= 58 = rX ,

X = 10957774− 58 · 185725 = 185724
n∑

i=1
kiyi = 1 · 13816531 + 2 · 15011194 + 3 · 8753331 + 4 · 12750685 = 121101652

r =
⌊
121101652

224

⌋
= 7 = rY ,

Y = 1340604− 7 · 185725 = 40529

4. We calculate the values X and Y using the CRT and the rank of the number calculated
using the approximate method with an accuracy N1.

n∑
i=1

kixi = 16 · 106 + 18 · 115 + 22 · 67 + 24 · 98 = 7592

r =
⌊
7592
27

⌋
= 59,

X = 10957774− 59 · 185725 = −1, as X < 0 then X = −1 + 185725 = 185724
n∑

i=1
kiyi = 1 · 106 + 2 · 115 + 3 · 67 + 4 · 98 = 929

r =
⌊
929
27

⌋
= 7

X = 1340604− 7 · 185725 = 40529, as X < 0 then X = −1 + 185725 = 185724.

Since Y ≥ 0, then the result remains unchanged.

3. Algorithm for calculating the difference in the ranks of a number in the
Residue Number System
Let a system be given with bases p1, p2, . . . , pn, the range P of which is defined as P =

∏n
i=n pi.

Any number A from the range [0, P ) can be represented uniquely for the chosen bases
A = (α1, α2, . . . , αn).



The given system of bases uniquely corresponds to the system of orthogonal bases
B1, B2, . . . , Bn such that the value A in weigted number system can be represented as

A ≡
n∑

i=1

αiBi (mod P )

or

A =
n∑

i=1

αiBi − r(A)P, (21)

where r(A) is a positive integer showing how many times the range of the system P was exceeded
in transition the representation of a number from the RNS to its positional representation in a
system of orthogonal bases.

The positive integer rA will be called the rank of the number A.
The rank of a number is used for implementation of the following operations: detection of

dynamic range overflow, converting a number from RNS to binary representation, comparing a
number, etc. The increasing demands for the speed of devices lead to the need to improve the
performance of all operations. This work is devoted to the development of an effective method
for calculating the rank of a number in RNS.

Theorem 4: If X → (x1, x2, . . . , xn) and Y → (y1, y2, . . . , yn) given in RNS with bases
p1, p2, . . . , pn satisfy the following conditions: 0 ≤ X < P , 0 ≤ Y < P and X +Y < P , then the
formula (22) is correct.

r (X + Y ) = r (X) + r (Y )−
∑

xi+yi≥0

∣∣∣P−1i

∣∣∣
pi

(22)

Let us formulate a theorem on the rank of the difference of two numbers.
Theorem 5: If X → (x1, x2, . . . , xn) and Y → (y1, y2, . . . , yn) given in RNS with bases

p1, p2, . . . , pn satisfy the following conditions: 0 ≤ X < P , 0 ≤ Y < P and 0 ≤ X − Y < P ,
then the formula (23) is correct.

r (X − Y ) = r (X)− r (Y ) +
∑
xi<yi

∣∣∣P−1i

∣∣∣
pi

(23)

Proof: Calculating r (X − Y ), we get:

r (X − Y ) =


∑n

i=1 Pi

∣∣∣P−1i

∣∣∣
pi
|xi − yi|pi

P

 (24)

Since |xi − yi|pi can be calculated by the formula:

|xi − yi|pi =

{
xi − yi + pi if xi < yi,
xi − yi otherwise,

(25)

then (24) is transformed to:

r (X − Y ) =


∑n

i=1 Pi

∣∣∣P−1i

∣∣∣
pi

(xi − yi) + P ·
∑

xi<yi

∣∣∣P−1i

∣∣∣
pi

P

 (26)

Considering that for any m ∈ Z and a ∈ R the equality holds bm+ ac = m + bac and∑
xi<yi

∣∣∣P−1i

∣∣∣
pi
∈ Z, the formula (26) takes the form:



r (X − Y ) =


∑n

i=1 Pi

∣∣∣P−1i

∣∣∣
pi
· xi

P
−

∑n
i=1 Pi

∣∣∣P−1i

∣∣∣
pi
· yi

P

+
∑
xi<yi

∣∣∣P−1i

∣∣∣
pi

(27)

Since P ∈ Z, then

n∑
i=1

Pi

∣∣∣P−1i

∣∣∣
pi
· xi =

∣∣∣∣∣
n∑

i=1

Pi

∣∣∣P−1i

∣∣∣
pi
· xi

∣∣∣∣∣
P

+ P ·


∑n

i=1 Pi

∣∣∣P−1i

∣∣∣
pi
· xi

P

 (28)

n∑
i=1

Pi

∣∣∣P−1i

∣∣∣
pi
· yi =

∣∣∣∣∣
n∑

i=1

Pi

∣∣∣P−1i

∣∣∣
pi
· yi

∣∣∣∣∣
P

+ P ·


∑n

i=1 Pi

∣∣∣P−1i

∣∣∣
pi
· yi

P

 (29)

Substituting (28) and (29) in (27), we get:

r (X − Y ) =


∑n

i=1 Pi

∣∣∣P−1i

∣∣∣
pi
· xi

P

−

∑n

i=1 Pi

∣∣∣P−1i

∣∣∣
pi
· yi

P



+


∣∣∣∣∑n

i=1 Pi

∣∣∣P−1i

∣∣∣
pi
· xi
∣∣∣∣
P

P
−

∣∣∣∣∑n
i=1 Pi

∣∣∣P−1i

∣∣∣
pi
· yi
∣∣∣∣
P

P


+

∑
xi<yi

∣∣∣P−1i

∣∣∣
pi

(30)

According to the Chinese Remainder Theorem,

∣∣∣∣∑n
i=1 Pi

∣∣∣P−1i

∣∣∣
pi
· xi
∣∣∣∣
P

= X and∣∣∣∣∑n
i=1 Pi

∣∣∣P−1i

∣∣∣
pi
· yi
∣∣∣∣
P

= Y , therefore (30) takes the form:

r (X − Y ) =


∑n

i=1 Pi

∣∣∣P−1i

∣∣∣
pi
· xi

P

−

∑n

i=1 Pi

∣∣∣P−1i

∣∣∣
pi
· yi

P

+

+

⌊
X

P
− Y

P

⌋
+
∑
xi<yi

∣∣∣P−1i

∣∣∣
pi

(31)

Since by the condition of the theorem 0 ≤ X−Y < 0, then the term
⌊
X
P −

Y
P

⌋
in (31) s equal

to zero. Considering that

r (X) =


∑n

i=1 Pi

∣∣∣P−1i

∣∣∣
pi
· xi

P

 (32)

r (Y ) =


∑n

i=1 Pi

∣∣∣P−1i

∣∣∣
pi
· yi

P

 (33)



we get:

r (X − Y ) = r (X)− r (Y ) +
∑
xi<yi

∣∣∣P−1i

∣∣∣
pi

(34)

The theorem is proved.
Theorem 6: Let the RNS moduli p1, p2, . . . , pn and two integer numbers X,Y ∈ ZP in RNS

be given: X → (x1, x2, . . . , xn) and Y → (y1, y2, . . . , yn). If there is such j ∈ 1, n for which the
equality X = pj · Y holds, then

r (X) = pj · r (Y )−
n∑

i=1

∣∣∣P−1i

∣∣∣
pi
·
⌊
pj · yi
pi

⌋
(35)

Proof: Calculating the value r (X) by the formula (32), we get:

r (X) =


∑n

i=1 Pi

∣∣∣P−1i

∣∣∣
pi
· xi

P

 (36)

Since for any i the equation xi = |pj · yi|pi = pj ·yi−pi ·
⌊
pj ·yi
pi

⌋
holds, then (36) is transformed

to:

r (X) =


∑n

i=1 Pi

∣∣∣P−1i

∣∣∣
pi
·
(
pj · yi − pi ·

⌊
pj ·yi
pi

⌋)
P

 =

=

pj ·
∑n

i=1 Pi

∣∣∣P−1i

∣∣∣
pi
· yi − P ·

∑n
i=1

∣∣∣P−1i

∣∣∣
pi
·
⌊
pj ·yi
pi

⌋
P

 =

=

pj ·
∑n

i=1 Pi

∣∣∣P−1i

∣∣∣
pi
· yi

P

− n∑
i=1

∣∣∣P−1i

∣∣∣
pi
·
⌊
pj · yi
pi

⌋
(37)

According to the Chinese remainder theorem,
∑n

i=1 Pi

∣∣∣P−1i

∣∣∣
pi
· yi can be represented in the

form
∑n

i=1 Pi

∣∣∣P−1i

∣∣∣
pi
· yi = P · r (Y ) + Y , therefore the formula (37) is transformed to:

r (X) =

⌊
pj · P · r (Y ) + pj · Y

P

⌋
−

n∑
i=1

∣∣∣P−1i

∣∣∣
pi
·
⌊
pj · yi
pi

⌋
=

= pj · r (Y ) +

⌊
pj · Y
P

⌋
−

n∑
i=1

∣∣∣P−1i

∣∣∣
pi
·
⌊
pj · yi
pi

⌋
(38)

It follows from the condition of the theorem that X = pj ·Y and X ∈ ZP , therefore X satisfies

the inequality 0 ≤ X < P , hence the term
⌊
pj ·Y
P

⌋
in the formula (38) is equal to zero, and the

formula (38) is transformed to:

r (X) = pj · r (Y )−
n∑

i=1

∣∣∣P−1i

∣∣∣
pi
·
⌊
pj · yi
pi

⌋



The theorem is proved.
Using the theorems 5, 6 and the formula (22) we propose an algorithm for calculating the

rank of a number.
Algorithm 1 calculating the rank of a number r (X).

InputX → (x1, x2, . . . , xn), p1, p2,. . . , pn−1, pn,

wi,j =
∣∣∣p−1i

∣∣∣
pj
∀ : i 6= j & i, j = 1, n, Bi =

∣∣∣P−1i

∣∣∣
pi
∀ : i = 1, n,

ri = r (i) ∀ : i = 1, pn, where Pi = P/pi ∀ : i = 1, n.
Output r (X).

x
(1)
1 = 0;

For j = 2, j ≤ n, j + + do

x
(1)
j = |xj − x1|pj ; y

(1)
j =

∣∣∣w1,j · x(1)j

∣∣∣
pj

; Parallel processing

For i = 2, i < n, i+ + do

x
(i)
i = 0;

For j = i+ 1, j ≤ n, j + + do

x
(i)
j =

∣∣∣y(i−1)j − y(i−1)i

∣∣∣
pj

; y
(i)
j =

∣∣∣wi,j · x(i)j

∣∣∣
pj

; Parallel processing

r = pn−1 · r
(
y
(n−1)
n

)
= pn−1 · ry(n−1)

n
;

For j = 1, j < n, j + + do

y
(n−1)
j =

∣∣∣y(n−1)n

∣∣∣
pj

; Parallel processing

x
(n−1)
j =

∣∣∣pn−1 · y(n−1)j

∣∣∣
pj

; r = r −Bj ·
⌊
pn−1·y(n−1)

j

pj

⌋
; Parallel processing

For i = n− 2, i ≥ 1, i−− do
rmult = 0;
radd = 0;

For j = 1, j ≤ n, j + + do

y
(i)
j =

∣∣∣x(i)j + y
(i)
i+1

∣∣∣
pj

; Parallel processing

If x
(i)
j + y

(i)
i+1 ≥ pj Then

radd = radd +Bj ;

x
(i)
j =

∣∣∣pi · y(i)j

∣∣∣
pj

; rmult = rmult +Bj ·
⌊
pi·y

(i)
j

pj

⌋
; Parallel processing

r = r + r
y
(i)
i+1

− radd; r = pi · r − rmult;

For j = 1, j ≤ n, j + + do

If x
(1)
j + x1 ≥ pj Then
r = r −Bj ;

r = r + rx1 ;
Result r

Let’s consider an example of how the rank of a number can be calculated using the formulas
(22), (23) and (35).

Example. Let the RNS moduli p1 = 2, p2 = 3, p3 = 5 be given, calculate the rank of the
number X → (1, , 2, 3).

(i) RNS range is equal to P =
∏n

i=1 pi = 30.



(ii) Calculating the values of constants Pi and
∣∣∣P−1i

∣∣∣
pi

, we get: P1 = P/p1 = 15,
∣∣∣P−11

∣∣∣
p1

=∣∣15−1
∣∣
2 = 1, P2 = P/p2 = 10,

∣∣∣P−12

∣∣∣
p2

=
∣∣10−1

∣∣
3 = 1, P3 = P/p3 = 6 and

∣∣∣P−13

∣∣∣
p3

=∣∣6−1∣∣5 = 1,

(iii) We calculate the values of constants
∣∣∣p−1i

∣∣∣
pj

:∣∣∣p−11

∣∣∣
p2

=
∣∣2−1∣∣3 = 2,

∣∣∣p−11

∣∣∣
p3

=
∣∣2−1∣∣5 = 3,

∣∣∣p−12

∣∣∣
p3

=
∣∣3−1∣∣5 = 2,

(iv) Calculating the ranks of the numbers 0, . . . , (pn − 1), we get: r (0) = 0,

r (1) =

⌊∑n

i=1|P−1
i |pi ·Pi·xi

P

⌋
=
⌊
1·15·1+1·10·1+1·6·1

30

⌋
= 1,

r (2) = r (1) + r (1)−
∣∣∣P−11

∣∣∣
p1

= 1 + 1− 1 = 1,

r (3) = r (2) + r (1)−
∣∣∣P−12

∣∣∣
p2

= 1 + 1− 1 = 1,

r (4) = r (3) + r (1)−
∣∣∣P−11

∣∣∣
p1

= 1 + 1− 1 = 1.

(v) For convenience, we enter the calculation results in the table:

Table 1. Calculations of X =
⌊

X
p1·p2

⌋
p1 = 2 p2 = 3 p3 = 5

X x1 = 1 x2 = 2 x3 = 3

X(1) = X − x1 −x1 0 1 2

Y (1) =
⌊
X(1)

p1

⌋
×
∣∣∣p−11

∣∣∣
pi

– 2 1

X(2) = Y (1) − y(1)2 −y(1)2 – 0 4

Y (2) =
⌊
X(2)

p2

⌋
×
∣∣∣p−12

∣∣∣
pi

– – 3

It follows from the table 1, that X =
⌊

X
p1·p2

⌋
= Y (2) = 3.

Reverse:
From the calculations presented in the table 2 it follows that r (X) = 1.

4. Conclusion
In this paper, a new method for calculating the rank of a number in the Residue Number System
was presented, and a theorem on the difference in the ranks of numbers in the Residue Number
System was proved. The proposed method allows reducing the amount of necessary calculations
and increase the speed of calculating the rank of a number relative to the method for calculating
the rank of a number based on the approximate method. To find the rank of a number in the
method for calculating the rank of a number based on the approximate method, it is necessary
to calculate n operations with numbers exceeding the modulus value; in the proposed method,

it is necessary to calculate n·(n−1)
2 operations not exceeding the value of the modulus.
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Table 2. Calculations of the rank r (X)

p1 = 2 p2 = 3 p3 = 5 r (X)

Y (2) y
(2)
1 = 1 y

(2)
2 = 0 y

(2)
3 = 3 r

(
Y (2)

)
= r (3) = 1

X(2) = p2 · Y (2) ×p2 1 0 4

r
(
X(2)

)
= p2 · r

(
Y (2)

)
−∑n

i=1

∣∣∣P−1i

∣∣∣
pi

⌊
p2·y(2)i

pi

⌋
=

3 · 1− 1 · 1− 1 · 0− 1 · 1 = 1

Y (1) = X(2) + y
(1)
2 +y

(1)
2 1 2 1

r
(
Y (1)

)
= r

(
X(2)

)
+ r

(
y
(1)
2

)
−∑

x
(2)
i +y

(1)
2 ≥pi

∣∣∣P−1i

∣∣∣
pi

= 1+1−1 = 1

X(1) = p1 · Y (1) ×p1 0 1 2

r
(
X(1)

)
= p1 · r

(
Y (1)

)
−∑n

i=1

∣∣∣P−1i

∣∣∣
pi

⌊
p1·y(1)i

pi

⌋
=

2 · 1− 1 · 1− 1 · 1− 1 · 0 = 0

X = X(1) + x1 +x1 1 2 3
r (X) = r

(
X(1)

)
+ r (x1) −∑

x
(1)
i +x1≥pi

∣∣∣P−1i

∣∣∣
pi

= 0 + 1 = 1
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