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Abstract. The property of observability of controlled binary dynamical systems is investigated. 

A formal definition of the property is given in the language of applied logic of predicates with 

bounded quantifiers of existence and universality. A Boolean model of the property is built in 

the form of a quantified Boolean formula accordingly to the Boolean constraints method 

developed by the authors. This formula satisfies both the logical specification of the property 

and the equations of the binary system dynamics. Aspects of the proposed approach 

implementation for the study of the observability property are considered. The technology of 

checking the feasibility of the property using an applied microservice package is demonstrated 

in several examples. 

1. Introduction 

Binary dynamical systems (BDS) are widely used in bioinformatics [1, 2], cryptography [3, 4], the 

study of fault tolerance of computer networks [5, 6], and in many other subjects areas. Recently, the 

BDS study has attracted considerable attention in systems biology. In particular, it is used as a model 

of genetic regulatory networks [7]. In our research [8], the Boolean constraints method for the 

qualitative analysis of BDS dynamic properties is proposed. This method is based on the following 

provisions: 

 

1. Formalization of dynamic properties definitions in the language of predicate logic and the use 

of bounded quantifiers of existence and universality; 

2. Conversion of the logical property formula that includes the equations of the BDS dynamics; 

3. Elimination of bounded quantifiers and obtaining a property formula in the applied logic of 

predicates with unbounded quantifiers. 

 

A model of the dynamic property in the form of a Boolean constraint is obtained using the 

sequential execution of these three stages. This model has the form of a Boolean equation or 

quantified Boolean formula (QBF). The verification of the BDS property is reduced to the Boolean 

satisfiability problem or verifying QBF truth. These problems are solved using modern SAT [9] and 

QSAT [10] solvers. In recent years, there has been a significant increase in the performance of 

specialized algorithms for solving SAT and QSAT problems due to using effective heuristics and deep 

parallelization of the computational process. Therefore, the variables number in the dynamic property 

model can be thousands.  



 

 

 

 

 

 

 The Boolean constraint method is a fairly general method for the qualitative analysis of BDS on a 

finite time interval. In [8], this method is used for qualitative analysis of autonomous systems. This 

study aims to use this method for a qualitative analysis of the observability property of controlled 

BDS. 

The article is structured as follows. Section 2 provides a brief overview of the use of dynamic 

models in solving the observability problem. In Section 3, a mathematical model of a controlled BDS 

and a problem statement for verifying k-observability for this model are presented. In Section 4, a 

Boolean equation equivalent to the original system and a formal definition of k-observability is given. 

Also, a Boolean model of this property in the form of a quantified Boolean formula is obtained. The 

tools and model transformations used for the computer solution of the k-observability problem are 

indicated in Section 5. In Section 6, the proposed technology of qualitative analysis of the k-

observability property for controlled BDS is demonstrated in several examples. The final Section 7 

offers the advantages of the proposed method. 

2. Related work 

Observability is one of the fundamental notions in general control theory [11]. In particular, this 

applies to the BDS control theory. Observability in control theory is a property that determines the 

possibility of unambiguous recovery of information about the states of a system from a known output 

on a finite time interval. 

In the last decade, many publications have been devoted to the observability property of BDS 

(Boolean networks). In [7, 12, 13, 14, 15], various definitions and methods for verifying this property 

have been proposed. In [12-15], the study of the observability property is based on the approach using 

the semi-tensor product (STP) of matrices [16]. As noted in [12], such an approach has a disadvantage 

since the dimension of the obtained matrix is nn 22  . This disadvantage is the computation 

complexity for a high dimension n of the BDS state vector. In [13], an estimate of the acceptable value 

of the dimension n (n <25) is given. For testing observability, an approach based on the idea of 

representing BDS in polynomial form was proposed [7]. As the authors noted, computing a Gröbner 

basis [17] used in this method leads, in the general case, to double exponential complexity. In 

particular, for loosely coupled genetic regulatory networks, the method proposed in [7] is applicable 

for significantly larger dimensions of the state vector of their Boolean models comparing with the STP 

method. 

A comparative analysis of different types of observability is presented in [18]. Checking the 

observability property has high computational complexity. So the problem of reducing and speeding 

up enumeration is fundamental for all the proposed methods. Based on the authors’ Boolean 

constraints method, this problem is solved by SAT [9] and QSAT [10] solvers efficiently. 

3. Problem statement 

A nonlinear BDS of the following form is considered: 

 ,)(  ),,(1 ttttt xHyuxFx   (1) 

where nBtx )(  is the state vector, }1,0{B , mBtu )(  is the input (control) vector, lBy  is the 

output vector, n, m, l  are dimensions of state, control, and output vectors, respectively; 

}1,...,2,1,0{  kTt  is the discrete time; F (x, u), H(x)  are vector functions of logic algebra, called, 

respectively, the transition and output function ( nmn BBBF : , ln BBH : ) . 

The value k in the definition of the set T is assumed to be a predetermined constant. This limitation 

occurs for the following reason. In a qualitative study of the behavior of the trajectories of system (1), 

of practical interest is the feasibility of some dynamic property for a fixed, not too large k. 

For each state nBx 0  called initial state and for any finite sequence of control vector states 

],...,,[ 110*  kuuuu ,  let us define for the system (1) a trajectory ),,( *0 uxtx  and an output function 



 

 

 

 

 

 

),,( *0 uxty  as finite sequences of states ],...,,[ 10 kxxx  and ],...,,[ 110*  kyyyy  from sets nB  and lB  

respectively. In what follows, the sequence ],...,[ 1 kxx  will be denoted by *x . 

It is necessary to check for system (1) the satisfiability of the k-observability property. We use the 

following definition of this property, one of several definitions given in [19]. For any two different 

states 00
~, xx , there is an input sequence *u of length k such that the corresponding output sequences do 

not coincide ( ** ~yy  ). 

4. Solution method  

For 1k  (only one-step transitions are considered), system (1) with an initial state 0x  and input 

action ][ 0* uu   is equivalent to one Boolean equation of the following form: 
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where t
ix , t

iy   (t = 0, 1) are i-th components of vectors tx , ty ;  iF ,  iH  are i-th components of 

vector-functions F and H;   is the addition modulo-2 operation. 

For multistep transitions ( 1k ), system (1) is correspondingly equivalent to the following 

Boolean equation: 
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For the initial state 0~x , equation (2) takes the form 
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According to the method of Boolean constraints, we write the formal definition of the k-

observability of a BDS in the language of applied logic of predicates with bounded quantifiers: 
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Let us get rid of the bounded quantifiers of existence and universality and bear in mind the 

equations of the dynamics of the BDS (2, 3) for various initial conditions. We obtain the following 

Boolean model of the observability property in the form of a quantified Boolean formula: 
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where the function E with appropriate arguments satisfies the following Boolean constraint: 
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This constraint is equivalent to the condition of equality of two Boolean vectors 1z  and 2z  of the 

dimension p. The total number of subject variables in formula (4) is nlmnk 2)(2  . 

5. Some aspects of program implementation 

The implementation of the proposed approach to the qualitative analysis of the considered dynamic 

property is based on the Boolean constraints method and performed in the form of an applied 



 

 

 

 

 

 

microservices package (AMP) [20]. This AMP was created based on the HPCSOMAS framework 

[21].  

The AMP provides the following tools for automating the solving problems of qualitative analysis 

and structural-parametric synthesis of BDS (Figure 1): 

 

 Constructing Boolean models of the dynamic properties of autonomous and controlled BDS; 

 Solving a separate problem of the qualitative analysis of BDS (checking the feasibility of a 

dynamic property); 

 Solving complex problems of qualitative analysis of BDS, including performing several 

separate tasks with alternating construction of Boolean models and checking their feasibility; 

 Graphic and tabular visualizing of obtained results. 

 

The listed facilities are structured as separate complexes (processors) of the package. Access to the 

complexes is performed through the user Dew agent [22]. In figure 1, the structural connections of 

AMP complexes, grouped in these complexes objects and corresponding used layers of knowledge are 

shown. The conceptual model of AMP, the construction and use of AMP for solving the problems of 

qualitative analysis of BDS are discussed in detail in [20]. 

 

For checking the observability property, complexes for constructing Boolean models and 

qualitative analysis of controlled BDS are used. For conversing Boolean expressions in dynamic 

properties models to CNF, the Tseitin transform [23], the Plaisted-Greenbaum transform [24], and the 

transformation of the Boolean equation ANF = 0 to the form CNF = 1 [25] are used. 

 

Figure 1. AMP structure. 



 

 

 

 

 

 

For solving Boolean satisfiability problems or checking the QBF truth, computational 

microservices are used. These microservices are implemented based on the AllSAT solver 

nbc_minisat_all-1.0.2 [26] and the QSAT solver DepQBF [27]. In the case of a high dimension of the 

BDS state vector, previously developed parallel solvers [28, 29] of a similar purpose are used. 

6. Illustrative example  

The first example shows a detailed computation process. 

6.1. Example 1 

Let us consider the following controlled BDS (n=3, m=1, l=1): 
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System (5) is equivalent to the following one-step transition equation: 
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To check the property of 3-observability, we write down the Boolean equation of a two-step 

transition for the initial state 
0
3

0
2

0
1 ,, xxx : 
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The Boolean equation 0
~
 for a two-step transition with the initial state 0

3
0
2

0
1

~,~,~ xxx  is written 

similarly. In total, expression (4) contains 26 subject variables and 82 clauses. Boolean encoding of 

subject variables is given in Table 1. 

 

Table 1. Boolean encoding. 

 

Variable 0
1x  0

2x  0
3x  0u  0y  1

1x  1
2x  1

3x  1u  1y  2
1x  2

2x  2
3x  

Code 1 2 3 4 5 6 7 8 9 10 11 12 13 

Variable 
0

1
~x  0

2
~x  0

3
~x  0~u  0~y  1

1
~x  1

2
~x  1

3
~x  1~u  1~y  2

1
~x  2

2
~x  2

3
~x  

Code 14 15 16 17 18 19 20 21 22 23 24 25 26 

 

When generating Boolean constraints by expression (4), the Plaisted-Greenbaum transform is used. 

When applying this transformation, two additional variables are introduced. These variables are coded 

as 27 and 28. 



 

 

 

 

 

 

The expression (4) in QDIMACS format is given in Figure 2. 

 

Figure 2. QBF for verifying observability property for system (5). 

 The QBFTV (QBF True Verification) service developed based on the QSAT-solver DepQBF for 

the quantified Boolean formula (4) returns a message that this formula is TRUE, which means the 

feasibility of the 3-observability property for system (5). The QBFTV service interface is shown in 

Figure 3. The QBF in QDIMACS format is used as the input file. The execution result can be viewed 

on the "Results" tab. 

6.2. Example 2 

Let us consider the Boolean model of the controlled system from [19] (n=10, m=3, l=7): 

 

tt

tt

tttt

ttt

ttt

tt

tttt

ux

xx

xuux

xxx

xxx

xx

xxxx

1
1

7

1
1

6

621
1

5

52
1

4

94
1

3

1
1

2

873
1

1





























 

ttt

ttt

ttt

t
i

t
i

ttttt

ttt

tttt

xxy

xxy

xxy

ixy

xuuux

xxx

xxxx

1055

944

833

6321
1

10

105
1

9

943
1

8

7,6,2,1 ,

)(





















 (6) 

 



 

 

 

 

 

 

The one-step transition equation for system (6) has the following form: 
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To check the property of 3-observability, we write down the Boolean equation of a two-step 

transition ( 2k ) for the initial state 
0
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0
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The Boolean equation 0
~
  for a two-step transition with the initial state 0

10
0
2

0
1

~,...,~,~ xxx  is written 

similarly. In total, expression (4) contains 100 subject variables and 230 clauses. 

The QBFTV service for the quantified Boolean formula (4) gives a message that this formula is 

FALSE, which means that the observability property for system (6) is not satisfied. 

 

Figure 3. QBFTV service interface. 



 

 

 

 

 

 

6.3. Example 3 

Let us consider the Boolean model of the controlled system from [7] (n=37, m=3, l=4): 
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The one-step transition equation for system (7) has the following form: 
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To check the property of 3-observability, we write down the Boolean equation of a two-step 

transition (k=2) for the initial state 
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The Boolean equation 0
~
  for a two-step transition with the initial state 0

37
0
2

0
1

~,...,~,~ xxx  is written 

similarly. In total, expression (4) contains 250 subject variables and 515 clauses. The QBFTV service 

for the quantified Boolean formula (4) gives a message that this formula is FALSE, which means that 

the observability property for system (7) is not satisfied. 

7. Conclusion 

The solution to the qualitative study problem of the k-observability property of nonlinear BDS on a 

finite time interval is obtained using the authors' Boolean constraints method. Recently, BDS (Boolean 

networks) have attracted considerable attention as computational models for genetic and cellular 

networks.  In this article, we consider observability as the feature determining the initial state of the 

BDS for given input and output sequences of the length k unequivocally. Based on the logic 

specification of the dynamic property of k-observability and the equations of dynamics of a binary 

system, a feasibility condition for the k-observability property is obtained in the form of a quantified 

Boolean formula. The verification of the truth of this formula can be performed using an efficient 

QSAT solver. An advantage of the developed tools for checking the k-observability property is their 

orientation to systems with a high dimension of the state, control, and output vectors and a long 

interval of discrete-time variation. The proposed method implementation allows data parallelism. So 

high scalability for increasing the number of variables in the Boolean constraint is provided. 
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