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Abstract. The property of observability of controlled binary dynamical systems is investigated.
A formal definition of the property is given in the language of applied logic of predicates with
bounded quantifiers of existence and universality. A Boolean model of the property is built in
the form of a quantified Boolean formula accordingly to the Boolean constraints method
developed by the authors. This formula satisfies both the logical specification of the property
and the equations of the binary system dynamics. Aspects of the proposed approach
implementation for the study of the observability property are considered. The technology of
checking the feasibility of the property using an applied microservice package is demonstrated
in several examples.

1. Introduction

Binary dynamical systems (BDS) are widely used in bioinformatics [1, 2], cryptography [3, 4], the
study of fault tolerance of computer networks [5, 6], and in many other subjects areas. Recently, the
BDS study has attracted considerable attention in systems biology. In particular, it is used as a model
of genetic regulatory networks [7]. In our research [8], the Boolean constraints method for the
qualitative analysis of BDS dynamic properties is proposed. This method is based on the following
provisions:

1. Formalization of dynamic properties definitions in the language of predicate logic and the use
of bounded quantifiers of existence and universality;

2. Conversion of the logical property formula that includes the equations of the BDS dynamics;

3. Elimination of bounded quantifiers and obtaining a property formula in the applied logic of
predicates with unbounded quantifiers.

A model of the dynamic property in the form of a Boolean constraint is obtained using the
sequential execution of these three stages. This model has the form of a Boolean equation or
quantified Boolean formula (QBF). The verification of the BDS property is reduced to the Boolean
satisfiability problem or verifying QBF truth. These problems are solved using modern SAT [9] and
QSAT [10] solvers. In recent years, there has been a significant increase in the performance of
specialized algorithms for solving SAT and QSAT problems due to using effective heuristics and deep
parallelization of the computational process. Therefore, the variables number in the dynamic property
model can be thousands.
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The Boolean constraint method is a fairly general method for the qualitative analysis of BDS on a
finite time interval. In [8], this method is used for qualitative analysis of autonomous systems. This
study aims to use this method for a qualitative analysis of the observability property of controlled
BDS.

The article is structured as follows. Section 2 provides a brief overview of the use of dynamic
models in solving the observability problem. In Section 3, a mathematical model of a controlled BDS
and a problem statement for verifying k-observability for this model are presented. In Section 4, a
Boolean equation equivalent to the original system and a formal definition of k-observability is given.
Also, a Boolean model of this property in the form of a quantified Boolean formula is obtained. The
tools and model transformations used for the computer solution of the k-observability problem are
indicated in Section 5. In Section 6, the proposed technology of qualitative analysis of the k-
observability property for controlled BDS is demonstrated in several examples. The final Section 7
offers the advantages of the proposed method.

2. Related work

Observability is one of the fundamental notions in general control theory [11]. In particular, this
applies to the BDS control theory. Observability in control theory is a property that determines the
possibility of unambiguous recovery of information about the states of a system from a known output
on a finite time interval.

In the last decade, many publications have been devoted to the observability property of BDS
(Boolean networks). In [7, 12, 13, 14, 15], various definitions and methods for verifying this property
have been proposed. In [12-15], the study of the observability property is based on the approach using
the semi-tensor product (STP) of matrices [16]. As noted in [12], such an approach has a disadvantage

since the dimension of the obtained matrix is 2" x2". This disadvantage is the computation
complexity for a high dimension # of the BDS state vector. In [13], an estimate of the acceptable value
of the dimension n (n <25) is given. For testing observability, an approach based on the idea of
representing BDS in polynomial form was proposed [7]. As the authors noted, computing a Grébner
basis [17] used in this method leads, in the general case, to double exponential complexity. In
particular, for loosely coupled genetic regulatory networks, the method proposed in [7] is applicable
for significantly larger dimensions of the state vector of their Boolean models comparing with the STP
method.

A comparative analysis of different types of observability is presented in [18]. Checking the
observability property has high computational complexity. So the problem of reducing and speeding
up enumeration is fundamental for all the proposed methods. Based on the authors’ Boolean
constraints method, this problem is solved by SAT [9] and QSAT [10] solvers efficiently.

3. Problem statement

A nonlinear BDS of the following form is considered:
X" =F(x'uY), yt =H(X"), (D

where x(t) € B" is the state vector, B={0,1}, u(t) € B™ is the input (control) vector, yeB' is the
output vector, n, m, [ are dimensions of state, control, and output vectors, respectively;
teT ={012,....k =1} is the discrete time; F (x, u), H(x) are vector functions of logic algebra, called,

respectively, the transition and output function (F : B" xB™ —B", H:B" —»B').

The value k in the definition of the set T is assumed to be a predetermined constant. This limitation
occurs for the following reason. In a qualitative study of the behavior of the trajectories of system (1),
of practical interest is the feasibility of some dynamic property for a fixed, not too large k.

For each state x° € B" called initial state and for any finite sequence of control vector states
u”=[u® ut,...u*?], let us define for the system (1) a trajectory x(t,x°,u”) and an output function



y(t,x°,u”) as finite sequences of states [x°,x*,....x*] and y" =[y°, y*,...,y*?] from sets B" and B'

respectively. In what follows, the sequence [x,...,x*] will be denoted by X"

It is necessary to check for system (1) the satisfiability of the k-observability property. We use the
following definition of this property, one of several definitions given in [19]. For any two different

states X,, X,, there is an input sequence u” of length k such that the corresponding output sequences do
not coincide (y" #y").

4. Solution method
For k=1 (only one-step transitions are considered), system (1) with an initial state x° and input
action u” =[u®] is equivalent to one Boolean equation of the following form:

L(x°,xu®, y?) =V L (X @ F (x°,u®) v Vi, (y; ®H,(x°)=0,

H.

i are i-th components of

where x{, y! (¢=0, 1) are i-th components of vectors x', y'; F,

i
vector-functions F and H; @ is the addition modulo-2 operation.

For multistep transitions (k >1), system (1) is correspondingly equivalent to the following
Boolean equation:

O(x%,x",u",y) = VLK, x"ut, y') =0, (2)
For the initial state X°, equation (2) takes the form
OX°, XU, ¥ = VIR, X ut, §Y) =0. 3)

According to the method of Boolean constraints, we write the formal definition of the k-
observability of a BDS in the language of applied logic of predicates with bounded quantifiers:

(X%, X% :x? £X9)@Eu)@EteT)y(t, x°,u™) = y(t,X°,u").
Let us get rid of the bounded quantifiers of existence and universality and bear in mind the

equations of the dynamics of the BDS (2, 3) for various initial conditions. We obtain the following
Boolean model of the observability property in the form of a quantified Boolean formula:

(vx®,X°)@E", XU,y L FIEX X)) v o, x"u”,y) A @
ABE® XU T A (VISETY) ’

where the function E with appropriate arguments satisfies the following Boolean constraint:
E(z,z%) =V ~Z7 v AZ?)=0.

This constraint is equivalent to the condition of equality of two Boolean vectors z' and z* of the
dimension p. The total number of subject variables in formula (4) is 2k(n+m+1) +2n.

5. Some aspects of program implementation
The implementation of the proposed approach to the qualitative analysis of the considered dynamic
property is based on the Boolean constraints method and performed in the form of an applied



microservices package (AMP) [20]. This AMP was created based on the HPCSOMAS framework

[21].
The AMP provides the following tools for automating the solving problems of qualitative analysis

and structural-parametric synthesis of BDS (Figure 1):

Constructing Boolean models of the dynamic properties of autonomous and controlled BDS;
Solving a separate problem of the qualitative analysis of BDS (checking the feasibility of a
dynamic property);

— Solving complex problems of qualitative analysis of BDS, including performing several
separate tasks with alternating construction of Boolean models and checking their feasibility;

— Graphic and tabular visualizing of obtained results.

The listed facilities are structured as separate complexes (processors) of the package. Access to the
complexes is performed through the user Dew agent [22]. In figure 1, the structural connections of
AMP complexes, grouped in these complexes objects and corresponding used layers of knowledge are
shown. The conceptual model of AMP, the construction and use of AMP for solving the problems of

qualitative analysis of BDS are discussed in detail in [20].
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Figure 1. AMP structure.

For checking the observability property, complexes for constructing Boolean models and
qualitative analysis of controlled BDS are used. For conversing Boolean expressions in dynamic
properties models to CNF, the Tseitin transform [23], the Plaisted-Greenbaum transform [24], and the
transformation of the Boolean equation ANF = 0 to the form CNF = 1 [25] are used.



For solving Boolean satisfiability problems or checking the QBF truth, computational
microservices are used. These microservices are implemented based on the AIISAT solver
nbc_minisat all-1.0.2 [26] and the QSAT solver DepQBF [27]. In the case of a high dimension of the
BDS state vector, previously developed parallel solvers [28, 29] of a similar purpose are used.

6. lllustrative example
The first example shows a detailed computation process.

6.1. Example 1
Let us consider the following controlled BDS (n=3, m=1, I=1):

t+1 _ o t ot ot t
X, =Xy AXg Vv Xy AXg

X =x AU VX AU

&)
K=

Vi =X AKX ARG VR AXy ARy VK] AKXy AXy VXA Xy A Xy
System (5) is equivalent to the following one-step transition equation:
L(x0, X9, X9, X3, X3, X5,U%, y2) = X] A XS AXS VX AXI AKX VX AXS AXSV X AR AXSV
1,0 =0 ol 0 -0 ol <0 0 1 0 0 <l 0 1 <0
VXS AKX AU VXS AX AU VXS AKX AU VX AX AU VX AXy VXZAX, V
v)_(lo/\)_(2/\X:?/\)_/valoAxg/\Xé)/\)70v>_(10/\)_(§/\)_(§/\yovxlo/\xg/\)_(g?/\yov
vxf/\iz(’/\xg/\yovil‘)/\xg/\xg/\y°v>‘<1°/\xgx\i?f’/\yovxf/\igxxigx\yo=O

To check the property of 3-observability, we write down the Boolean equation of a two-step

transition for the initial state x_, X3, Xg :
0,0 0 1 1 1 2.2 .2 0 1 0 1
®(X1,X2,X3,X1,X2,X31X11X21X31u ’u Yy 7y ):
= L(X %03, %0, X5, %5,U°, y ) v (XL G, X5, X0, G, X5, Ut ) = 0

The Boolean equation @ =0 for a two-step transition with the initial state XC,X,X° is written

similarly. In total, expression (4) contains 26 subject variables and 82 clauses. Boolean encoding of
subject variables is given in Table 1.

Table 1. Boolean encoding.

Variable x) x3 x3 u® y* x  xx  oxz ut oyt X xz X
Code 1 2 3 4 5 6 7 8 9 10 11 12 13
Variable x° Xx; x? @ §¥° X %X X ot 0y oxr X2 X2
Code 14 15 16 17 18 19 20 21 22 23 24 25 26

When generating Boolean constraints by expression (4), the Plaisted-Greenbaum transform is used.
When applying this transformation, two additional variables are introduced. These variables are coded
as 27 and 28.



The expression (4) in QDIMACS format is given in Figure 2.

p cnf 27 80 -1178-270 -14-15-1618-27 0
a1231413160 M-78-270 14151618 -27 0
eds678910 “11-7-8-270 -14 1516 -168-27 0
1112131718 M7-5-270 -1415-16-18-27 0
1920212223 -1269-270 14 -15-16-18-27 0
242526270 1265-270 14-151618-270
1-14 270 126-9-270 -14151618-27 0
-114 270 -126-9-270 -242021-270
215270 13-7-270 24-2021-270
-215270 -137-270 -24-20-21-270
316270 67-510-270 2420-21-270
31627 0 5-7-810-270 -251922-270
6£23-270 67&8-10-270 25-1922-270
6-23-270 5-78-10-27 0 2519-22-270
6-2-3-270 67-8-10-270 -25-19-22-270
62-3-270 6-7-56-10-270 26-20-270
-714-270 6-7510-270 -2620-270
7-14-270 -67310-270 1920-2123-270
71-4-270 -191516-270 -15-20-21 23-27 0
-7-1-4-270 19-1516-270 192021-23-270
8§-2-270 -19-15-16-270 -19-2021-23-270
-52-270 1915-16-270 -1920-21-23-270
12-3-2750 201417 -270 19-20-21-23-270
-1-2-3-2750 201417 -270 19-202123-270
123-5-270 201417 -270 -19202123-270
-1-23-5-270 2014 A7 -27 0 -102326-270
-12-3-5-270 21-15-270 10-2325-270
1-2-3-5-270 -2115-270 -417-253-27 0
1-235-270 1415-1618-270 417 -253-27 0

Figure 2. QBF for verifying observability property for system (5).

The QBFTV (QBF True Verification) service developed based on the QSAT-solver DepQBF for
the quantified Boolean formula (4) returns a message that this formula is TRUE, which means the
feasibility of the 3-observability property for system (5). The QBFTV service interface is shown in
Figure 3. The QBF in QDIMACS format is used as the input file. The execution result can be viewed
on the "Results" tab.

6.2. Example 2
Let us consider the Boolean model of the controlled system from [19] (n=10, m=3, [=7):
X =X5 A XY AKXy Xg T =X5 v X} AKX
K= x| = Ay
X3 =X, A X Xigh =0 A (Uy v Ug A Xg)
Xit=x5 A X Yy =x{,i=12,6,7 (6)
t+1 t t t

t Lt ot
Y3 =X3 A Xg
t ot t
Ya =XV Xg

t ot ot
Y5 = X5 A Xpg
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Figure 3. QBFTV service interface.

The one-step transition equation for system (6) has the following form:

L, XD e X X0 s Xg e Xag, U U, U Y2 Y2 1Y) = X AXS AXI ARV XE AXSVXE AR VX A
/\XE?V)_(;/\XS(.)\/X; A)‘(3°v>"(31/\>"(f/\xgvxé/\xgvxéxx)"(;’\/)"(i/\xg/\xgvx‘l,,/\)"(gvxi/\ié’v
v)_(é/\Ulo/\ugAxgvxé/\ufvxé/\ﬁzovxé/\)_(gv)_(é/\xlovxé /\)_(lov)_(%/\Ulon% /\ufv)_(gl/\
Axgv)_(g/\)_(f/\)_(gvxé/\)_(gAxgvxé/\)_(gAxgv)_(;/\xg/\Xloovxgl,A)_(gvxgl,/\)?loov)?llo/\ﬁlo/\
/\ugv)_(llof\ﬁlo/\ugAxgvxllo/\ulovxllo/\ﬁzo/\Ugvxllo/\ﬁzo Axgvyfofvyf/\ifvygAxgv
vyg/\)_(gvyg/\xgAxgvyg/\)_(gvyg/\)_(gvyf/\xgvyf/\xgvyg/\)_(f/\)_(gvyg/\xé)/\xloov
VY5 AR VY AKIp Y Tg AXg Y Ye ARg VYT AX VYT AKG =0

To check the property of 3-observability, we write down the Boolean equation of a two-step
transition (k = 2) for the initial state X; ,Xg,...,xfo:

0 L0 0 Ul i 1,2 o2 2 0,0 . 0,11 1,0 .0 01 1l
DXy, Xg yees Xg0s Xps Xg peees Xigs Xg 5 X5 00 Xig, Uy s Ug U Up Up s, iy Yo ey Y7, Vi Yoo Y7 ) =

k-1 t t t t+1 t+1 t+1 t t t t t t
=V o L(X X5, X105 Xg 5 Xy seees Xqg s Up, Up,Ug, Yy, Yo heen Y7) =0

The Boolean equation ® =0 for a two-step transition with the initial state X_,X0,..., X5 is written

similarly. In total, expression (4) contains 100 subject variables and 230 clauses.
The QBFTV service for the quantified Boolean formula (4) gives a message that this formula is
FALSE, which means that the observability property for system (6) is not satisfied.



6.3. Example 3
Let us consider the Boolean model of the controlled system from [7] (n=37, m=3, [=4):

Xz = Xy Xis = X3 X30 = X7 V X35

X3 =X; Xi7 = X33 X31 = X3

Xp = X7 Xis = %17 X3y = Xg

X5 = Xg Xig = Xg7 X33 = X35

X = X3, X350 = Xoq AU AUS Xt = x4,

X7 = X6 X31 = X3 X35 = X AUg @)
% = Xz X = X3 Ko = Xfo v (K A X
Xo = X5 X33 = X5 X3, = XO A X9g A Xog
Xio = X30 AUg v X35 A Ug X34 = Xyp A Xgs y) = x!

X1 = Xgo X35 = X7 Y2 = Xs

Xip = Xig X35 = Xa7 A Xgg A Xa7 A (X5 V X31) Y3 = X3

X3 = X5 X37 = Xy yd =X,

Xig = X6 X35 = Xgg

The one-step transition equation for system (7) has the following form:

L(X X9 1oy XS7) X3y X5 4eees Xa7, U US UG, YL Y, VS, V) = Kb A XS A Xy V Xe AXS V XE AKXV X A
/\X&VX%/\)_(104V)_(§/\X2VX:§/\)_(gV)?j/\X§7VXiLl/\)_(307V)_(é/\XgVXé/\)_(gV)_(é/\XgZVXé/\
ARGV XS A X9 VXS A Ko V Kg AXIV Xg A Koy v Xg AXg V Xa AKe VKb AXog AUSV Xy A XS5 A
AUS VY Xip A Ko A X9s V Xig ARG AlS V Xig A Xgg AR V Xig Ay V Xy A Xeg V Xy A Xy V Xip A
/\Xlo9 VX3, /\)_(lo9 v)_(113/\X35vX113/\)_(§6v)?114/\X37 VX, /\)_(g7 Vv X5 /\X&/\XS7 V Xis AY§4VX115 A
/\)_(307 v)_(116 /\X103VX116 /\)_(103v)_(117 /\x§3vx117 /\)_(3?3v)_(118/\xf7 lel8 /\)?107 v)?ll9 /\Xg7 lel9 /\)_(307 Y
v)_(go/\)_(&/\ulo/\ugvxéof\xg‘lvxéo/\ﬁlovxéo/\ﬁzov)_(%l/\xggvxél/\)_(gsv)_(%z/\xgvx%z/\
AKSV Kgg AXT W Xog A Kk V Xag A Xey A Xas V Xag A Xih V Xag A XS V Xas A XTIV Xas A XDV Xog A
/\Xg7/\Xg4/\Xg7/\Xf5VXg7/\X&/\X%/\X&VX%G/\)_(207VX%6/\)_(:?4VX;6/\)_(397VX%G/\)_(&VX;G/\
/\)_(105 /\)_(391\/)7217 /\Xlo9 VX%7 /\)_(109 v)_(zl8 /\Xg9 vX%8 /\)_(gg v)_(g9 /\szv)_(%g /\Xgo VX%9 /\)_(102 /\)?300 A
AVX3e A XDV Xz A KXo V Xag A XS A X v Xag A Xag V Xs3 A Xy V Xgp AXg V Xag A Xe \V Xaz A X35 V
V Xag A Koo v Xag A Xey V Xag AKXV Xas AKX AUS V Xas A XE V Xas A TS V Xag A Xy V Xag A Xog A
/\Xg7vxé(s/\)_(loo/\)_(govxée/\)_(100/\)?§)7v)_(§7/\)_(§'J AXSOAX§GVX§7Axgvxé7/\)_(govxé7/\

S0 <0 L0 0 0. o0 L0 0 0. o0 L0 0 o0 . <0 L0 0 o0 _
ARz VYL AXL VYL AKX VY AXg VY AXs VY3 AXyp VY3 AXpy VY AXgg VY A Xy =0

To check the property of 3-observability, we write down the Boolean equation of a two-step
transition (k=2) for the initial state X_, X5 ,...,Xg; :



0,0 0 u1 1 1,2 o2 2 0,00 1,1 10 0 0 L0 1 1l Ll ol
DXy s Xg 11 X537, X5 Xg 40 Xg7, Xp 5 X9 500, X537, Uy, Up, Ug, Up, Up, Us, Yis Yoy Y3, Ya o Yis Y20 Vao Vi) =

K-l] rot ot ot tel el Bttt ot ot ot ot
=V o L(X Xg e Xa7, X3 X ey Xa7 5 U, Upy Usy Vi, Y2, Y3, Ye) =0

The Boolean equation ® =0 for a two-step transition with the initial state X°,X?,..., X%, is written

similarly. In total, expression (4) contains 250 subject variables and 515 clauses. The QBFTV service
for the quantified Boolean formula (4) gives a message that this formula is FALSE, which means that
the observability property for system (7) is not satisfied.

7. Conclusion

The solution to the qualitative study problem of the k-observability property of nonlinear BDS on a
finite time interval is obtained using the authors' Boolean constraints method. Recently, BDS (Boolean
networks) have attracted considerable attention as computational models for genetic and cellular
networks. In this article, we consider observability as the feature determining the initial state of the
BDS for given input and output sequences of the length k unequivocally. Based on the logic
specification of the dynamic property of k-observability and the equations of dynamics of a binary
system, a feasibility condition for the k-observability property is obtained in the form of a quantified
Boolean formula. The verification of the truth of this formula can be performed using an efficient
QSAT solver. An advantage of the developed tools for checking the k-observability property is their
orientation to systems with a high dimension of the state, control, and output vectors and a long
interval of discrete-time variation. The proposed method implementation allows data parallelism. So
high scalability for increasing the number of variables in the Boolean constraint is provided.
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