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Abstract 

Data encryption is the classical way of ensuring the various types of the sensitive data. The global 
release of quantum computers is expected in the near future. Quantum computers have the ability 
to break the existing classical digital signatures. Because, the classical digital signature schemes 
are vulnerable to the attacks of quantum computers. This fact involves the different research efforts 
that look for digital signatures that are secure against quantum computer-based attacks. In the 
paper, we analyze some digital signature schemes, which are secure against attack of quantum 
computers. The described schemes have various efficiency problems. Merkle signature scheme is 
analyzed, it’s great problem is the very big size of the key pair. The paper analyzes the quantum 
key distribution protocols. BB84 key distribution protocol is described and analyzed. In the paper, 
we offer the novel scheme with reduced size of the key. The security of the scheme is analyzed. 
The key of the novel scheme is much less, than in the case of Merkle digital signature scheme. 
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1. Introduction 

Scientists are actively working on the creation of quantum computers. Google Corporation, Universities 
Space Research Association and federal agency NASA together with D-WAVE began to work on design 
of quantum processors. D-WAVE is the manufacturer of quantum processors. D-Wave 2X is a quantum 
processor and it contains physical qubits. Google is working on releasing the new CPUs. On February 18, 
D-Wave Systems, which is the leader in creation of computing systems based on quantum calculations, 
software, and different services, published a novel study in the collaboration with Google employers. This 
study demonstrates a big computational advantage of the performance, which increases the size of 
simulation and problem complexity, to over three million times in comparison with the classical methods 
used in the real world. The mentioned performance advantage, exhibited in a hard quantum simulation of 
the materials, and it is a serious step in the journey toward computations advantage in the area of quantum 
computing. The result of the scientists at D-Wave and Google also shows that quantum calculations can be 
harnessed in order to offer a big computational advantage in D-Wave CPUs, at the problem scale, which 
need the thousands of qubits. The last experiments performed on different D-Wave CPUs represent by the 
most global quantum simulations implemented by the existing quantum computers today. 
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Quantum computers can break existing digital signature schemes. Different of RSA alternatives are 
offered. Mostly these schemes have different security and efficiency problems. Hash-based digital signature 
schemes are the post-quantum secure alternatives.  

2. Hash-based digital signature schemes 

2.1  The Lamport–Diffie one-time signature scheme  

The Lamport–Diffie one-time signature scheme is a hash-based digital signature scheme [1]. Its 
signature key X contains 2n random lines of the length n. Its verification key Y is of the same size.  

X= (xn-1[0], xn-1[1], xn-2[0], xn-2[1],…, x0[0], x0[1]) ∈ {0,1} n,2n      (1) 

Y= (yn-1[0], yn-1[1], yn-2[0], yn-2[1], …, y0[0], y0[1]) ∈ {0,1} n,2n     (2) 

The verification key is obtained by means of one-way function: 

yi[j] = fo(xi[j]), 0<=i<=n-1, j=0,1, fo is  the mentioned one-way function fo: {0,1} n {0,1} n 

To sign the message m we need to transform it to size n, my means of the hash function: h(m)=hashed 
= (hashedn-1, hashedn-2,  … , hashed0), where h is the cryptographic hash function. The signature of the 
message is done as follows: signature= (xn-1[hashed n-1], xn-2[hashed n-2],   …, x0[hashed0]) ∈ {0,1} n,n. The 
length of the signature is n2. 

2.2   The Winternitz one-time signature scheme 

The Winternitz gives us the possibility to decrease the size of the signature [2]. In the scheme several 
bits of the hashed message are signed simultaneously by means of one line of the key. The Winternitz 
parameter is w> = 2, and it is equal to the number of bits, which must be signed simultaneously. v1=n/w 
and v2=(log2v1 +1+w)/w, with v= v1+ v2 must be calculated. Its signature key X contains 2n random lines of 
the length v. Its verification key Y is of the same size.  

 X= (xv-1[0], xv-1[1], xv-2[0], xv-2[1],…, x0[0], x0[1]) ∈ {0,1} v,2n      (3) 

Y= (yv-1[0], yv-1[1], yv-2[0], yv-2[1], …, y0[0], y0[1]) ∈ {0,1} v,2n, where yi=fo
2^w-1(xi), and 0<=i<=v-1 (4) 

The checksum is calculated as follows: с=∑i=v-v1
v-1(2w-pi). Considering that c<= v12w, the length of the 

binary representation is log2 v12w+1. 

We hash the message, hash=pv-1,…, pv-p1.The minimum number of zeros are prepended to the binary 
representation in order to obtain the length of the representation, dividable by w. Consequently, it is divided 
into v2 parts of length w. The message is signed as follows: signature=(fo^pv-1(xv-1), …, fo^p0(x0)). The 
signature size is vn. To verify the signature the following equation must be verified:  (fo^(2w-1-pv-1)) 
(signaturen-1), …, (fo^(2w-1-p0))(signature0) = yn-1, … y0.  

2.3  Merkle signature scheme 

The one-time signature cannot be used in practice, as the uniques key pair of the keys is needed for 
every message. In 1979, Ralph Merkle offered the Merkle signature scheme. It uses a binary tree of hashes, 
the root of the tree is the public key. The size of the tree is H>=2. 2H documents can be signed securely by 



one public key. 2H pairs of signatures and verification keys are generated. Xi, Yi, 0<=i<=2H. The leaves of 
the tree are by means of the hashing of the keys. h:{0,1}*{0,1}n      

The parent node is received by means of the concatenation and hashing of the previous pair of nodes. Each 
message is transformed to the size n by means of the the secure hash function. The signature is a concatenation 
of the one-time signature, the one-time verification key, the index of the chosen key and of the fraternal nodes 
according to the selectedkey. The size of  the signature size is much bigger in the comparison to one-time 
signature schemes [3-6]. 

3. Quantum key distribution   

         Quantum key transmission is a method that allows two parties, conditionally Alice and Bob, to use a 
common secret key for cryptographic purposes. To ensure privacy of the notice, Alice and Bob agree on a 
piece of shared confidential information that we call the key [7,8]. Encryption occurs as a result of merging 
the notice and the key so that the result is incomprehensible to an interested party for whom the key is 
unknown. A recipient of the notice uses a copy of the key to decrypt it. 
    Firstly, it should be noted, that purpose of transmitting a quantum key is not to encrypt information, but 
rather to guarantee the secret transmission of the key. In turn, lawful parties can use this key to encrypt 
information. Confidentiality of the transmitted information is ensured by two aspects: Quantum key 
transmission and encryption algorithm. If either of these two aspects is violated, a whole system will 
collapse; accordingly we must point out the strengths of both aspects. 
 

4. BB84 protocol 

4.1  Encoding random bits with the help of qubits 

In classical information theory, all notices can be converted to zeros and ones at some point. That is 
why a unit of information is called a bit or {0,1}.  The quantum protocol BB84 cannot be described in 
classical terms, so we have to adapt our language to this new parameter [9,10].  There is a compliance 
between the quantum state of some physical system and the information that it carries. 
The quantum state is mainly written with Dirac notations, between a vertical line and an angular parenthesis, 
as |𝜓⟩, |1⟩ either |𝑥⟩; Particles of quantum information are displayed with the same notation. 
 In quantum theory, the smallest piece of information is a qubit, the quantum equivalent of a bit. In a 
physical system, qubit matching is the electron rotation or photon polarization.  Mathematically a qubit is 
described by a set of two complex numbers. 
 

{𝛼|0⟩ + 𝛽|1⟩ ∶   |𝛼|ଶ + |𝛽|ଶ = 1  𝛼, 𝛽 ∊ 𝐶}     (5) 

Two basic qubits, which match to two orthogonal states in a quantum system. Qubits 
|0⟩ (𝛼 = 1, 𝛽 = 0)and |1⟩ (𝛼 = 0, 𝛽 = 1)can be viewed as the quantum equivalent of bits of 0 and 1, 
respectively. 𝛼 and 𝛽 in another meaning we say that qubit is in superposition |0⟩and |1⟩. For example, 
qubits 2ିଵ/ଶ|0⟩ + 2ିଵ/ଶ|1⟩and sin 𝜋/6 |0⟩ + cos 𝜋/|1⟩; |0⟩and |1⟩both are in superposition, even though 
they are different. BB84 Alice uses encoding random (classic) bits called key elements using four different 
qubits. Bits 0 can be encoded |0⟩or |+⟩ = 2ିଵ/ଶ|0⟩ + 2ିଵ/ଶ|1⟩. Bits 0 can be encoded |1⟩or |−⟩ =
2ିଵ/ଶ|0⟩ + 2ିଵ/ଶ|1⟩. Take into account the difference in symbols. In both cases, Alice chooses any coding 
rule on a random basis, according to probability. She then sends the photon with the selected qubit to Bob.  
When photon goes to Bob's stop, he wants to decrypt what Alice has sent. For this, he must conduct 
measurements. However, the laws of quantum mechanics do not allow Bob to fully decipher the qubit. It is 
often impossible to accurately understand the obtained qubit 𝛼|0⟩ + 𝛽|1⟩ 𝛼 and 𝛽 coefficient. Instead, Bob 
should choose a pair of orthogonal qubits and make measurements that distinguish only them.  We say that 
two qubits |𝜙⟩ = 𝛼|0⟩ + 𝛽|1⟩and |𝜓⟩ = 𝛼′|0⟩ + 𝛽′|1⟩are orthogonal if 𝛼𝛼′ ∗ +𝛽𝛽′ ∗= 0. 



     Take orthogonal qubits |0⟩and|1⟩.  Bob can take measurements to find out what Alice has sent |0⟩or|1⟩. 
But what happened if she sends |+⟩ either |−⟩? In fact, Bob gets the result by accident!  In general, if Bobby 
gets |𝜙⟩ = 𝛼|0⟩ + 𝛽|1⟩, he measures |0⟩with probability |𝛼|ଶand |1⟩  with probability |𝛽|ଶ. Remember 
|𝛼|ଶ + |𝛽|ଶ = 1. In practice, |+⟩ and |−⟩Bob gets |0⟩and |1⟩ with each probability ½. Hence, Bob cannot 
distinguish |+⟩  and |−⟩. In this case he takes the value of uncorrelated bits. What is special about qubits 
|0⟩ and |1⟩? It is possible to record equivalently |0⟩ = 2ିଵ/ଶ|+⟩ + 2ିଵ/ଶ|−⟩ and |0⟩ = 2ିଵ/ଶ|+⟩ −

2ିଵ/ଶ|−⟩.  
Accordingly in this case, Bob can decode Alice's notice when she sends |+⟩ and |−⟩, but he will not be able 
to analyze |0⟩ and |1⟩. An example of transmission detection is given in Figure1.2. 
         In BB84 protocol, Bob randomly selects the measurements, in about half of the cases he chooses 
|0⟩ and |1⟩, and in other cases he distinguishes |+⟩and |−⟩. At this stage Alice does not reveal which coding 
rule she has used. Consequently, Bob correctly measures only half of the bits that Alice has sent him and 
does not know which of them is correct. After sending a long stream of key elements, Alice informs Bob 
about the coding rule. 

 

Figure 1.2: Transmission example using BB84. 

The first two strings are those what Alice is sending.  The third string shows the measurement method 
chosen by Bob and the possible result obtained as a result of the measurement. 
Alice has chosen all the basic elements, now Bob can throw away all the wrong measurements; This part 
of the protocol is called Shift (so called Shifting) which is shown in Figure 1.3. 
 

 

Figure 1.3: Transmission shifting 



      To summarize so far, Alice sends Bob random bits. Alice selects four different qubits for bit encoding 
(two supposed qubits per bit). Bob chooses one of two measurement methods for decoding. Bob may not 
always be able to determine what Alice has sent, but after shifting, Alice and Bob retain most of the bits 
for which the transmission was done successfully. This scheme of transmission allows Alice and Bob to 
notice the hearing. 
 

4.2  Eavesdropping recognition. 

      A key feature of hearing recognition is the fact that information is encoded in non-orthogonal qubits.  
Eva can certainly catch the quantum train and try to measure it. But like Bob, she does not know in advance 
which pair of train Alice has chosen, for all the basic elements. As Bob and Eva can successfully chooses 
|0⟩ and |1⟩, when Alice uses |+⟩ and |−⟩ or vice versa. 
      In quantum mechanics, measurements are destructive.  After measuring the particle, we get the result 
as a condition. More precisely, suppose that observer measures the qubit |𝜙⟩ to distinguish |0⟩ and |1⟩. 
After the measurement the qubit will become |𝜙⟩ →  |𝜙ᇱ⟩ =  |0⟩ or |𝜙⟩ →  |𝜙′⟩ =  |1⟩, depending on the 
measurement result, it does not matter what it was, unless the qubit is one of them that the observer wants 
to distinguish (for example  |0⟩ or |1⟩)  
In all cases, when Eva catches a photon, she measures it and sends it to Bob, she has a probability ¼,error 
probability between Alice and Bob's bits. 
Let us demolish this opportunity. Eva has a probability ½ to measure the correct pair. When Eva does this 
she does not touch the condition and remains unnoticed. But she is not always lucky. However, when she 
measures the wrong set, she sends Bob the wrong position (e.g. |+⟩ or|−⟩, |0⟩ or|1⟩instead).  This situation 
is described in Figure 1.4. In the wrong position, Bob basically measures a random bit that has a probability 
of ½ coinciding with Alice bit and a probability of ½ an error. 

 

Figure 1.4: Possible results when Eva uses incorrect measurements for hearing 

       Therefore, when Eva tries to listen, she gets an irrelevant result in about ½ cases. She may decide not 
to write to Bob the conditions for which she obtained an irrelevant result. But it is impossible for her to 
make a similar distinction because she does not know what method of coding is used. 
Rejecting the basic elements is nonsense for Eva, as this pattern will not be used to make Alice and Bobby 
the key. However, if she relays the situation (even though she is wrong in ½ of case), Alice and Bob will 
discover her existence due to an unusually large number of errors in their basic elements. 
    Bob and Eva have the same difficulty with the information sent by Alice, because they do not know 
which coding rule is used. But the situation is not symmetrical for Bob and Eva: All communications are 
necessary for shifting, in the classic authenticated channel. This allows Alice to find out that she is talking 
to Bob and not Eva. Consequently, the legal parties guarantee that Eva will not be able to influence on the 
shifting process. Thus, Alice and Bob can only compare key elements that have been measured correctly. 
To determine the existence of a listener, Alice and Bob must be able to detect transmission errors. To do 



this, there is a way to open part of the shifted key.  A given protocol can show 𝑙 + 𝑛 the key element after 
transmission (e.g., l + n = 100,000) indexed from 0 to l + n -1, Alice randomly selects the n index (e.g. n = 
1000) then communicates with Bob. Then Alice and Bob open the corresponding n key elements to count 
the number of errors, any error means there was some hearing. The absence of errors gives us some 
statistical confidence that there has been no hearing. But it is possible that Eva was lucky, or guessed the 
coding rule, or made mistakes on other key elements. Of course then the remaining basic elements will be 
used to create the secret key. 
 

4.3  Getting a secret key 

          If errors are detected, Alice and Bob can discontinue the protocol as errors can be caused by listening. 
In the extreme case this prevents the creation of a key that may be known to the opponent. This side of the 
decision can be a little tough. In practice, physical realization is not ideal because errors can be caused by 
many reasons other than hearing, such as noise or loss in a quantum channel, incomplete generation of a 
quantum state, or incomplete deduction. Also, Eve may have heard a small part of the encrypted key, 
creating the remaining elements of the key to create the secret key. Accordingly, a way must be found to 
establish a quantum key protocol for more sustainable noise. 
    Alice and Bob count the number of errors in the detected key elements and divide this number by n to 
get an estimate of the expected fraction e. The error of the whole set of basic elements, the estimate e, is 
called the bit error norm. After that, they can conclude how much information Eve possesses about the key 
elements. For example, they can statistically estimate that Eve knows no more than 𝐼ா bit of l in the key 
elements.  This is part of the protocol evaluation. The formula that gives us 𝐼ா  quantity is not explained 
here; This is the result of an analysis of what hearing can do based on the laws of quantum mechanics. Also 
𝐼ா  does not exactly tell to Alice and Bob what Eva knows about the key elements. Eve may know the exact 
meaning 𝐼ா  of the elements or just the result of several derivative functions l. Which gives 𝐼ா  information 
in the sense of Shannon.      At this point, Alice and Bob know that open key elements have an e error rate, 
and a potential listener has 𝐼ா  information about them. With a classic shared authenticated channel, Alice 
and Bob can even try to create a completely secret key; this part is called the secret key distillation. 
     The secret key distillation, involves a stage called an agreement, which aims to correct transmission 
errors. A step called privacy enhancement that removes Eva’s information at the expense of shortening the 
key length. We briefly describe these two processes. 
        In the case of BB84, the agreement usually takes an interactive look. Errors will be corrected by the 
protocol. Alice and Bob alternately reveal equal subsets of their basic elements.  When they find the ratio 
difference, it means that the corresponding subsets contain an indeterminate number of errors. In extreme 
cases at least one. Using a dichotomy, they can point the location of the error and correct it. They repeat 
this process in sufficient quantities and as a result Alice and Bob change equal bits. 
       During the secret key distillation, all communications take place through a common authenticated 
classic channel. Remember that Eva can not intervene in this process, but she can listen to exchanged 
notices, which in this case contains exchanged equal bits. Thus, Eve's knowledge includes 𝐼ா + |𝑀| bits, 
equal bits of meaning |𝑀|, that were discovered during the correction.  To keep the key secret, the idea of 
enhancing privacy is to use what Eve does not know. Alice and Bob can compute the function f of the key 
elements, so as to spread partial Eve ignorance throughout the result. Such a function (for example, as a 
hash function in classical cryptography) is chosen so that each output bit depends on most or not most of 
the input bits. For example, such a function consists of calculating bits of equal random subsets. Suppose 
that Eve knows a bit 𝑥ଵ but does not know about the meaning of a bit 𝑥ଶ. If the function f 𝑥ଵ + 𝑥ଶ 𝑚𝑜𝑑 2, 
Eva can not open the output value until two possibilities 
 𝑥ଵ + 𝑥ଶ = 0(𝑚𝑜𝑑) 2  and 𝑥ଵ + 𝑥ଶ = 1(𝑚𝑜𝑑)2 are equal no matter what the value 𝑥ଵ has. The price that 
we have to pay for privacy is that the length of the output secret key should be less than the length of the 
partial secret key. The size of the abbreviation is approximately equal to the number of bits that Eve knows 
and the result of the key size 𝑙 −  𝐼ா − |𝑀| in bits. Getting the maximum size of a key is possible when Eve 



does not know about the constituent bits of the key and (for example, 𝑙 −  𝐼ா − |𝑀| = 0) is important that 
reducing explain as little information as possible which will be enough for Alice and Bob to be able to 
correct all the mistakes. Note that, we have to correct errors twice during quantum transmission from the 
number of bits produced by the secret key. We must first attribute the errors to the listening and 𝐼ா  count. 
Also, errors must be corrected quickly, for which part of the bits must be opened and considered as  |𝑀|.  
Finally, the secret key, obtained after enhancing the confidentiality, can be used by Alice and Bob for 
cryptographic purposes. In particular, they can use the key to encrypt the message or create a secret channel. 

 
5. The novel scheme 

The idea is to use one time signature scheme instead of Merkle scheme. It will involve reducing the 
signature length. In order to transfer the key, BB84 protocol is used. As one time signature, we use 
Winternitz scheme.  
To sign the message the signature and verifications keys are generated. For this, the Winternitz parameter 
is w> = 2, and it is equal to the number of bits, which must be signed simultaneously. v1=n/w and v2=(log2v1 

+1+w)/w, with v= v1+ v2 must be calculated. The signature key X contains 2n random lines of the length v. 
Its verification key Y is of the same size.  

 X= (xv-1[0], xv-1[1], xv-2[0], xv-2[1],…, x0[0], x0[1]) ∈ {0,1} v,2n . 

Y= (yv-1[0], yv-1[1], yv-2[0], yv-2[1], …, y0[0], y0[1]) ∈ {0,1} v,2n, where yi=fo
2^w-1(xi), and 0<=i<=v-1.  

Now the verification keys must be transferred, it is performed using BB84 protocol. For this are preformed: 
encoding random bits with the help of qubits, eavesdropping recognition, getting a secret key. To sign the 
message it hashed: hash=kp-1,…, kp-p1.The checksum is calculated as follows: с=∑i=v-v1

v-1(2w-pi). 
Considering that c<= v12w, the length of the binary representation is log2 v12w+1. The minimum number of 
zeros are prepended to the binary representation in order to obtain the length of the representation, dividable 
by w. Consequently, it is divided into v2 parts of length w. The message is signed as follows: 
signature=(fo^pv-1(xv-1), …, fo^p0(x0)).  

To verify the signature the following equation must be verified:  (fo^(2w-1-vv-1)) (signaturen-1), …, (fo^(2w-
1-v0))(signature0) = yn-1, … y0.  

6.  Security and results. 

As the result we have received, the hash based digital signature scheme, which is secure, because it 
use the classical version of Winternitz one-time scheme and BB84 protocol. To break the system we need 
either to break Winternitz one-time or BB84 protocol. Both of this is impossible, because of the initial 
assumptions. The signature size is vn, which is much less than in the case of Merkle. 
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