
A Framework for Cooperative Ontology Construction

Based on Dependency Management of Modules

Kouji Kozaki, Eiichi Sunagawa, Yoshinobu Kitamura and Riichiro Mizoguchi

The Institute of Scientific and Industrial Research (ISIR), Osaka University
8-1 Mihogaoka, Ibaraki, Osaka, 567-0047 Japan

{kozaki, sunagawa, kita, miz}@ei.sanken.osaka-u.ac.jp

Abstract. To construct large scale ontologies, two major approaches are
discussed by many researchers. One is a cooperative construction of ontologies,
and the other is a modularization of ontologies. To combine these two
approaches, this paper discusses a framework for supporting cooperative
ontology construction based on dependency management among modularized
ontologies. In such a situation, one of the key issues is the maintenance of
consistency among inter-dependent ontologies because each ontology is revised
asynchronously by different developers. In order to realize consistent
development of ontologies, the framework provides two functions: to manage
the dependencies between ontology modules and to keep and restore
consistencies between them when they are influenced by changes of other
modules. Furthermore, we outline an implementation of our framework in our
environment for building/using ontology: Hozo.

Keywords: Cooperative ontology construction, Distributed development,
Dependency management

1 Introduction

Ontological engineering has changed considerably for these years. Many systems
have become to deal with multiple and dynamic ontologies rather than single and
static ones. This trend is and will be accelerating because of the advancement of
Semantic Web whose characteristic is decentralized. On the web, ontologies will be
scattered from server to server and referred to by one another. For example, ontology
creators and service providers would search and compile several ontologies on the
web, and then, adapt them to their own needs. Especially, to construct large scale
ontologies efficiently, many researchers discuss a modularization of ontologies [1].
Such modularized ontologies are treated meaningfully in every phase of the
development process. At the beginning of ontology development, developers need to
determine the scope of the ontology, and next, consider reuse of existing ontologies
[2]. In these phases, dividing the target ontology into modules helps the developers to
understand a total picture of the conceptual hierarchy particularly in a large scale
ontology. And, it also helps to determine the scope of application of the reused
ontology. In a phase of construction and maintenance, it forms the basis of

ESOE, Busan - Korea, November 2007 33

cooperative development. Furthermore, after publication of the ontologies, a
developer of another ontology can reuse them as his/her own modules easily without
carving out them from their source ontology if it is divided into modules in a
reasonable manner.

In this research, we focus on the phase of construction and maintenance and
discuss a framework for supporting cooperative ontology construction based on
modularization of ontologies in a distributed environment. In such a situation, one of
the key issues is the maintenance of consistency among inter-dependent ontologies
because each ontology is revised asynchronously by different developers. In order to
realize consistent development of ontologies, the framework has to support two
functions: to manage the dependencies between ontologies and to keep and restore
consistencies of them when they are changed[3]. This paper overviews the framework
for distributed and cooperative ontology development based on dependency
management of modularized ontologies and explains how the framework supports to
keep and restore consistencies of the modules in the development processes. In this
work, we have reconsidered the prototype system in previous work and improved its
implementation. The remainder of this paper is organized as follows. Section 2
discusses the underlying distributed and cooperative ontology development we
assume. In section 3, we summarize a flow of the distributed and cooperative
ontology construction and discuss how to support each construction process in our
framework. Section 4 introduces the implementation of our framework in our
environment for building/using ontology: Hozo. In section 5, we discuss some related
work followed by a summary of future work in section 6.

2� Distributed and Cooperative Construction of Ontology

We assume a situation where several modularized ontologies are constructed
separately in a distributed environment and in parallel by different developers. In such
a situation, some ontologies may import concepts (classes) defined in other ontologies,
and another concept might be defined in the ontology by extending the imported
concepts (Fig.1). And then, it means the ontology B which imports concepts from
Ontology A depends on ontology A. In this paper, we call ontologies which are
depended by other ontology and those depend on others depended ontologies, and
dependent ontologies, respectively. In Fig.1, Ontology A is the depended ontology of
Ontology B, and Ontology B is the dependent ontology of A. We call a development
of ontologies in such a manner distributed ontology development.

In the distributed ontology development, developers construct multiple ontology
modules in cooperation among the developers. They can reuse published modules of
other ontologies if possible. It is a common way for ontology development to import
an existing ontology into a target-specific ontology. However, when developers
construct ontologies in parallel or reuse ontology which is under construction and thus
unstable, consistency among the ontologies is easily broken because they are revised
asynchronously without notice. Furthermore, they are sometimes updated without
considering how ontologies depend on them would be influenced by their changes
because authorities for maintenance of the ontologies are separated and distributed to

34 International Workshop on Emergent Semantics and Ontology Evolution

each developer. Therefore, when a developer changes his/her ontology, the change
influences on its dependent ontologies. In many cases1, such a change may cause
inconsistencies among the ontologies. For consistent development of ontology
modules, a system should manage dependencies among them and support their
developers to harmonize them. Based on this observation, we have investigated how
to manage the dependency among ontology modules and how a change of one
ontology influences on others through its dependencies. And we have developed a
framework for cooperative ontology construction in harmony among
depended/dependent ontologies. Next section discusses the framework.

3. A Framework for Cooperative Ontology Construction based

 on Dependency Management of Modules

3.1. Flow of Distributed Ontology Development

Fig.2 shows a skeleton of our conceptual framework for distributed ontology
development. It consists of two parts in a server-client architecture. One is a shared
space, where developers store ontologies to be open to other developers. The other is
local (personal) spaces, where each developer builds and modifies each ontology
which he is responsible for. The developers cannot edit the ontologies stored in the
shared space directly. Under access control and version management, they edit the
personal copies of ontologies locally and upload them to the shared space when
necessary. In the distributed ontology development, the target ontology can be
regarded as a system of interrelated ontology modules stored in the shared space.
They are constructed in cooperation among the developers. Each developer constructs
some of them under his responsibility2. Then, he may refer to other ontologies and
import concepts defined in them. It implies that each developer has two kinds of
ontologies: ontologies which the developer builds and ontologies which he/she refers

1 We assume early stage of ontology development by trial and error.
2 The same component ontology may be constructed by several developers asynchronously.

Fig.2. A Conceptual Framework for Distributed
Ontology Development.

Upload

Ontology which
the developer builds

Ontology which
the developer refers to

Download
Personal Space

(client system)

Shared Space

(server system)

Version Management

Access Control

Modification

Editing
Developer DeveloperDeveloper

Upload

Upload

Download

Modification

Editing

Modification

Editing

Ontology�A
Ontology�B

Constructs
Ontology�A

Developer�A
Constructs
Ontology�B

Developer�B

Ontology�B�Imports
a�concept�from�Ontology�A

Imported�concept
Another�concepts�
are�defined��by�
extending�an�
imported�concept

Ontology�B
depends�on�A

Depended�Ontology�of�B
(An�ontology�which�is�depended� �by�B)

Dependent�
Ontology�of�A

Fig.1. Distributed Ontology
Development.

ESOE, Busan - Korea, November 2007 35

to. The distributed ontology development proceeds with the repetition of the
following steps;
1. A developer gets latest information on ontologies which he builds or refers to from

the ontology server. He downloads (updates) them from the shared space to the
personal space (client) through an ontology manager. If it is needed, he locks
ontologies to avoid simultaneous modification of the same ontology by others.

2. The developer analyzes changes in the updated ontologies and evaluates whether
the changes are influencing on consistency of the ontology which he is
constructing.

3. If the changes cause inconsistency in his ontology, the developer modifies his
ontology in order to keep and restore its consistency with the updated ontologies.
The framework helps such a modification process by suggesting possible
countermeasures for coping with each of the changes.

4. After the modification, the developer starts editing his ontology as he needs. While
editing the ontology, he can imports and use concepts from other ontologies which
he refers to as a result. Then the dependency between his ontology and the referred
ontology through the imported concepts is managed by the functions of
dependency management.

5. After editing, the developer publishes his ontology by uploading (committing) it to
the shared space. Then, he unlocks the ontology if he allows others to edit it.

Every developer goes over the above process individually in parallel, and then the
whole target ontology evolves. As a result the whole target ontology is constructed in
the shared space.

We suppose another cooperative development process such as constructing a
single ontology by many developers. Our distributed ontology development also can
support such a process in the repetition of the following steps:
1. The developers share a target single ontology in the shared space. The ontology

server manages versions of the ontology and accesses to it.
2. When a developer edits the target ontology, he locks the ontology and downloads

(updates) it to his personal space.
3. If the ontology has been updated by another developer, he analyses the changes by

comparing the ontology with its old versions. The change analysis function of the
framework supports him by showing the changes and its influence.

4. After the analysis, the developer edits the ontology. And then, he uploads
(commits) the edited ontology to shared space and unlocks it.

To support the distributed and cooperative ontology construction discussed above, the
framework provides four functions:(1)sharing ontologies on the shared space under
version management and access control, (2)dependency management among
modularized ontologies, (3)analysis of changes and their influences, and (4)suggestion
of possible countermeasures for coping with each of the changes to keep and restore
consistencies. We discuss the details of these functions in the following sections.

3.2. Version Management and Access Control of Ontologies

As a basic infrastructure for cooperative ontology construction, our framework
provides the following two functions:

36 International Workshop on Emergent Semantics and Ontology Evolution

Version Management: When the user uploads his ontology on the shared space
(server), the old version of the ontology is moved to a backup space in the server.
It is managed with its updated time and name of the developer, and it may be
replaced by the latest version when the user requires.

Access Control: The server provides a mechanism for locking / unlocking ontologies
to avoid that an ontology is updated by different developers at the same time.
Because the units to be locked are modularized ontologies, its influence on the
cooperative construction is kept to a minimum.

3.3. Dependency Management among Ontologies

When an ontology imports concepts3 from other ontologies, the dependencies among
ontologies are managed using reproduction of the concepts to be imported. As an
example, we assume Ontology B imports concept A5 defined in Ontology A (Fig.3).
Then all the concepts depended by A5 are reproduced with relations among them, and
Ontology B imports these reproductions. It means the system reproduce all definition4
related to the concept. In this example, “the super concept of A5” (A3 and A1), “the
concept referred by A5” (A4), “the super concepts and referred concepts of them (A1,
A3 and A4)” (A1, A2 and A6) and relations among them are reproduced, and Ontology
B imports these reproductions (they are shown by A1’ to A6’). As the result, Ontology
A becomes the depended ontology of Ontology B, and Ontology B becomes the
dependent ontology of A. These reproductions have same definition with their
original but belong to dependent ontology.
 In Ontology B, another concept might be defined in the ontology by extending the
imported concepts. The ways are divided into two types: defining sub concepts of
them (B1 and B2 in Fig.3) and referring to them as constraints (B3 and B4 in Fig.3).
These two types are represented by is-a (super-sub) relations and referring-to
relations between reproductions of imported concepts and concepts defined in the
ontology. These reproductions are used to manage dependencies among ontologies
and to identify changes of depended ontologies. Because the dependencies are
managed using relations between imported concept and concepts defined in
dependent ontology [3], multiple dependencies (e.g. A depends on B, and B depends

3 In OWL, the users cannot import a single concept, but they can import a whole ontology.

But in our framework, the users may import concepts partially.
4 The definition of concepts consists of id, name, super concept, comment, and slots.

Fig.3. A framework for dependency management among ontologies.

A1

A3A2

A5

Ontology A

A5’

B2B1 B4

Ontology B

A4

A1’

A3’

B3A4’

A2’

is-a(super-sub)
relation
Referring to relation
Concepts defined
in the ontology
Reproduction of
imported concepts

Legends

A6 A6’

Imports concepts

ESOE, Busan - Korea, November 2007 37

on C) and circular dependencies (e.g. A depends on B, and B depends on A) can be
managed by this framework.

3.4. Analysis of Changes and Their Influences

When a depended ontology is changed, the changes are analyzed by comparing its
reproductions of imported concepts in the dependent ontology and their original
concepts in the depended ontology. The types of changes are as follows:
1. If the original concept is not found5 in the depended ontology, it means the

concept was deleted.
2. If the definition of the original concept is different from that in the reproduction, it

means the concept was modified.
The influences of the changes are analyzed by tracing the relations of reproductions
whose original concept is changed. In Fig.3, we assume A2 in Ontology A has been
deleted. It means original concept of A2’ in Ontology B has been changed, and the
change influences on A4’, A5’, B1, B2 and B4 through their relations.
 This analysis procedure is applicable to analyze the difference of an ontology and
its old version. In the case, the comparison is done through all concepts and relations
in the ontology. And the types of changes are as follows:
1. If a concept/relation is found only in the new ontology, it means the

concept/relation was added in the new ontology.
2. If a concept/relation is found only in the old version, it means the concept/relation

was deleted in the new ontology.
3. If the definition of a concept/relation in the new ontology is different from the

same concept/relation in the old version, it means the concept/relation was
modified.

The users can cancel part of the changes if it is needed.

3.5. Maintenance of Dependencies among Ontology Modules

For prevention and resolution of inconsistency in dependencies between ontologies,
we can consider two approaches to maintain the consistencies. One is to restrict the
change which influences on others seriously. Such a restriction helps developers to
avoid inconsistency proactively. The other approach is to adapt the influences of the
change and restore the consistencies by modifying influenced ontologies. We have
taken the latter approach and have come up with five kinds of countermeasures for
coping with each of the changes to keep and restore consistencies:
1) To accept the change

1-1) To modify the influenced ontology to be compliant with the change; The
developer makes agreement on the change of the ontology and modifies his/her
ontology depending on it for adapting to the changed ontology.

1-2) To leave the depending ontology influenced by the change; In some cases,
the influenced ontology can be left unmodified, as the changed ontology does not
contradict it.

5 Because it is compared according to id of concepts, the change of id is regarded as a deletion

and an addition of the concept.

38 International Workshop on Emergent Semantics and Ontology Evolution

2) To refuse the change

2-1) To modify the influenced ontology for compensation of the change; As far
as preserving the consistency of the dependency, the developer modifies his/her
ontology against the change to cancels the influence of the change.

2-2) To stay compliant with the previous version of the changed ontology;
Under controlling versions of the ontologies, the dependency is kept without any
modification. After that, when the influencing ontology would be changed so as
to be acceptable, the dependent one would adapt to the change and the
consistency would be recovered.

2-3) To break the dependency; In order to make the influenced ontology
independent of the changed one, reproductions of imported concepts whose
change influences on it are redefined as new concepts in the dependent
ontology. It implies the dependency on the influencing ontology is broken.

1-1), 1-2) and 2-1) correspond to replacement reproductions of imported concepts
with new reproductions based on changed concepts. In 1-1) and 1-2), the developer
modifies his/her ontology after the replacement. 2-2) corresponds to do nothing, and
2-3) corresponds to redefinition as discussed above.

We investigated the patterns of the change and the possible way of modification to
keep the consistency of the dependency for each pattern. The patterns of the change
include the cases where a concept has been deleted, the label has been changed, a slot
of a concept has been deleted and so on. For all the cases, we come up with 17 types
of change of concepts according to the kind of dependency. And, as the
countermeasures for the change, we devised 71 ways of modification. The influenced
ontology is modified based on these countermeasures. The details are discussed in our
previous work [3]. Though the target of our investigation is a frame language used in
Hozo, it can be translated into OWL. Therefore, we suppose most of the patterns are
applicable to OWL.

4. Implementation

We have implemented our framework in our environment for building/using
ontology: Hozo. Here, we summarize how Hozo supports distributed and cooperative
construction of ontologies.

4.1. Overview of Hozo

The features of Hozo include 1) Supporting role representation [4, 5], 2) Visualization
of ontologies in a friendly GUI, and 3) Distributed development based on
management of dependencies between ontologies. Hozo is composed of Ontology
Editor, Onto-Studio (a guide system for ontology design), Ontology Server and
Ontology Manager (Fig.4). The ontology editor provides a developer with a graphical
interface through which they can browse and modify an ontology locally. The
instance models can be developed using Model Editor which is a sub system of the
Ontology Editor. The ontology server stores and manages ontologies under access
control and version management. Developers can access and browse them through the

ESOE, Busan - Korea, November 2007 39

ontology manager. Furthermore, the ontology editor of Hozo provides a user support
module to maintain consistencies of the dependencies among ontologies, called
Tracking Pane. Hozo’s native language is XML-based frame language and ontologies
can be exported in OWL [6], and RDF(S). It also can import OWL partially6. The
latest version of Hozo is published at the URL: http://www.hozo.jp.

4.2. Version Management and Access Control through Ontology Manager

Hozo can use a general file server as the ontology server. It uses a shared folder on
the network or a WebDAV folder to store and share ontologies. The ontologies are
managed by changing filenames and storing folders according to their dependencies
and versions. The users can share ontologies through a local area network or the
Internet. This simple mechanism makes it possible for the users to set up their own
ontology server easily without complicated procedures. The user also can switch the
ontology server to the other if necessary.

The ontology manager (Fig.5) acts as a bridge between the personal space (in a
client) and the shared space which the ontology server provides. It carries out the
following functions:
1. To show the latest information on the ontology modules such as “updated”,

“locked by another developer” and so on.
2. Access control to ontology modules (lock and unlock)
3. Version management of ontology modules
4. To search concepts defined in other ontology modules
5. Synchronize ontology modules in clients with those in the server

4.3. Dependency Management among Ontology modules

When the developer finds reusable concepts defined in other ontologies which are
published in the server by other developers, he can import them to his ontology. The

6 The OWL import mechanism is under improvement.

Fig.4. Architecture of Hozo

Ontology

Manager

L
a

n
g
u

a
g

e

M
a

n
a

g
e
m

en
t S

y
stem

Ontology ServerOntology Server
Clients

(other agents)

ModelModel

OntologyOntology
R

eferen
c
e / In

sta
ll

Onto Studio
�������	�
�
�	
�����
����������	
����

support

Ontology/Model
Developer

b
u

ild
in

g

�m
o
d

ify
in

g

�

b
ro

w
sin

g

Dependency

Management

O
n

to
lo

g
y

E
d

ito
r

Tracking
Pane

Information
of changes

40 International Workshop on Emergent Semantics and Ontology Evolution

Show information of
ontology modules Compare and Synchronize

ontologies in a client and a sever

Ontology
modules
in a client

Ontology
modules
in a server

Show information of
old versions

Fig.5. A snapshot of Ontology Manger.

ontology manager supports him to import the concepts through Import Dialog of the
ontology manager. The dialog shows concepts in the selected ontology by tree
structure based on is-a relation of them, and the developer selects concepts which he
wants to import to his ontology. Then, the system finds all the concepts depended by
the selected concepts, forms its dependency relations according to their relations, and
finally reproductions of them are imported to his ontology through the procedure
discussed in section 3.3. In the ontology editor, reproductions of imported concepts
are represented with different color from other concepts, and the developer cannot
modify7 them to keep consistencies of ontologies.

4.4. Analysis of Changes of Depended Ontologies and Their Influences

Ontology Manager shows developers which ontology has been changed. To maintain
the consistency of dependency, the developer should get more information on, for
example, what concepts/slots in the depended ontology have been changed and which
concepts in his ontology are influenced by the changes. Hozo shows such information
on the tracking pane and the browsing pane of its ontology editor.

The tracking pane lists the changes in depended ontologies which influence on his
ontology (Fig.6). Those changes are classified in three types (deletion, modification
and addition), and their types are represented by icons. The changes are shown by
nodes with icons in a tree structure, and the developer can know which concepts are
influenced by the change through child nodes of the nodes. By clicking a node
representing a concept, the selected concept in the ontology is pointed in the browsing
pane of ontology editor. In the browsing pane (Fig.7), the ontology is visualized in
network structures, and the changed concepts are represented by the same icons8 as

7 The developer can use imported concepts to define another concept. For example, he can

define sub classes of them.
8 In the browsing pane, sky blue nodes represent imported concepts from depended ontologies.

Therefore, only sky blue nodes can have the icons because the changes appear only on the
imported concepts in the distributed ontology development.

ESOE, Busan - Korea, November 2007 41

tracking pane shows. When the developer selects a changed concept, the concepts
influenced by the change are highlighted in the browsing pane, and then, if the change
type of the selected concept is modification, the details are shown.

4.5. Modifying the Ontology to Keep the Consistency

To keep the consistency of the ontology, Hozo suggests possible countermeasures for
coping with each of the changes to the developer. These countermeasures are devised
through our investigation on conceptual dependencies of ontologies and the change
type of imported concepts discussed in section 3.5. In the beginning, Hozo shows
developers two major strategies: to accept the change and to reject it. The former
corresponds to 1-1), 1-2) and 2-1)9 discussed in section 3.5. The difference among
them depends on the way of modifications after the acceptance of the change. The
latter corresponds to 2-3) and implies to redefine the changed concept in his ontology.
If the user chooses neither to accept nor to reject the change, it corresponds to 2-2).

For example, if the change type is modification of an imported concept,
acceptance of the change corresponds to replacement of the imported concept with the
modified one. If the change type is deletion of imported concepts, the acceptance
corresponds to deletion of them. Developers can apply these countermeasures by
selecting it through a popup menu in the browsing pane. After applying
countermeasures, he edits his ontology for coping with the change if necessary. In
such a case, it is helpful for him that the system shows the concepts influenced by the
change. Furthermore, if he needs advanced strategies, the system shows him all
countermeasures10 with their details in a harmonizing pane.

9 This strategy means that the user accepts the change and then he/she modifies against the

change to cancel the influence of it.
10 We have not implemented some of advanced countermeasures yet. But, we suppose the two

major strategies are enough for coping with the change in a lot of cases.

Depended ontology

Depended ontology

C
o

n
c
e

p
ts

 w
h

ic
h
 t
h

e

c
h

a
n

g
e
 in

fl
u

e
n
c
e

s

C
h

a
n

g
e
d
 c

o
n

c
e
p

ts
 a

n
d

 it
s
 ty

p
e

 o
f
c
h

a
n

g
e

Selected Concept

Concepts which the change
of selected concepts influences

Details of
Modification

Fig.7. Representation of changes on Browsing Pane. Fig.6. Tracking Pane.

Legends

Deleted

Modified

Added

42 International Workshop on Emergent Semantics and Ontology Evolution

5. Related Work

Protégé has a semi-automatic tool for ontology merging and alignment named
PROMPT [7]. It performs some tasks automatically and guides the user in performing
other tasks. PROMPT also detects possible inconsistencies in the ontology, which
result from the user’s actions, and suggests ways to remedy them. For ontology
evolution in collaborative environments [8], Protégé provides two functions: Change-
management plugin which stores a list of class-wide changes with annotations and
shows history of the change to the user, and Client-Server mode which support
synchronous ontology editing by multiple users. SWOOP [9] also supports
collaborative annotation for discussing and version control using change logs. But
they does not support distributed construction of modularized ontologies discussed in
section 2. Their methods for version control are also different form Hozo. They use
change logs, but Hozo does not use them and analyzes the changes by comparing
ontology with its old version. The approach of Hozo is applicable to ontologies on the
Web without their change logs.

DILIGENT [10] and ONKI [11] supports distributed development of ontology
through shared space for ontologies in the way as Hozo. But they do not have
functions to suggest countermeasures for coping with each of the changes to the
developer when depended ontologies are modified. KAON and Hozo focus on that
changes in an ontology can cause inconsistencies in other dependent ontologies. And,
in order to ensure their consistencies, they propose deriving evolution strategies [12,
13]. But it does not provides strategies which reduce the influences against the
changes although Hozo suggests them (e.g. deletion of a concept can be canceled by
redefining it in another ontology). The difference is caused by different treatment of
relationship between depended ontologies and dependent ontologies.

[14] proposed algorism for modularization of OWL ontology. We have not
considered how to modularize ontology. It is one of our future works.

6. Conclusions and Future Work

In this paper, we discussed a framework for distributed and cooperative ontology
development. The maintenance of consistencies among modularized ontologies is an
essential issue especially in a distributed development. Our framework contributes to
resolving the issue based on management of dependencies between ontology modules.
The same framework also can support to construct a single ontology by many
developers cooperatively. Furthermore, we have implemented the framework in our
ontology development environment: Hozo. It supports distributed and cooperative
ontology construction by different developers through LAN and Internet. Its functions
for distributed ontology construction have been used by some researchers and got
favorable comments by them. The latest version of Hozo is open to the public on the
website (http://www.hozo.jp).

As future work, the authors plan to enhance our system according to the following
future plan: (1) Functions to deal with OWL ontology. For example, we suppose to
use OWL properties such as owl:imports and owl:priorVersion for management of

ESOE, Busan - Korea, November 2007 43

ontology on the Web. (2) Evaluation and reconsideration of strategies for keeping
consistencies. (3) Consideration of appropriate modularization. (4) Maintenance of
consistency among ontologies and its instance models based on our framework.

Acknowledgments

The authors are grateful to Mr. Mamoru Ohta for his support to implement our system.

References

1. Seidenberg, J., Rector, A.: Web ontology segmentation: Analysis, classification and use. In:
15th International World Wide Web Conference, Edinburgh, Scotland (2006)

2. Noy, N.F., McGuinness D.L.: Ontology Development 101: A Guide to Creating Your First
Ontology. Stanford Knowledge Systems Laboratory Technical Report KSL-01-05 (2001)

3. Sunagawa, E., Kozaki, K., Kitamura, Y., Mizoguchi, R.: An Environment for Distributed
Ontology Development Based on Dependency Management, In: 2nd International Semantic
Web Conference, pp. 453--468, Florida, USA (2003)

4. Kozaki K., Kitamura, Y., Mizoguchi, R.: Hozo: An Environment for Building/Using
Ontologies Based on a Fundamental Consideration of "Role" and "Relationship", Proc. of
EKAW2002, pp.213-218, Siguenza, Spain, 2002.

5. Mizoguchi, R., Sunagawa, E., Kozaki, K., Kitamura, Y.: A Model of Roles in Ontology
Development Tool: Hozo. J. Applied Ontology (to appear)

6. Kozaki K., Sunagawa, E., Kozaki, K., Kitamura, Y., Mizoguchi, R.: Role Representation
Model Using OWL and SWRL, In: 2nd Workshop on Roles and Relationships in Object
Oriented Programming, Multiagent Systems, and Ontologies, Berlin (2007)

7. Noy, N.F., Musen, M.A.: The PROMPT suite: Interactive tools for ontology merging and
mapping. International Journal of Human-Computer Studies, 59(6), pp.983—1024 (2003)

8. Noy N., Chugh A., Liu W. and Musen M.: A Framework for Ontology Evolution in
Collaborative Environments. In: 5th International Semantic Web Conference, Athens, GA,
USA (2006)

9. Kalyanpur, A., Parsia, B., Sirin, B., Cuenca-Grau, B., Hendler, J.:Swoop: A 'Web' Ontology
Editing Browser, Journal of Web Semantics Vol 4(2), pp. 144-153 (2005)

10. Tempich, C., Pinto, H.S., Sure, Y., Staab, S.: An Argumentation Ontology for DIstributed,
Loosely-controlled and evolvInG Engineering processes of oNTologies (DILIGENT). In:
The 2nd European Semantic Web Conference, Greece, pp. 241-256 (2005)

11. Valo, A., Hyvonen, E. Komurainen, V.: A Tool for Collaborative Ontology Development
for the Semantic Web, in: Proc. of International Conference on Dublin Core and
Metadata Applications 2005, Madrid, Spain (2005)

12. Stojanovic, L., Maedche, A., Motik, B. Stojanovic, N: User-driven Ontology Evolution
Management, Proc. of EKAW 2002, Madrid, Spain, pp. 285-300 (2002)

13. Maedche, A., Motik, B., Stojanovic, L., Studer, R., Volz, R. : An Infrastructure for
Searching, Reusing and Evolving Distributed Ontologies, The Twelfth International World
Wide Web Conference, Budapest, Hungary (2003)

14. Aquin M., Sabou M., and Motta E.: Modularization: a Key for the Dynamic Selection of
Relevant Knowledge Components, The First Workshop on Modular Ontologies (2006)

44 International Workshop on Emergent Semantics and Ontology Evolution

