CEUR-WS.org/Vol-2950/paper-01.pdf

Serverless BM25 Search and BERT Reranking

Mayank Anand, Jiarui Zhang, Shane Ding, Ji Xin and Jimmy Lin

University of Waterloo, Canada

Abstract

The retrieve-rerank pipeline is a well-established architecture for search applications, typically with first-stage retrieval
using keyword search followed by reranking with a transformer-based model. In deploying such an architecture in the cloud,
developers must devote considerable effort to resource provisioning and management: typically, the goal is to optimize the
infrastructure configuration (number and type of server instance) to achieve certain performance characteristics (latency,
throughput, etc.) while reducing operating costs. In this paper, we introduce a serverless prototype of the retrieve-rerank
pipeline for search using Amazon Web Services (AWS), comprised of BM25 for first-stage retrieval using Lucene followed by
reranking with the monoBERT model using Hugging Face Transformers. The advantage of a serverless design is that a cloud
provider shoulders the burden of operational management, for example, allocating server instances and scaling with query
load. We experimentally show with the popular MS MARCO passage ranking test collection that compared to a traditional
server-based deployment, our serverless implementation (1) retains the same level of effectiveness, (2) can reduce average
latency by exploiting massive parallelism, and (3) incurs comparable costs if the service is expected to be idle for some

fraction of the time. Our implementation is open-sourced at https://github.com/castorini/serverless-bert-reranking.

Keywords

multi-stage ranking architectures, transformers, monoBERT

1. Introduction

It is a common practice today for search engines to
adopt a retrieve-rerank architecture, for example, with
keyword search as first-stage retrieval followed by a
transformer-based model for reranking [1]. This rep-
resents a simple instantiation of a multi-stage retrieval
architecture [2] that is widely used in production at
scale [3, 4, 5, 6]. In terms of deployments, individ-
ual servers (today, typically virtualized instances in the
cloud) form the basic building blocks for search applica-
tions. Persistent services running on a cluster cooperate
to provide the various functionalities that comprise the
complete application. To scale out, the standard practice
is to adopt a replicated, document-partitioned architec-
ture [7, 8, 9].

This design has two important implications: First, the
services must exist as always-on, long-running processes,
ready to handle requests at any moment. This presents
a floor on resource consumption, as costs are incurred
even when the service is idle. Second, scaling up and
down in response to query load must be performed at the
granularity of servers, usually through replication and
load balancing. Thus, a server-based design means that
when the query load is low, even a single server may be

DESIRES 2021 — 2nd International Conference on Design of
Experimental Search & Information REtrieval Systems, September
15-18, 2021, Padua, Italy

& mayank.anand@uwaterloo.ca (M. Anand);
jiarui.zhang@uwaterloo.ca (J. Zhang); s44ding@uwaterloo.ca
(S. Ding); ji.xin@uwaterloo.ca (J. Xin); jimmylin@uwaterloo.ca
(J. Lin)

Comans e uboton 0 Wermtond CC B g
CEUR Workshop Proceedings (CEUR-WS.org)

over-provisioning; for robust failover, a minimal installa-
tion typically runs two servers, additionally contributing
to idle (wasted) resources. As the query load increases, to
maintain the same level of performance, more server in-
stances need to be provisioned. As query load decreases,
these extra instances must then be destroyed. To cope
with variable load robustly, developers need to build logic
to dynamically spin up and down instances, which may
be complex and error prone. While these are solvable
engineering challenges, we wonder if there’s a better
way. It would be desirable if we could scale up and down
seamlessly, without effort—and ideally, all the way down
to zero. That is, if there are no incoming queries, can we
not have to pay anything?

Serverless architectures to the rescue! In this paper,
we present a serverless prototype of the retrieve-rerank
pipeline for search using Amazon Web Services (AWS),
comprised of BM25 for first-stage retrieval using Lucene
followed by reranking with the monoBERT model using
Hugging Face Transformers. We describe our design and
present experimental results with the MS MARCO pas-
sage ranking test collection. In addition to the ability
to completely offload operational management, we be-
lieve that there are two scenarios where our serverless
design is particularly compelling: (1) a search application
that handles low query volumes, where server instances
may be idle most of the time, and (2) a search application
where incoming requests may be bursty, for example,
a service endpoint that is periodically invoked by some
other component. While our prototype exhibits a number
of limitations at present, it perhaps offers a blueprint for a
very different approach to how future search applications
may be built.

https://github.com/castorini/serverless-bert-reranking
mailto:mayank.anand@uwaterloo.ca
mailto:jiarui.zhang@uwaterloo.ca
mailto:s44ding@uwaterloo.ca
mailto:ji.xin@uwaterloo.ca
mailto:jimmylin@uwaterloo.ca
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Search client

1

—

Web Browser API Gateway

FetchLambda

—ip—p
|

SearchLambda Lucene indexes

Raw documents

1
1
1
1
1
1
1
1
1
1
1
1
S3 H
1
1
1
1
1
1
1
1
1
1

Serverless Search

DynamoDB

Figure 1: The architecture of our serverless search and reranking prototype.

2. Background and Related Work

The development of cloud technologies can be charac-
terized as continuing disaggregation of computing com-
ponents. In the early days, the cloud meant dynamic,
readily-available, easy-to-provision virtual machines. To-
day, however, there exists a myriad of services, offered
by all the major cloud providers, that deliver computing
capabilities in a much more fine-grained manner under
a pay-as-you-go model.

One particularly interesting development is the rise of
so-called Function-as-a-Service (FaaS) offerings: The de-
veloper provides a block of code with well-known entry
and exit points, and the cloud provider handles all other
aspects of execution—provisioning resources to execute
those functions, scaling up and down to match a particu-
lar load, etc., all under a per-invocation cost model. Com-
bined with storage- and database-as-a-service offerings,
it is now possible to write end-to-end serverless appli-
cations where the abstraction of a server is completely
absent. To be clear, a serverless design does not mean
that we can somehow compute without servers. Rather,
it means that the developer no longer needs to explic-
itly manage server instances. Instead, the cloud provider
shoulders the burden of operational management, thus
freeing the developer to focus on implementing the ap-
plication logic.

Researchers have explored serverless architectures for
a variety of applications [10, 11, 12, 13, 14], but most rele-
vant to this work is serverless search: Crane and Lin [15]
previously demonstrated a working prototype on Ama-
zon Web Services. In their design, postings lists are stored
in the DynamoDB data store and query execution is han-
dled by Lambda (Amazon’s Faa$ offering). Their work

demonstrated the feasibility of serverless search, but has
a number of shortcomings. In particular, their prototype
required custom code, which presents barriers to broad
adoption. Lin [16] addressed this shortcoming by demon-
strating how the open-source Lucene search library can
be packaged in a serverless design with minimal custom
code to achieve query latencies capable of supporting
interactive retrieval. This serverless Lucene prototype
forms the starting point of our work, where we further
add serverless reranking with transformer-based models
to demonstrate a full serverless retrieve-rerank pipeline.

3. Serverless Architecture

We present and evaluate a working implementation of a
serverless retrieve-rerank pipeline with the architecture
shown in Figure 1. In this work, Amazon Web Services
(AWS) was selected as the cloud platform: in particular,
Lambda, the AWS Function-as-a-Service offering, pro-
vides the core building block in our design. Nevertheless,
other popular cloud providers offer comparable services
that can provide alternative implementations.

Our design is comprised of two distinct components,
serverless search and serverless reranking, described be-
low. The serverless search component is built on the
serverless Lucene prototype presented by Lin [16], while
the serverless reranking component has not been de-
scribed anywhere else.

3.1. Serverless Search

An important desideratum of our work is to build server-
less search on the open-source Lucene search library,

which has emerged as the de facto platform for de-
veloping real-world search applications, typically via
OpenSearch, Elasticsearch, Solr, or other components
in the broader ecosystem. Other than a few commer-
cial search engine companies that deploy custom infras-
tructure (for which the serverless design would not be
of interest anyway), Lucene dominates the search land-
scape, with deployments at organizations ranging from
Bloomberg to Twitter to Wikipedia. Furthermore, the
use of Lucene for academic research has been gaining
traction [17, 18, 19]. Thus, to increase the potential for
broader impact and adoption, our focus is to leverage as
much of the existing Lucene codebase as possible.

The design of serverless architectures hinges around
the decoupling of state from stateless code. In the con-
text of search, “state” is captured by the inverted index
and other related data structures, while query evaluation
(i.e., postings traversal) can be considered stateless. Thus,
it is only natural to package Lucene’s query evaluation
code (IndexReader, IndexSearcher, etc.) into a Lambda
function—the SearchLambda in Figure 1. The index struc-
tures (assumed to have been generated elsewhere) can
be stored in S3, Amazon’s persistent object store.

How do we “connect” Lucene code (running in a
Lambda) with index structures stored in S3? Fortunately,
Lucene’s Directory interface provides a low-level abstrac-
tion for reading index structures (at the level of reading
bytes from streams, seeking to different byte offset posi-
tions, etc.). Thus, it suffices to provide a custom Directory
implementation built with Amazon’s S3 API, and then
use this implementation for reading the indexes. Criti-
cally, all other parts of the Lucene query evaluation stack
remain unchanged—instead of consuming bytes from a
local drive (for example), the bytes are now streamed
across the datacenter network from S3.

Given this design, an important issue of course is the
performance of (remote network) reads from S3. This is
solved by caching; that is, a custom S3Directory imple-
mentation reads data into memory and thus the overall
design is no different from main-memory search engines,
which are quite commonplace today both in the academic
literature [20, 21, 22] as well as in production deploy-
ments [9, 23]. In order to understand how this caching
mechanism interacts with Lambda execution, it is neces-
sary to understand at a high level how Amazon handles
Faa$S execution.

Behind the scenes, Amazon is provisioning containers
to execute the Lambda; it controls how many containers
are running to satisfy a particular load, automatically
scales up and down the number of containers, and per-
forms load balancing. Therefore, code execution can
either occur on a “warm” instance (i.e., already running
container) or a “cold” instance. For a “warm” instance,
query evaluation proceeds without overhead as the index
structures have already been loaded into memory; ini-

tial execution on a “cold” instance, however, carries the
additional startup costs associated with populating the
cache. This is not unlike any other in-memory system,
and Lambda execution incurs no performance penalty in
steady state.

To complete the architecture shown in Figure 1, there
are a few more components to describe: Raw documents
are stored in DynamoDB (organized as a simple key—
value store). Another Lambda, the FetchLambda calls
the SearchLambda to generate a ranking, and then is-
sues concurrent, batched calls to DynamoDB to retrieve
the actual document text (which is needed for rerank-
ing). The FetchLambda can be triggered through a REST
endpoint provided by the API Gateway. The final prod-
uct is a service that takes a query and returns a list of
documents (complete with their contents) accessible to a
search client (e.g., in a web browser).

Although in principle the FetchLambda and the
SearchLambda can be combined, we have kept the two
separate to support future scale out. A partitioned ar-
chitecture can be implementation by multiple Search-
Lambda instances, each responsible for its own index
partition, in which case FetchLambda can serve as a cen-
tral broker.

3.2. Serverless Reranking

In our design, BM25 results from first-stage retrieval are
fed to monoBERT, a standard cross-encoder, for rerank-
ing. In monoBERT, inference is performed on all can-
didate documents: an input template comprised of the
query and the document text is fed to a fine-tuned BERT
model, which produces a relevance score. All candidate
documents are then sorted by these scores. Previous
studies have shown that this approach is both simple and
effective [1]. In this work, we adopt a monoBERT variant
called Early Exiting monoBERT [24], which increases
the efficiency of the BERT backbone by adding in “early
exits” that allow the inference process to terminate early
if the model is confident in its decisions. Our implemen-
tation is based on Hugging Face Transformers [25] and
PyTorch [26].

Conceptually, serverless ranking is straightforward
because the operation is stateless and embarrassingly
parallel. We simply need to generate a relevance score
for each document, which can proceed independently.
The obvious implementation is to wrap model inference
in a Lambda, and this is exactly what we do with the
RerankLambda, as shown in Figure 1. There are, how-
ever, two engineering challenges, discussed below.

First, neural inference typically requires GPUs to
achieve latencies that are sufficiently low to support in-
teractive applications, but AWS Lambda invocations are
limited to CPUs. We mitigate this limitation with the
early-exit model optimizations described above as well

as by exploiting the parallelism provided by the FaaS
design (more details below).

The second challenge concerns the size of the Lambda
deployment package. Presently, AWS places a limit of
250 MB, which is insufficient for both our model and the
neural inference stack (Hugging Face Transformers and
PyTorch). One straightforward solution is to download
the reranker model at execution time, directly from S3
to the temporary directory attached to the Lambda in-
stance. However, this solution is inefficient because the
model must be downloaded every time a new execution
environment is created. Instead, we directly incorporated
our fine-tuned model and the entire execution stack into
a container built on the AWS base image for Lambda,
where the size limit is 10 GB. We then uploaded the im-
age to ECR, Amazon’s fully-managed container registry
service, which provides fast and highly-available access.
This way, AWS is able to optimize resource provision-
ing, for example, caching the image closer to where the
Faa$S invocation occurs. Since the reranking model is
already part of the container image, we have eliminated
all external dependencies.

As shown in Figure 1, the reranker service endpoint
(RerankLambda) is accessible from the API Gateway via
HTTP. It receives a JSON request structure comprising
the query and (document id, content) pairs to be reranked,
performs model inference, and returns a JSON structure
with (document id, score) pairs.

In our current prototype, we have completely decou-
pled serverless search from serverless reranking, but this
design imposes some unnecessary data movement: the
document contents are returned to the client (across the
network) and then sent right back to the RerankLambda
for reranking. It would be straightforward to more tightly
couple the search and reranking components, but we
have currently not done so, primarily because the sav-
ings would be modest at best. The additional costs of
this extra data transfer are small compared to the costs
associated with neural network inference.

4. Experiments and Results

We evaluated our serverless search and reranking pro-
totype using the popular MS MARCO passage ranking
test collection [27], which comprises of 8.8M documents
(passages). Inverted indexes for the collection were built
using the Anserini toolkit [28] and then uploaded to S3.
Separately, the raw document texts were inserted into
DynamoDB using a custom ingestion script.

In our experiments, we retrieved 1000 hits using BM25
for each query and reranked all of those hits. The Search-
Lambda returns only the document ids of the retrieval
results; since BERT reranking requires the document con-
tents as well, the FetchLambda issues concurrent queries

Table 1
Effectiveness comparisons on the development set of the MS
MARCO passage ranking test collection.

Configuration MRR@10
BM25 0.18
BM25 + Early Exiting monoBERT 0.34

to obtain document contents from DynamoDB in batches
of 100 documents.

To speed up BERT reranking, we issued parallel
RerankLambda requests, each with the query and ten
candidate documents. That is, each invocation processed
ten documents, and therefore to rerank 1000 hits, we
had to issue 100 requests in parallel. With Lambda, this
amount of parallelism is easy to obtain—after all, this is
exactly the point of Faa$S. In principle, we could even issue
1000 parallel requests, each scoring a single document,
but we did not try this configuration in our experiments.
For the reranking model, Early Exiting monoBERT, we
followed the guidance in Xin et al. [24] and selected
7, = 1.0 and 7, = 0.9 (third row of Table 1 in the
paper). Based on the reported results: with only a 1%
drop in MRR, this setting provided 2.9x acceleration,
which means that on average, each inference exits the
12-layer transformer model after around four layers.

To evaluate retrieval effectiveness, we ran inference
on the entire development set of the MS MARCO pas-
sage ranking test collection (6980 queries), using both
the serverless prototype and a comparable server-based
configuration; MRR@10 scores are shown in Table 1. We
encountered minor issues resulting from the encoding of
special characters, which translated into very small dif-
ferences in effectiveness between the two designs (third
digit after the decimal point). These issues aside, we can
verify that our serverless deployment retains the same
level of effectiveness as a server-based design.

To evaluate retrieval latency and cost, we further per-
formed search and reranking on 100 queries from the
development set of the MS MARCO passage ranking test
collection to obtain more detailed logging data. We mea-
sured component latency as well as end-to-end latency
from the client side. Table 2 provides a breakdown in
terms of mean, 50th, and 99th percentile latency. As we
can observe, end-to-end latency is dominated by server-
less reranking, due to the computationally intensive na-
ture of neural inference. Before these experiments, we
conducted multiple trials to warm up the SearchLambda
and RerankLambda instances.

Based on the latency measurements, we estimated op-
erating costs (in US dollars). AWS Lambda charges based
on the number of function invocations as well as the
duration of the function execution. The pricing also re-
flects the amount of memory allocated to the function;

Table 2

Component and end-to-end latency and cost based on 100
queries from the development set of the MS MARCO passage
ranking test collection. Latency is reported per query, while
cost is reported per 100 queries.

Stage Latency (s/Q) Cost

Mean P50 P99 (/100Q)
BM25 0.65 0.65 092 $0.022
DynamoDB Fetch 0.95 096 1.06 -
BERT reranking 11.21 10.64 1790 $15.90
End to end 12.81 1224 1935 $16.00
BERT reranking (V100) 26.21 25.52 36.64 $2.20

resources beyond CPU are allocated proportionally based
on memory. In our case, we allocated the maximum,
10240 MB. At present, the costs are $0.20 per 1M requests
and $0.0000166667 for every GB-second duration; in our
case, the per-request charge is negligible. Thus, we esti-
mated compute costs as duration of compute (seconds)
x memory allocated (GB) x 0.0000166667. For ease of
interpretation, we report costs in terms of 100 queries,
shown in Table 2. DynamoDB costs are computed ac-
cording to a complex set of rules that are hard to directly
estimate. However, for our experiments, these costs are
negligible compared to the other components.

To compare the cost of our serverless prototype with
a standard server-based deployment, we also set up our
reranking pipeline on a local server with a single NVIDIA
V100 GPU. Here, we focus on BERT reranking latency
only, as the contributions from the other components
are negligible. Based on these latency measurements, we
estimated query costs by looking up the per-hour (on-
demand) prices of V100 servers from AWS and Azure,
both of which provide similar pricing (we used $3.05 per
hour as the basis of our calculations). These results are
also reported in Table 2.

What do we make of these experimental results?
The latency for GPU-based reranking is admittedly
longer than comparable figures reported in similar ex-
periments [29]. We attribute this to the lack of batch
inference in our implementation. With this caveat in
mind, we see that serverless BERT reranking is able to
achieve lower latency with only CPUs. No doubt some
of this gap is due to our sub-optimal implementation, but
the more interesting point is that the serverless design al-
lows us to arbitrarily parallelize Lambda invocations. In
our setup, we issued 100 parallel SearchLambda requests,
each performing inference on ten documents. To reduce
latency further, we could increase parallelism even more,
for example, dispatching 1000 parallel requests, each per-
forming inference on a single document. Based on the
Lambda pricing model, this should have no appreciable
impact on cost. Thus, the lower bound on end-to-end

latency is in theory limited by CPU-based inference on a
single document.

Nevertheless, it is clear that on a per-query basis, our
serverless design is 7-8 X more expensive than a tradi-
tional server-based deployment. This is of course ex-
pected, and there are two components to this gap. First,
the per unit time cost of serverless components must sum
up to more than the cost of a comparable server; other-
wise, AWS would be losing money on serverless offerings.
Second, decomposing a server-based application into a
serverless design introduces friction (e.g., unnecessary
data movement and network communication). In our spe-
cific case, there is the additional difference between GPU
vs. CPU neural inference. However, how much each of
these factors contributes to the cost difference is difficult
to determine.

Summarizing the “bottom line” based on our experi-
mental results: If we expect a server to be idle 85-90% of
the time, a serverless deployment is more cost efficient.
Beyond costs alone, a serverless design exhibits all the
potential advantages we have already discussed: minimal
operational burden along with seamless scalability down
to zero (zero queries, zero cost) and up to arbitrarily large
query loads. Whether these tradeoffs are worthwhile, of
course, will depend on the exact operational scenario.

5. Future Work and Conclusions

At a high level, a serverless design provides operational
advantages and cost efficiencies for low-load applications,
where in traditional server-based designs the developer
must still pay for idle servers. In our experiments, this
“breakeven point” is around 85-90% idle, but it is im-
portant to note that our experimental results reflect a
snapshot at a specific point in time, based on a specific
implementation. Below, we discuss some of the factors
that may play a role in this calculus, and how they might
change over time.

First, there is a general downward trend in AWS costs
over time as computing capabilities advance. However,
the relative costs between storage, server instances, and
Faa$ invocation may not be stable. These differences will
impact costs over time, but unfortunately, the developer
has little control over pricing.

Second, costs will be affected by different architecture
and implementation choices, including future innova-
tions. The reader may have noticed that in our exper-
iments, end-to-end latency for both the serverless and
server-based deployments are still outside the range of
what is acceptable for an interactive application. There
are various options to reduce latency: we can choose to
rerank fewer BM25 results, in which case we are trad-
ing off effectiveness for efficiency. As we have already
mentioned, Lambda could support greater parallelism

(thus lower latency) without increasing costs. For the
server-based design, we can also rerank in parallel, but
this would increase costs (e.g., requiring a larger server
with more GPUs). These considerations seem to be in
favor of the serverless design with its per-invocation cost
model and seamless scalability.

Neural inference forms the biggest component of
both latency and cost, and there is much research on
models that support faster and more efficient inference.
Examples include ALBERT [30], TinyBERT [31], and
QBERT [32], all of which can serve as drop-in replace-
ments for our current reranker. These improvements will
benefit both the serverless and server-based design, and
to a large extent we can ride the wave of future innova-
tions in NLP “for free”. The interesting question, however,
is whether some of these innovations will differentially
impact CPU-based vs. GPU-based inference, or perhaps
in the future FaaS offerings might support GPUs. We do
not have answers at present, but future explorations of
these issues would be interesting.

To conclude, in this work we built on an existing
serverless Lucene prototype to demonstrate a complete
retrieve—rerank search architecture with a transformer-
based model. Our experiments allow us to characterize
the tradeoffs between serverless and sever-based designs.
No doubt the costs of both approaches will change over
time as the economics of cloud computing evolve and as
technical innovations lead to efficiency improvements.
However, the operational advantages of the serverless
design will remain. Whether such an architecture will
gain widespread adoption remains to be seen, but at the
very least this design challenges how we think about the
architecture of search applications.

Acknowledgments

This research was supported in part by the Canada First
Research Excellence Fund and the Natural Sciences and
Engineering Research Council (NSERC) of Canada; com-
putational resources were provided by Compute Ontario
and Compute Canada.

References

[1] R.Nogueira, K. Cho, Passage re-ranking with BERT,
arXiv:1901.04085 (2019).

[2] J. Lin, R. Nogueira, A. Yates, Pretrained trans-
formers for text ranking: BERT and beyond,
arXiv:2010.06467 (2020).

[3] J.Pedersen, Query understanding at Bing, in: Indus-
try Track Keynote at the 33rd Annual International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval (SIGIR 2010), Geneva,
Switzerland, 2010.

[4] S.Liu, F. Xiao, W. Ou, L. Si, Cascade ranking for
operational e-commerce search, in: Proceedings of
the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (SIGKDD
2017), Halifax, Nova Scotia, Canada, 2017, pp. 1557-
1565.

[5] J.-T. Huang, A. Sharma, S. Sun, L. Xia, D. Zhang,
P. Pronin, J. Padmanabhan, G. Ottaviano, L. Yang,
Embedding-based retrieval in Facebook search, in:
Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and
Data Mining (SIGKDD 2020), 2020, pPp- 2553-2561.

[6] L. Zou, S. Zhang, H. Cai, D. Ma, S. Cheng, D. Shi,
Z. Zhu, W. Su, S. Wang, Z. Cheng, D. Yin, Pre-
trained language model based ranking in Baidu
search, arXiv:2105.11108 (2021).

[7] L. A.Barroso, J. Dean, U. Holzle, Web search for a
planet: The Google cluster architecture, IEEE Micro
23 (2003) 22-28.

[8] R. Baeza-Yates, C. Castillo, F. Junqueira, V. Pla-
chouras, F. Silvestri, Challenges on distributed web
retrieval, in: Proceedings of the IEEE 23rd Inter-
national Conference on Data Engineering (ICDE
2007), Istanbul, Turkey, 2007, pp. 6-20.

[9] J. Dean, Challenges in building large-scale informa-

tion retrieval systems, in: Keynote Presentation at

the Second ACM International Conference on Web

Search and Data Mining (WSDM 2009), Barcelona,

Spain, 2009.

E. Jonas, Q. Pu, S. Venkataraman, . Stoica, B. Recht,

Occupy the cloud: Distributed computing for the

99%, in: Proceedings of the 2017 Symposium on

Cloud Computing (SoCC 2017), Santa Clara, Cali-

fornia, 2017, pp. 445-451.

Y. Kim, J. Lin, Serverless data analytics with Flint,

in: Proceedings of the 2018 IEEE 11th International

Conference on Cloud Computing (CLOUD 2018),

San Francisco, California, 2018, pp. 451-455.

J. Hellerstein, J. Faleiro, J. Gonzalez, J. Schleier-

Smith, V. Sreekanti, A. Tumanov, C. Wu, Server-

less computing: One step forward, two steps back,

arXiv:1812.03651 (2018).

S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee,

C. Kozyrakis, M. Zaharia, K. Winstein, From laptop

to lambda: Outsourcing everyday jobs to thousands

of transient functional containers, in: Proceedings
of the 2019 USENIX Annual Technical Conference,

Renton, Washington, 2019, pp. 475-488.

V. Sreekanti, C. Wu, X. C. Lin, J. Schleier-Smith,

J. M. Faleiro, J. E. Gonzalez, J. M. Hellerstein, A. Tu-

manov, Cloudburst: Stateful functions-as-a-service,

arXiv:2001.04592 (2020).

M. Crane, J. Lin, An exploration of serverless archi-

tectures for information retrieval, in: Proceedings

of the 3rd ACM International Conference on the

[21]

(25]

Theory of Information Retrieval (ICTIR 2017), Am-
sterdam, The Netherlands, 2017, pp. 241-244.

J. Lin, A prototype of serverless Lucene,
arXiv:2002.01447 (2020).

L. Azzopardi, M. Crane, H. Fang, G. Ingersoll, J. Lin,
Y. Moshfeghi, H. Scells, P. Yang, G. Zuccon, The
Lucene for Information Access and Retrieval Re-
search (LIARR) Workshop at SIGIR 2017, in: Pro-
ceedings of the 40th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 2017), Tokyo, Japan,
2017, pp. 1429-1430.

L. Azzopardi, Y. Moshfeghi, M. Halvey, R. S.
Alkhawaldeh, K. Balog, E. Di Buccio, D. Ceccarelli,
J. M. Fernindez-Luna, C. Hull, J. Mannix, S. Pal-
chowdhury, Lucene4IR: Developing information
retrieval evaluation resources using Lucene, SIGIR
Forum 50 (2017) 58-75.

P. Yang, H. Fang, J. Lin, Anserini: Reproducible
ranking baselines using Lucene, Journal of Data
and Information Quality 10 (2018) Article 16.

T. Strohman, W. B. Croft, Efficient document re-
trieval in main memory, in: Proceedings of the
30th Annual International ACM SIGIR Conference
on Research and Development in Information Re-
trieval (SIGIR 2007), Amsterdam, The Netherlands,
2007, pp. 175-182.

S. Biittcher, C. L. A. Clarke, Index compression is
good, especially for random access, in: Proceedings
of the Sixteenth International Conference on Infor-
mation and Knowledge Management (CIKM 2007),
Lisbon, Portugal, 2007, pp. 761-770.

J. Lin, A. Trotman, The role of index compression
in score-at-a-time query evaluation, Information
Retrieval 20 (2017) 199-220.

M. Busch, K. Gade, B. Larson, P. Lok, S. Luckenbill,
J. Lin, Earlybird: real-time search at Twitter, in: Pro-
ceedings of the 28th International Conference on
Data Engineering (ICDE 2012), Washington, D.C.,
2012, pp. 1360-1369.

J. Xin, R. Nogueira, Y. Yu, J. Lin, Early exiting BERT
for efficient document ranking, in: Proceedings
of SustaiNLP: Workshop on Simple and Efficient
Natural Language Processing, 2020, pp. 83-88.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. De-
langue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Fun-
towicz, J. Davison, S. Shleifer, P. von Platen, C. Ma,
Y. Jernite, J. Plu, C. Xu, T. Le Scao, S. Gugger,
M. Drame, Q. Lhoest, A. Rush, Transformers: State-
of-the-art natural language processing, in: Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demon-
strations, 2020, pp. 38—45.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Brad-
bury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

(27]

(28]

(30]

L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, S. Chintala, PyTorch:
An imperative style, high-performance deep learn-
ing library, in: Advances in Neural Information
Processing Systems 32 (NeurIPS 2019), Vancouver,
Canada, 2019, pp. 8024-8035.

P. Bajaj, D. Campos, N. Craswell, L. Deng, J. Gao,
X. Liu, R. Majumder, A. McNamara, B. Mitra,
T. Nguyen, M. Rosenberg, X. Song, A. Stoica, S. Ti-
wary, T. Wang, MS MARCO: A human gener-
ated MAchine Reading COmprehension dataset,
arXiv:1611.09268 (2016).

P. Yang, H. Fang, J. Lin, Anserini: Enabling the use
of Lucene for information retrieval research, in:
Proceedings of the 40th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 2017), Tokyo, Japan,
2017, pp. 1253-1256.

O. Khattab, M. Zaharia, ColBERT: Efficient and
effective passage search via contextualized late in-
teraction over BERT, in: Proceedings of the 43rd
Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval
(SIGIR 2020, 2020, pp. 39-48.

Z.Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma,
R. Soricut, ALBERT: A lite BERT for self-supervised
learning of language representations, in: Inter-
national Conference on Learning Representations,
2020.

X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li,
F. Wang, Q. Liu, TinyBERT: Distilling BERT for
natural language understanding, in: Findings of the
Association for Computational Linguistics: EMNLP
2020, 2020, pp. 4163-4174.

S. Shen, Z. Dong, J. Ye, L. Ma, Z. Yao, A. Gholami,
M. W. Mahoney, K. Keutzer, Q-BERT: Hessian based
ultra low precision quantization of BERT, in: Pro-
ceedings of the AAAI Conference on Artificial In-
telligence, volume 34, 2020, pp. 8815-8821.

	1 Introduction
	2 Background and Related Work
	3 Serverless Architecture
	3.1 Serverless Search
	3.2 Serverless Reranking

	4 Experiments and Results
	5 Future Work and Conclusions

