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Abstract—When executing scientific workflows in a distributed
environment, anomalies of the workflow behavior are often
caused by a mixture of different issues, e.g., careless design
of the workflow logic, buggy workflow components, unexpected
performance bottlenecks or resource failure at the underlying
infrastructure. The provenance information only defines data
evolution at the workflow level, which does not have an explicit
connection with the system logs provided by the underlying
infrastructure. Analyzing provenance information and apposite
system metrics requires expertise and a considerable amount of
manual effort. Moreover, it is often time-consuming to aggregate
this information and correlate events occurring at different levels
in the infrastructure. In this paper, we propose an architecture
to automate the integration among the workflow provenance
information with the performance information collected from
infrastructure nodes running workflow tasks. Our architecture
enables workflow developers or domain scientists to effectively
browse workflow execution information together with the system
metrics, and analyze contextual information for possible anoma-
lies.

I. INTRODUCTION

In the last decades, researchers have been using sophis-
ticated research support environments for efficient data dis-
covery, experiment management, and workflow composition
and execution. These research support environments typically
include:

1) e-Infrastructures, e.g., EGI1 and EUDAT2, focus on the
management of the service lifecycle of computing, storage
and network resources, and provide services to research
communities or other user groups to provision dedicated
infrastructure and to manage persistent services and their
underlying storage, data processing and networking re-
quirements.

2) Research infrastructures (RIs) are facilities, resources,
and services constructed for specific scientific commu-
nities to conduct research. They can include scientific
equipment, knowledge-based resources such as collec-
tions, archives or scientific data. Some RIs examples in-
clude the Integrated Carbon Observation System (ICOS)3

1http://www.egi.eu/
2http://www.eudat.eu/
3https://www.icos-ri.eu/

for carbon monitoring in atmosphere, ecosystems and
marine environments, the European Plate Observing Sys-
tem (EPOS)4 for solid earth science and Euro-Argo5 for
collecting environmental observations from large-scale
deployments of robotic floats in the world’s oceans.

3) Virtual Research Environments (VREs) provide user-
centric support for discovering and selecting data and
software services from different sources, and composing
and executing application workflows [1], [2], also referred
to as Virtual Laboratories or Science Gateways [3].

Although roles and functions of these different kinds of
environments may substantially overlap, we can distinguish
that e-infrastructures focus on generic Information and com-
munications technology (ICT) resources (e.g., computing or
networking), RIs manage data and services focused on specific
scientific domains, and VREs support the lifecycle of specific
research activities. Although the boundaries between these en-
vironments are not always entirely clear (often sharing services
for infrastructure and data management [4]), collectively they
represent an important trend in many international research
and development projects.

Research support environments combine multiple resources
including federated clouds and repositories that allow the
sharing of service-oriented architecture (SOA) based scientific
workflows [5]. These environments also offer the means to
store provenance data concerning the execution of scientific
workflows.

When performing an experiment using a Workflow Manage-
ment System (WFMS) in a VRE, different types of contextual
information can be collected:

• Provenance information provided by the workflow sys-
tem.

• Application logs monitored by the platform (e.g., by
Apache Tomcat or Java virtual machine).

• System logs collected by the infrastructure monitoring
systems.

4https://www.epos-ip.org/
5http://www.euro-argo.eu/
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Provenance (PROV)6 is a typical model often used for work-
flow provenance. It models causality of workflow events using
concepts of agents, entities, and activities involved in data
evolution [6]. It has been used in workflow systems like
Apache Taverna to export information on workflow executions.
Provenance can be stored using XML or RDF7 standards, with
many tools available for parsing and querying the data.

At the same time, monitoring systems provide metrics about
the usage of e-Infrastructures resources, e.g., CPU usage,
memory consumption, and network traffic. Those metrics can
be useful for workflow developers to investigate application
behavior at the low-level resources, e.g., locating workflow
failures caused by the underlying infrastructure resource.
However, the provenance and system metrics differ in scope
of information and are provided by different sources, which
makes the integrated analysis difficult and time-consuming.

In this paper, we propose a context-aware information
integration and exploration framework for users to effectively
investigate possible workflow execution bottlenecks by com-
bining provenance with the system logs. We discuss an archi-
tecture that will allow scientists or service developers to an-
alyze the execution of service-based scientific workflows and
visualize possible bottlenecks related with the infrastructure by
getting a detailed view of the resource usage of each workflow
task. By taking advantage of this information, infrastructure
administrators, service developers or scaling controllers may
configure the provisioned visualized infrastructure.

The rest of the paper is organized as follows: In section
II we discuss the motivation for our solution. Section III
presents an overview of related works. Our proposed system
architecture is given in Section IV while Sections V and VI
are devoted to the assessment of our proposed solution. The
paper concludes with Section VII.

II. MOTIVATION

By abstracting the application logic of steps or processes
in an experiment, the WFMS allows scientists to efficiently
construct, execute and validate complex application at a high
level[7].

The adoption of cloud technologies together with the in-
creasing popularity of containerization and DevOps practices
have made the development, deployment, and monitoring of
web services faster and more efficient.

Scientific workflows usually interact with multiple web ser-
vices which are often hosted in different cloud infrastructures
and may be composed of numerous tasks[8]. When execut-
ing such complex workflows, it is often hard to detect the
underlying cause of execution bottlenecks which are related
to the performance of the infrastructure. If we break down
the infrastructure into multiple abstraction levels, we can see
that workflows are created and executed on the highest level
while resource usage is measured on the lowest levels[9]. As
a result, the measured resource metrics are often unreachable

6https://www.w3.org/TR/prov-overview/
7https://www.w3.org/RDF/

and obscured for the user. Although the use of cloud technolo-
gies provides scientists with a dedicated infrastructure which
combines data and computation [10] along with sophisticated
monitoring tools, it is very difficult for a scientist or service de-
veloper to discover which Virtual Machine (VM) or container
is responsible for execution bottlenecks or failed workflow
exertions.

To be able to bridge the gap between the workflow abstrac-
tion level and the dedicated infrastructure we set the following
objectives :

1) Analyse the execution time of service-based scientific
workflows

2) Detect bottlenecks that cause workflow performance
degradation

3) Detect the cause of bottlenecks
4) Present the analysis to a user
5) Make resource scaling suggestions to be used by scaling

controllers

III. RELATED WORK

In the past, there have been many efforts to detect the
sources of performance loss or detect anomalies in the in-
frastructure while executing scientific workflows.

In [11] the authors propose an approach that aims to help
workflow end-users and middleware developers to understand
the sources of performance losses when executing scientific
workflows in Grid environments. To achieve that they propose
a model for estimating the ideal lowest execution time of
a workflow and then calculate the total overhead as the
difference between the workflow’s measured Grid execution
time and its ideal time. This work is focused on Grid envi-
ronments and depends on the presence of a specific scheduler
named GRAM [12] to collect the state of each workflow task
submitted to a grid site. Moreover, in Grid environments, the
performance of the node that is assigned to execute a workflow
task is more or less stable. Once a workflow task is scheduled
on a node it has exclusive use of its resources.

Also focusing on Grid environments, the authors of [13]
presented a simple for autonomous detection and handling of
operational incidents in workflow activities. In this work, the
authors attempt to classify the state of each task in a workflow
and apply the appropriate rule in case of an error. In this
work issues like resource, scaling are not addressed since
Grid environments assign tasks in a static resource. In [14]
the authors have gathered eight months of workflow activity
from the e-BioInfra platform and present an analysis on task
failures in their e-Infrastructure. Although this work provides
some useful insight into the behavior of workflow tasks, it is
not connecting the higher level workflow deception tasks with
the underlying usage of resources.

The work presented in [15] proposes an online mechanism
for detecting anomalies while executing scientific workflows
on networked clouds. The authors use an integrated framework
to collect online monitoring time-series data from workflow
tasks and the infrastructure. This approach is tightly coupled



with the Pegasus WFMS which depends on specific worker
nodes to execute workflows tasks.

Existing solutions are outdated and depend on specific
task schedulers or WFMS. Although traditionally scientific
workflows preserve provenance information, they are never
used together with information collected from the infrastruc-
ture nodes to analyze contextual information for possible
anomalies.

IV. ARCHITECTURE

Our architecture, named Cross-context Workflow Execution
Analyzer (CWEA) enables workflow developers or domain
scientists to effectively browse workflow execution informa-
tion together with the system metrics, and analyze contextual
information for possible anomalies. To achieve that it relies
on the following components:

• Workflow Context Data Retriever (WCDR): this compo-
nent queries the provenance data generated by the WFMS
to extract the name, start-time, and end-time of each web
service call described in the workflow. The WCDR also
parses the workflow itself to extract the endpoints of the
web services used and the type of call made (e.g., GET,
POST, etc.).

• Resource Context Data Retriever (RCDR) this component
uses the service endpoints obtained by the WCDR to
query the corresponding hosts and retrieve available per-
formance data within the web service’s call time-ranges.
The performance data typically include CPU utilization,
memory and network usage.

• Workflow Execution Analyzer (WFEA): this component
abstracts a set of diagnostic algorithms that are used to
analyze various performance metrics to find correlations
between workflow execution and resource usage. Cur-
rently, we have implemented an algorithm that identifies
the most time-consuming web services within the context
of a workflow execution. The findings of the WFEA are
presented in the interactive GUI for visualization or can
be consumed in the form of JSON by other software
components such as infrastructure scale controllers.

• Interactive GUI: this is a web-based interface that allows
the user to combine and visualize the workflow execution
steps with the performance metrics of the underlying
resources.

Figure 1 shows the overall architecture and its individual
components. Each of the components is implemented as a
RESTful microservice with its own functionality. For our
prototype the WCDR is able to parse t2flow workflows, a
specification used by the Taverna WFMS. Also, our microser-
vice architecture design allows us to also support other work-
flow specifications like SCUFL2 by implementing additional
parses.

As mentioned above the WCDR is parsing the provenance
data to obtain the execution trace of a workflow. Therefore,
complex workflow statures such as loops or conditions are
already recorded by the provenance data. As a next step the

Fig. 1. The CWEA is made by five main components: 1) the WCDR for
querying provenance data and parsing workflows, 2) the RCDR for querying
performance data, 3) the WFEA for implementing diagnosis algorithms and
4) the Interactive GUI for presenting the results.

WCDR parses the workflow to simply extract web service
endpoints and the type of call made.

To be able to query more data sources for performance
data, the RCDR may include additional implementations8. It
is therefore necessary that each VM is hosting a performance
metrics collector and a metrics database.

The GUI component is the only component that is accessible
from the outside. Besides acting as a graphical interface for
the user, the back-end of the GUI component is a REST API
for calls made by other applications. This design assures both
manual and programmatic interaction.

For our prototype, the provenance data and workflow are
manually uploaded by the user to the GUI. However, with
our design we aim to be able to connect to provenance data
workflow repositories.

To be able to analyze and visualize potential bottlenecks
in the execution of a workflow a user should perform the
following steps:

1) Once the WFMS, in our case Taverna, has executed a
workflow the user exports the workflow’s provenance as
a file.

2) Once the execution is over the user uploads the prove-
nance and workflow files to the GUI

3) The GUI sends the files to the WCDR where it parses the
file and returns for each service in the workflow: 1) its
name, 2) its endpoint, 3) its invocation start-time and
4) its invocation end-time. This information is returned in
the form of a list and visualized by the GUI. This list can
be filtered to select the hosts the user wishes to analyze
further.

4) The user specifies the hosts to be analyzed and sends
a request to the RCDR via the GUI to gather the rele-
vant performance data. The RCDR attempts to query to
databases on the endpoints to retrieve the performance
data bound by the timestamps of each web service
invocation.

5) Once the performance data are available to WFEA, it
performs its analysis and returns the results to the GUI.

8At the moment we support the Prometheus database



The sequence diagram in Figure 2 shows the process
described above.

Fig. 2. A sequence diagram showing the interactions between the different
components. We assume the use case in which an actor is using the GUI to
gather and analyze performance data, giving workflow descriptions as input.

V. EXPERIMENTS

For our experiments, we hosted several services on three
distributed VMs. We used Taverna to create and execute a
workflow comprising these services each implementing a set
of methods the exhaust the system resources. By doing this,
we simulated heavy CPU/MEM/NET use that can be traced
back to the performance metrics. To conduct our experiment
we used the following components:

• The Taverna WFMS where we composed and executed
a workflow. We also used Taverna to extract the workflow
provenance data.

• Three VMs (labeled A, B and C) each containing:
– A web service that offers the following methods: 1) a

lightweight call which requires very little resources
form the VM, 2) a CPU intensive and 3) a memory
intensive 9. Using these methods, we can simulate
heavy CPU and memory usage that can be traced back
to the performance metrics.

– A performance metrics collector. For our experi-
mental setup, we used cAdvisor [16], a daemon that
collects, aggregates, processes, and exports a range of
system metrics about running containers. By default,
these metrics include CPU, Memory, and Network.

– A metrics database. In our setup, we used
Prometheus[17], a time-series database which is used
to gather and store performance metrics from cAdvisor.
We use this database to query the metrics concerning
the workflow execution.

9Both methods use the command stress-ng for 15 sec.

• The CWEA and its components to parse the workflow,
gather the relevant metrics from different hosts and to
perform the visualization.

Since we set up our experiments using VMs, we opted for
Docker to run all of these components as separate containers.
Deployment of Docker containers is often used in DevOps
with the combination of virtualized resources as they offer
exclusive access to the resources (e.g., VMs. Moreover, a wide
range of tools for monitoring is available as Docker containers.
Therefore, it requires minimum effort to set up a realistic
performance monitoring framework on each VM. Singularity
[18] is another option for containerization of applications
which focuses more on high-performance computing (HPC)
by providing access to devices like GPUs or MPI hardware.
Nevertheless, the wide adoption of Docker together with a
wide range of tools and the fact that the scope of this work is
beyond HPC made us choose Docker.

Fig. 3. This diagram depicts our experimental setup. We use three VMs
(named A, B and C). On each VM we hosted the a simple web service,
cAdvisor and Prometheus. After the workflow execution the user provides to
the CWEA (Figure 1 shows its architecture) the provenance and workflow
information to query Prometheus on each VM.

Figure 3 shows the configuration of each VM. We used
Taverna to create and execute a test workflow shown in
Figure 4. We examined published Taverna workflows10 to
create a workflow that has a realistic structure. As a result,
we constructed our test workflow comprising a total of six
tasks ending in one output port. The workflow contains both
sequential and parallel executions. The tasks that are executed
are of the following types: 1) a lightweight, 2) a CPU intensive
and 3) a memory intensive.

VI. RESULTS

We have executed the workflow described in the previous
section and analyzed with CWEA. Figure 5 show the results

10Taken from www.myexperiment.org



Fig. 4. A simple workflow made of six tasks spread over three VMs.
Tasks lightweigt 1, CPU intensive 2 and mem intensive 2 where hosted
on VM A. Tasks CPU intensive 1 and mem intensive 1 on VM B. Task
CPU intensive 3 was hosted on VM C.

as visualized by the GUI. In Figure 5(a) we see the workflow
execution analysis. This table provides to the user a view of
the workflow execution with a table that shows the name of
the task, its endpoint, the HTTP method and the start and end
times of each invocation. Next, in 5(b) we see the execution
timeline of the workflow and the time required to execute each
task. In this timeline, each task is presented by a different color
bar which is also highlighted in the resource usage graphs
below. The position and length of each bar correspond to
the start time and duration of each task. Table I shows the
execution times in more detail.

Task Name Exec. Duration,
sec

Perc. of Total Exec.,
%

mem intensive 1 26.04 22.34
mem intensive 2 24.57 21.09
CPU intensive 1 22.83 19.59
CPU intensive 3 21.80 18.71
CPU intensive 2 21.11 18.11
lightweight 1 0.19 0.16

TABLE I
EXECUTION TIMES AND PARENTAGE OF TOTAL EXECUTION FOR EACH

TASK IN THE WORKFLOW.

Figure 6 shows the metrics collected from each VM. All
sub-figures highlight each service execution (when each ser-
vice call started and ended) with a separate color which corre-
sponds to the colors shown in Figure 5(b). More specifically,
Figure 6(a) presents the CPU used by each task highlighted
with the color that corresponds to each task based on the
timeline shown in Figure 5(b). In this Figure, the x-axis is
the percentage of the CPU used and the y-axis the time of

the recorded metric. Similarly in Figure 6(b) we present the
memory used by each task, also color-highlighted. In this
graph, the x-axis shows the memory used in MB and the y-
axis the time. Figures 6(c) and 6(d) show the network usage
where the x-axis represent incoming or outgoing data in KB/s
and the y-axis time.

Considering the performance of task CPU intensive 1 we
see in Figure 6(a) that it started at approximately 21:45:5 and
ended at 21:45:28 and used more than 80% of CPU. However,
in Figure 6(b) we see that the same task did not require any
memory from its hosting VM, but it did use some network
resources as it can be seen from Figure 6(d).

From the results presented here, we can see that the most
time-consuming task of the workflow presented in Section V
is the mem intensive. Looking at the results in Figure 6, we
see that this task is using CPU, memory and network resources
which may attribute for the increased execution time.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented and evaluated our proposed
architecture that allows scientists or service developers to
analyze the execution of service-based scientific workflows,
visualize possible bottlenecks related with the infrastructure
by getting a detailed view of the resource usage of each work-
flow task. By taking advantage of our solution infrastructure
administrators, service developers or scaling controllers my
configure the provisioned visualized infrastructure.

As described in Sections IV our proposed architecture is
relying on the WFMS to collect provenance data. This means
that the workflow execution needs to complete before CWEA
can use the provenance data since. However, being able to
collect provenance data as each task is completed will greatly
benefit our architecture as results would be able to be presented
as on the fly. Such an approach requires further investigation
on how to use the appropriate APIs from a multiple WFMS
or abstract this process by relying on a provenance repository
that will be able to collect provenance data as workflow tasks
are completed.

Another issue that will require our attention in the future is
the persistence of the performance data on each VM. It can be
the case that as soon as the workflow execution is over or the
VMs are no longer used they may be deleted causing the loss
of all performance data. In future cases with the combination
of on the fly data gathering as desired above performance data
shall be copied to a separate performance database. Having
performance data from many workflow executions will also
enable us to make use of statistical and AI algorithms to detect
and predict possible workflow execution failures due to errors
in the resource infrastructure.
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(a)

(b)

Fig. 5. Workflow execution analysis and execution timeline as presented to the user by the GUI. The execution timeline provides to the user an overview of
the time taken to execute each task.

(a) CPU resources: This graph shows the CPU resources utilized by
each service during the workflow execution.

(b) Memory resources: This graph shows the memory resources utilized
by each service during the workflow execution.

(c) Incoming network traffic: This graph shows the incoming data for
each task, execution.

(d) Outgoing network traffic: This graph shows the outgoing data for
each task, execution.

Fig. 6. Combined results after parsing the workflow, querying the provenance file and querying the relevant resource usage. All sub-figures highlight each
service execution with a separate color which corresponds to the colors shown in Figure 5(b).
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