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Abstract 
The model of gear pair vibration in the form of bi-periodically correlated random processes 

(BPCRP) that describes its stochastic recurrence with two periods is proposed. Particular 

cases of this model are considered. It is shown that BPCRP model allows one to analyses 

unequally the mean and the covariance function of the additive and multiplicative 

components. There are considered technologies for the estimation of the Fourier coefficients 

of the mean and the covariance functions. 
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1. Introduction 

The vibrations signals of the rotating elements can be characterized by their timely deviations 

whose features are cyclic repetition and stochasticity. When faults arise in machinery, some non-

linear effects occur, and the interaction of different harmonics can be detected in vibration signal. 

This interaction can be detected by the analysis of the parameters of the periodical (about periodical) 

variation of the of the first and the second order moment functions of the random processes [1–4] 

(they also are called periodically or about periodically correlated random processes [5–9]). Therefore, 

it is preferable to select their parameters as the indicators for fault detection [10–17]. Gear pair excite 

vibration signal because of two main reasons: the periodic deviation of teeth stiffness because of the 

meshing phase and manufacturing inaccuracy. The manufacturing inaccuracy includes constant and 

variable step errors of the teeth. The periodic deviation of the mesh stiffness results in the appearance 

of the periodic components of the mesh frequency  
1 2m

f rf nf  and its multiples. Here 
1
f  and 

2
f  - 

the rotation frequencies of the gear wheels and r  and n  are some natural numbers. The error of the 

meshing step and the misalignment of axes and shafts are developed by the appearence of harmonics 

with base frequencies equal to 
1

kf  and 
2

lf  and combination frequencies 
1m

pf kf , 
2m

pf lf , where 

p , k , l  are an integer numbers. In addition, the direct spectra of vibration can include the 

components that belong to some frequency band around the resonance frequency of the gear pair in 

the case of a vibro-impact regime occurring. 

2. Modeling of gear pair vibration 

The methods offered in [12, 18] for analysis of vibration of gear pair grounded on the transmission 

error model considered in [19]: 

                 
 1 2e m

x x W x x x , (1) 
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where W  is a some load and    t  is an angular position of the gear. The terms  m
x  and 

 e
x  describe the contact properties of the gears, while terms  1

x  and  2
x  are caused by 

manufacturing error. It is supposed that each term  i
x , 1,2i  is periodic with a rotation period 

1/
i i
P f  of the corresponding gear. There are three periodic terms in (1), namely 

     
 e m

x W x ,     
1e

x x  and     
2e

x x , which are periodic functions with period 

1/
m m
P f , 

1
P  and 

2
P . The model of the cyclostationarity offered in [12, 18] was obtained by 

introducing the fluctuations of the angular position of the gears as a some random variable. The mean 

function of this random process includes the harmonic with frequencies 
m
f , 

1
f  and 

2
f . The 

covariance function consists of three different kinds of harmonics, in that, the harmonics with 

frequencies that are a linear combination of the rotation frequencies 
1 2

kf lf , the harmonics of the 

mesh frequency 
m

nf  and the harmonics with frequencies that are a linear combination of the mesh 

frequency and the rotation frequencies, i.e. 
m i

nf kf . The first and the second order non-

stationarities have been substantiated by the processing of vibration signals measured on the gear 

systems [12, 18], and the quantities that describe the structure of the cyclostationarity estimated by 

means of synchronous averaging were proposed to be used for fault detection. 

In [20–22], after applying the synchronous averaging with the period 
1
P  or 

2
P , the vibration signal 

is expressed as 

       


    
 

1

1 cos 2
M

l l l l l
l

g t A a t f t b t , (2) 

here M  is the number of gear mesh harmonics, 
l
A  and 

l
 are the amplitude and the phase of the 

thl  

harmonic respectively. The modulation effects are described by the functions  1
l
a t  and  l

b t , 

which are periodic with the considered rotation period. These functions are closely approximate to the 

signal’s deterministic component corresponding to one revolution of the selected gear. 

In [19, 23] the gear vibration signal is modeled as 

                    
1 2 1,2 c

x x x x x n , (3) 

where  1
x  and  2

x  describe the deterministic periodic oscillations generated by the rotation of 

the output and input wheels respectively,  1,2
x  is a component with period  

12 1 1 2 2
P r P r P , 

 c
x  is the second order cyclostationary process with period 

12
P  and  n  is a fluctuation 

component. The deterministic part of the signal (3) can be extracted by means of synchronous 

averaging with common period 
12
P  of the shafts as far as it is possible [19]. Paper is dedicated to the 

development of the cyclostationary models of gear vibrations considered in the literature, their 
concretization, and the elaboration on this basis of other estimation techniques for the analysis of the 
modulation effects occurring in the vibration signals as the faults originate. 

3. BPCRP representation 

The efficiency of vibration signal processing for machinery condition monitoring can be explained 

mostly by their possibility to develop modulations caused by the appearance of faults. The modulation 

effects in the vibration model as a periodically correlated random processes (PCRP), which describe 

the stochastic recurrence with one period can be explained by the jointly stationary random processes 

 
k
t  in their harmonic representation [8, 9, 24]: 

   


 


 1

2
ik t
P

k
k Z

t t e ,  



where Z  is a set of integer numbers and 
1
P  is a period of the rotations for one of the wheels. 

Following this equation, we concludes that the modulation of the signals of two stochastic rhythms 

provided by the rotation of two wheels can be explained as 

   


 


 2 1

2
ik t

P P

k
k Z

t e , (4) 

where the harmonic of frequency 
1

2 /P  and its multiples are modulated for this once by PCRP with 

period 
2
P :    



 


2 2

2

( )
il t

P P

k kl
l Z

t t e . 

Then, for the random process (4), we have: 

    




 
,

kli t

kl
k l Z

t t e , (5) 

where  
kl
t  are jointly stationary random processes and       

1 2
2 / 2 /

kl
k lP P . The random 

processes presented by series (5) are bi-periodically correlated random processes (BPCRP) [9, 25, 

26]. As we can see from (5), a BPCRP is a sum of the amplitude and phase modulated harmonics. 

Here frequencies 
kl

 are the linear combination of the two main frequencies   
110

2 /k P  and 

  
201

2 /l P . The modulating processes have the mathematical expectations  
kl kl

m E t  

which are the Fourier coefficients of the mean: 

   




  
,

kli t

kl
k l Z

m t E t m e . (6) 

For the covariance function          ,R t E t t ,        t t m t , we have 

     




  
,

, ( ) kli t

kl
k l Z

R t E t R e , (7) 

where 

 
  




 


  , , ,
,

pqi

kl p k q l p q
p q Z

R r e , (8) 

and          
pqkl pq kl
r E t t ,      

pq pq pq
t t m  are the cross-covariance functions of the 

PCRP processes, and the “¯” signifies complex conjugation. Thus, the cross-covariance functions of 

the modulating processes defines the Fourier coefficients of the covariance function (7) in which the 

numbers are shifted by k  and l . It follows from (8) those cross-correlations of modulating processes 

 
kl
t  with different numbers k  and l  lead to bi-periodical non-stationarity of the second order. As 

the result of these correlations, it is appear the correlation of the spectral components, which can be 

characterized by the appropriate Fourier transformation of (8): 

      








 
1

2
i

kl kl
f R e d . (9) 

It follows from (8) that 

    
 



  , , ,
,

kl p k q l p q pq
p q Z

f f ,  

where 

      








 
1

2
i

pqkl pqkl
f r e d ,  

are the cross-spectral densities of the modulating processes  
pq
t . The functions (8) and (9) are 

respectively the covariance and spectral components [9, 25, 26]. 



The zero
th
 covariance component  00

R  is determined by auto-covariance functions 

         
pq pq pq
r E t t :     

 
 



 00
,

pqi

pq
p q Z

R r e . 

This covariance function of the stationary approximation for the BPCRP is averaged BPCRP 

covariance function. 

The zero
th
 spectral component 

    


 00
,

pq pq
p q Z

f f , (10) 

is a power spectral density of the stationary approximation for the BPCRP. It defines the spectral 

decomposition of the averaged in time instantaneous power  0,R t  for the oscillations. 

We should note that the covariance and the spectral components are the total characteristics of the 

amplitude and the phase modulation of the BPCRP carrier harmonics. The zero
th
 spectral component, 

as can be seen from (10), is a sum of the power spectral densities of the modulating processes  
pq
t  

shifted by 
pq

. The components  kl
f  explained in (9) are a sum of the shifted cross-spectral 

densities for modulating processes. Their numbers differs by k  and l . Proceeding from the above-

mentioned, it is possible to conclude that the zero
th
 spectral function  00

f  describes the spectral 

composition of the oscillations and the non-zero
th
 functions  kl

f . It explains the correlations of the 

harmonics of this composition for the components with frequencies shifted by 

      
1 2

2 / 2 /
kl

k lP P . When modulating processes of the corresponding numbers are 

mutually correlated, than these correlations are not equal to zero. 

4. Method for statistical analysis 

The time synchronous averaging (TSA) method was one of the early techniques used for the 

analysis of hidden periodicities [27, 28]. If the hidden periodicity is presented and modeled as a 

PCRP, then such technology was used for evaluation of its mean and covariance function [9, 25, 26]. 

It is so-called the coherent method [29, 30]. Synchronous averaging was also used for analysis of the 

vibration signals, which are characterized by the recurrence of two or more periods [3, 7, 9, 13, 18, 

22]. We consider below its application for the estimation of BPCRP characteristics. 

The coherent statistics of the BPCRP mean function have the form 

 




 
1

0

1
ˆ

lN

l l
nl

m t nP
N

, (11) 

where 
l
P  is one of the non-stationarity periods and 

l
N  is the number of averaged periods. The 

mathematical expression of (11) for 1l  is equal to 

   




   

 
      

 
  
1

2

1

21

1
1 1 1 0

01 2

1
ˆ kl

N ik t
P ik t

k kl N
n k Z k Z l Z

P
Em t m t nP m e m e s l

N P
,  

where 

 


 
     

          
     

1 1
2

1

1
1 1 1

1 1

2 2 2

sin / sin
i N lP

P

N

P P P
s l e N N

P P P
.  

If 
1 2
P nP  and n  is a natural number, then   

1 1 2
/ 1

N
s l P P  and    

1
ˆEm t m t , i.e. formula 

(11) is the unbiased estimator of the BPCRP mean function. In other cases, formula (11) is a biased 

estimator of the mean additive component with period
1
P . The bias value depends on the ratio 

1 2
/P P

and tends to zero as 
1

N . 

Using (11), we can form the formulae 



 




 
1

1

2

0 1

01

1
ˆ ˆ

P ik t
P

k
m m t e dt

P
,  




 
2

2

2

0 2

02

1
ˆ ˆ

P ik t
P

l
m m t e dt

P
,  

which, in the general case, are the asymptotically unbiased estimators of the Fourier coefficients of 

the mean additive components. 

It is easily see that unbiased estimators of the BPCRP mean function and its Fourier coefficients 

can be obtained using synchronous averaging with common period P : 

   




 
1

0

1
ˆ

N

n

m t t nP
N

,    
 

0

1
ˆ ˆ kl

P
i t

kl
m m t e dt

P
. (12) 

Here N  is the number of realization periods P  which are averaged. 

Taking into account (11), we can form the coherent estimators of the covariance function and its 

Fourier coefficients: 

             


           
   

0

1ˆ ˆ ˆ,
N

n

R t t nP m t nP t nP m t nP
N

, (13) 

    
 

 
0

1ˆ ˆ , kl

P
i t

kl
R R t e dt

P
. (14) 

Using the synchronous averaging of the BPCRP samples over one of the periods 
2
P  in the form 

             


           
   

2

2 2 2 2
02

1ˆ ˆ ˆ,
N

l
n

R t t nP m t nP t nP m t nP
N

,  

we can detect only the additive covariance components and determine their Fourier coefficients: 

   


 


 
1

1

2

0 1

01

1ˆ ˆ ,

P ik t
P

k
R R t e dt

P
,    



 


 
2

2

2

0 2

02

1ˆ ˆ ,

P il t
P

l
R R t e dt

P
.  

Note that we must use in (13) the unbiased or asymptotically unbiased estimator of the mean 

function. 

Component estimators are represented by trigonometric polynomials: 

  



 
1

1,

ˆ ˆ kl

L
i t

kl
k l L

m t m e , (15) 

    




 
2

2,

ˆ ˆ, kl

L
i t

kl
k l L

R t R e , (16) 

where 
r
L , 1,2r  are the numbers of the highest harmonics. The coefficients of the polynomials are 

determined by the formulae 

 




 
1

ˆ kl

T
t

kl
T

m t e dt
T

, (17) 

             




       
   

1ˆ ˆ ˆ kl

T
t

kl
T

R t m t t m t e dt
T

, (18) 

where T  is the length of signal realization. The number of harmonics to be taken into account in (15) 

and (16) can be obtained on the basis of the results of experimental data processing by means of the 

coherent method or stationary spectral estimation. 

In the general case, employing formulae (17) and (18) leads to an increase of the additional errors 

caused by leakage effects. These effects are absent as T NP . Formulae (17) and (18) can then be re-

written in the form of (11) and (13). Indeed, 

 
 

  


 

   

 

 
   

 
  

1
1 1

0 00

1 1 1
ˆ kl kl

k P PN N
i t i t

kl
k nkP

m t e dt e t nP dt
NP P N

.  

Similarly, 



             


 



 
               

 


1

00

1 1ˆ ˆ ˆkl

P N
i t

kl
n

R e t nP m t nP t nP m t nP dt
P N

.  

The discrete estimators for the Fourier coefficients of the mean and covariance functions can be 

formed by substituting the integral transformations (17) and (18) by integral sums: 

 


 



 
1

0

1
ˆ kl

K
i nh

kl
n

m t e
K

,  

            


 



      
   

1

0

1ˆ ˆ ˆ kl

K
i nh

kl
n

R rh nh m nh n r h m n r h e
K

.  

Here   
1 1

1P M h ,   
2 2

1P M h  and T Kh , where       
1 2
1 1K rN M nN M . 

To avoid the aliasing effects of the first and the second kinds [32], it is recommended to choose the 

sampling interval h  in accordance with the inequalities 




1
2 1

i
P

h
L

, 


2
4 1

i
P

h
L

, 1,2i   

If these inequalities are satisfied, the expressions (15) and (16) can be considered as the 

interpolation formulae for the estimators. We should note that in the case of T NP the component 

estimators coincide with the estimators determined by the least squares (LS) method [9, 31, 32]. 

However, using the LS method allows one to avoid the leakage errors in general case. These errors 

can be significant in cases when the values of the rotation frequency and/or their combinations are 

close. To construct the LS estimators for the mean and the covariance function we rewrite the series 

(6) and (7) in the form 

    


  
1

0
1

cos sin
M

c s

l l l l
l

m t m m t m t ,

            


   
 

2

0
1

, cos sin
M

c s

l l l l
l

R t R R t R t  

 

,  

where    
1 2

1

2
c s

l l l l l
m m m im ,              

 1 2

1

2
c s

l l l l l
R R R iR ,  


0 00

m m ,     
0 00
R R , 







2

1

2
l j

j j

l
P

, 
1 1
1,l L , 

2 2
1,l L .  

and   
1 1 1
2 1N L L ,   

2 2 2
2 1N L L . The LS estimators for the Fourier coefficients of mean and 

covariance function are defined as the quantities which provide the minimum values of the quadratic 

functions 

       


  
     

    


1

1 1

2

1 0 1 1 0
10

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , ..., , , ..., cos sin ,
T M

c c s s c s

M M l l l l
l

F m m m m m t m m t m t dt , (19) 

               
 2 22 0 1 1
ˆ ˆ ˆ ˆ ˆ, , ..., , , ...,c c s s

M M
F R R R R R  

              


  
       

    


2

2

0
10

ˆ ˆ ˆ, cos sin
T M

c s

l l l l
l

t R R t R t dt , 
(20) 

where                      
   

ˆ ˆ,t t m t t m t . They are the solutions of the system equations 

which represent the necessary conditions for the existence of the minimum of functionals (19) and (20): 






1

0

0
ˆ

F

m
, 





1 0
ˆ c
r

F

m
, 





1 0
ˆ s
r

F

m
, 

1
1,r M , (21) 








2

0

0
ˆ

F

B






2 0
ˆ c
r

F

B






2 0
ˆ s
r

F

B
, 

2
1,r M . (22) 

The lag-dependent vanishing of the covariance function is the enough sufficient condition of the 

mean square consistency of the Fourier coefficients for the mean function. It also can be indicator of 

the asymptotic unbiasness of the estimators of covariance component. This condition is also sufficient 

for the consistency of mean square of the covariance component estimators for Gaussian BPCRP. For 

similar purposes, the series procedures were introduced, the latest of them are self-adaptive noise 

cancellation [33] and spectral method [34]. The best result are obtained using time synchronous 

averaging, however it requires a separate operations including individual resampling in each 

considered case. 

5. Conclusions 

The advantage of the LS estimators is the absence of the leakage effect. The possible bias of the 

LS estimators can be caused only by the previous inexact estimation of the mean function. When the 

realization length increases, values of the component estimators and the variances for the LS are 

quickly drawing together. So, the LS estimation can be rated as the preferable technique for statistical 

processing of the PCRP experimental time series. 
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