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Abstract  
Biomarker reflects an underlying biological state or identity. Extensive kidney studies have 
resulted in the discovery of many kidney cell and disease biomarkers. Our manual literature 
annotations have identified 150 cell-specific markers for 73 kidney cell types and 38 diabetic 
kidney disease (DKD)-related biomarkers. To systematically study these biomarkers, we first 
surveyed and ontologically defined the term biomarker and different types of biomarkers. The 
Kidney Tissue Atlas Ontology (KTAO) has been further used as a platform to model and 
represent these kidney biomarkers by including the biomarker gene name, cell type, disease, 
and axioms linking the biomarkers and other terms. Gene Ontology (GO) analysis revealed 9 
shared enriched GO terms in both biomarker sets. A DL-query was performed to demonstrate 
the advantages of ontology-based modeling and analysis of kidney biomarkers. 
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1. Introduction 

Molecular biomarkers, which are molecules indicating biological identities or states, are crucial in 
further understanding of kidney diseases and support the precision kidney medicine. Extensive research 
has found various kidney biomarkers associated with various kidney states, either healthy or diseased. 
With various kidney biomarkers identified, it is critical to systematically annotate, standardize, 
represent, integrate, and analyze these biomarkers and their associated features and conditions.  

Ontology is an ideal tool for such study. Basically, an ontology is a human- and computer-
interpretable representation of the entity types, entity properties, and their interrelationships that exist 
in a particular domain [2]. Ontologies have emerged to become an important platform for systematical 
data and knowledge representation, integration, sharing, and computer-assisted reasoning and analysis. 

The Kidney Tissue Atlas Ontology (KTAO) is a community-based open-source biomedical ontology 
that systematically represents entities associated with kidney disease, kidney structures, cells, genes etc. 
[1]. KTAO is primarily developed by the NIH-supported Kidney Precision Medicine Project (KPMP, 
http://kpmp.org), an NIH-funded multi-year project aimed to understand and find ways to treat the 
chronic kidney disease (CKD) and acute kidney injury (AKI). Particularly, diabetic kidney disease 
(DKD), a subtype of CKD, occurs in people with diabetes.  

In this study, we systematically annotated around 180 of biomarkers, mainly gene markers, from the 
literature, the HuBMAP and KPMP consortia. These biomarkers are associated with kidney healthy 
cells or diseased kidney. We have used KTAO to ontologically classify these biomarkers, their features, 
and the relations among these markers and their association with various kidney cell types, biological 
processes, and kidney diseases.  
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2. Methods 
2.1. Data Collection and Annotations 

Two types of kidney biomarkers, normal kidney cell lineage biomarkers and diabetic kidney disease 
(DKD) were compiled from different resources. The normal cell type lineage biomarkers were obtained 
from the literature including our recent KPMP publication [2] and The Human BioMolecular Atlas 
Program (HuBMAP) (https://commonfund.nih.gov/hubmap) reference ASCT+B data [3]. A number 
of biomarkers were derived from single cell sequencing studies based on statistical cut off’s and in some 
cases automated tools such as those in Seurat package (https://satijalab.org/seurat/) to label the cell 
types and the most significant markers [4, 5]. DKD protein biomarkers were collected mainly from a 
review article [6]. The selection criterion for a non-invasive DKD biomarker is its being reported in at 
least one non-high throughput research article using human patients’ samples. Our study focused on the 
collection and analysis of DKD protein biomarkers. All the results are based on rigorous experiment 
design and statistical analysis [2]. The manual curation confirms and picks the ones seen in multiple 
technologies and across species and validations where possible.  

2.2.  KTAO Biomarker Modeling, Representation and DL Query 

Gene and protein markers are modeled. Genes and proteins are presented using the Ontology of 
Genes and Genomes (OGG) and Protein Ontology (PR). IDs were retrieved by using Ontobee 
(http://ontobee.org). Biomarker-related relations were defined to generate new axioms that semantically 
link gene/protein biomarkers and cell types (or diseases). Such axioms were built up using Ontorat [7]. 
The Description Logic (DL) queries were performed using DL Query plugin of Protégé 5.0 (beta 15, 
https://protege.stanford.edu/). After reasoning of the KTAO with the ELK reasoned 
(https://www.cs.ox.ac.uk/isg/tools/ELK/), DL queries were performed on biomarkers.  

2.3.  GSEA Analysis on Gene Markers and Incorporation to KTAO  

For functional analysis of our collected gene markers, a gene set enrichment analysis (GSEA) was 
performed using the DAVID Bioinformatics Resources (https://david.ncifcrf.gov/tools.jsp). The default 
DAVID background was applied for analysis of enriched biological processes, cellular components and 
molecular functions as defined by the Gene Ontology (GO). The p-value ≤ 0.05 after FDR adjustment 
was used as the cutoff. These GO terms were retrieved by using Ontobee. The axiom relations between 
gene markers and GO biological processes and molecular functions are defined using the Relation 
Ontology (RO) [8] terms ‘participates in’ and ‘has participant’, and the axiom relation between genes 
and GO cellular components are defined using ‘has part’ and ‘part of’. These corresponding axioms in 
KTAO were established using Ontorat [7].  

3. Results 
3.1. Kidney Biomarker Collection and Representation  

Our kidney biomarker collection focused on the branches: kidney cell lineage biomarkers and DKD 
biomarkers. Our study found a total of 150 genetic biomarkers of 72 kidney cell lineage types using the 
method defined in the Methods section. Meanwhile, we collected a total of 38 DKD protein biomarkers. 
For each of these biomarkers, we have included at least one peer-reviewed publication. Note that our 
non-exhaustive collections are likely incomplete and have not included those markers identified from 
high throughput analyses [4, 9]. This focus on this study is primarily on the establishment of ontological 
modeling and knowledge representation of these biomarkers. 



 

 

3.2. Ontological Definitions and Representation of Kidney Biomarkers  

There have been many definitions of biomarkers. The NIH Biomarkers and Surrogate Endpoint 
Working Group defined a biomarker as “A characteristic that is objectively measured and evaluated as 
an indicator of normal biological processes, pathogenic processes, or pharmacological responses to a 
therapeutic intervention” [10]. However, the term “characteristic” is vague and difficult to define 
ontologically. Mayeux defined biomarker as a type of “alterations in the constituents of tissues or body 
fluids” [11]. Biomarkers should be assessable or measurable. In a 2015 paper [12], Ceuters and Smith 
proposed three disjoint types of biomarkers: material biomarker, quality biomarker, and process 
biomarker. As the bearers of various dispositions, material entities can be measured. However, 
processes and qualities do not have assessable dispositions based on the Basic Formal Ontology (BFO). 
Therefore, it appears difficult to assess biomarkers as processes and qualities using the BFO framework. 
It also appears that the 2015 proposal of the three-type biomarker classification has not been adopted 
in the ontology community.  

In our study, we define biomarker as a material entity only, and we do not consider quality or process 
as a biomarker. Meanwhile, the biomarker material entity has measurable qualities and processes that 
can be used as the indicator of some biological state. The biomarker material entity has measurable 
dispositions for a specific state/identity, which is the basis of the material entity being the biomarker. 
Specifically, we have defined the term ‘biomarker’ in the Ontology of Precision Medicine and 
Investigation (OPMI) [1] as:  

biomarker = def. A material entity that has a measurable quality or process profile(s), which can be 
used as an indicator of an underlying biological state or identity.  

A biomarker can be classified into different subtypes. Based on the clinical purpose of the 
biomarkers, there are diagnostic, predictive, prognostic, pharmacodynamic biomarkers, etc. [13]. Based 
on the types of the material entities, there are gene, protein, RNA, and metabolite biomarkers. Based 
on the restricted expression in cell types and tissues, there are cell type- and tissue-specific biomarkers. 
Furthermore, there are various morphological biomarkers.  

As an example, decreased renal tubular cell expression and reduced urinary excretion of epidermal 
growth factor (EGF) has been observed in many human kidney diseases including acute kidney injury 
and CKD, and the EGF can serve as a biomarker for progression of these kidney diseases [14, 15]. In 
our definition, the urinary human EGF protein (hEGF) is a prognostic biomarker for kidney disease, 
and it can be used by measuring its concentration in urinary excretion. This case can be defined 
ontologically using the following ontological axiom:   

‘urine hEGF’: has_role some (‘prognostic biomarker role’ and (realized_in some ‘DKD process’))  
Alternatively, we can make an equivalent axiom with a shortcut relation:  

‘urine hEGF’: ‘has prognostic biomarker role in’ some ‘DKD process’ 
The ontological hierarchical structure of various relevant biomarkers is shown in Figure 1A. The 

high level ‘biomarker’ term and several of its subclasses (including disease biomarker, immune 
biomarker and cell biomarker) were imported from the OPMI. We further defined many kidney specific 
biomarkers under ‘kidney biomarker’ in KTAO. Under ‘kidney disease biomarker’ are ‘AKI biomarker’ 
and ‘CKD biomarker’, which includes DKD biomarkers. Under ‘kidney cell lineage biomarker’, there 
are substructures of the kidney, specific cell types and different types of cell biomarkers. For example, 
kidney podocyte biomarker is a biomarker to the kidney podocyte cell lineage (Figure 1A). After 
ontology inferencing using a semantic reasoner, 4 biomarkers, NPHS1, NPHS2, PODXL and PTPRQ, 
were inferred to be the kidney podocyte biomarkers (Figure 1B). 

Biomarker-related relations (or called object properties) were generated for new ontology axiom 
generations. For example, the relation ‘is gene marker of cell’ semantically links a gene marker and a 
cell type, and the relation ‘protein biomarker of disease’ links a protein biomarker with a disease. 
Existing relations in the RO [8] were also used. For example, all enriched GO terms associated with 
gene makers are connected by ‘participates in’ defined in RO. For instance, NPHS1 is a kidney cell 
marker for podocytes (glomerular visceral epithelial cell) and a kidney disease protein marker for 
diabetic nephropathy. This marker is also a component of several GO-defined cellular components such 
as extracellular exome (Figure 1C). Each cellular component GO terms related to gene markers are also 
well-defined and has axiom ‘has part’ to trace back to gene markers (Figure 1D). All the relations 



 

 

between biomarkers with disease, with cell type and with GO terms are incorporated into KTAO. In 
total, there are 37 new relations between biomarkers and DKD, 107 between biomarkers with cell types, 
and over hundreds of new relations between biomarkers and GO terms. 

 

                        
 
Figure 1. Ontological hierarchy and representation of biomarker axioms in KTAO. A) 
Hierarchical structure of different kinds of biomarkers in KTAO. B) After reasoning, the markers that 
belong to this classification of biomarkers. C) Example of biomarker representation. D) Example of 
associated GO terms representation. 
 

3.3. KTAO-based Analysis and Query of Kidney Biomarkers  

Based on our DAVID GO term enrichment analysis, 61 GO terms were enriched in kidney cell 
biomarkers, and 41 GO terms were enriched for DKD protein markers. Nine GO terms, including 5 
cellular component (CC) terms and 4 biological process (BP) terms, were found to be shared between 
these cell biomarkers and DKD biomarkers (Table 1). Our analysis identified large numbers of gene 
markers located in extracellular space, extracellular region, extracellular exosome, and cell surface 
(Table 1), indicating that the gene markers for both cell types and diabetic kidney diseases are more 
likely to involve in extracellular and cell surface structures. 

 



 

 

                                          
Figure 2. Example of DL-query. This query identifies 3 biomarkers that are podocyte biomarkers, and 
also part of extracellular exosome. The DL-query was performed in Protégé-OWL editor. ELK reasoned 
was used to perform the reasoning before the query was conducted.    

 
The knowledge represented in KTAO can be interpretable by computers and reasoned with methods 

such as DL-query or SPARQL query. For example, we performed a DL query on KTAO to identify 
those biomarkers that are the biomarkers for podocytes (i.e., glomerular visceral epithelial cells), and 
meanwhile they are located in the extracellular exosome (Figure 2). Three axioms were queried together 
in this query example. Genes NPHS1, NPHS2, and PODXL were identified (Figure 2).  

Table 1 Common Gene Ontology terms for gene or protein markers of kidney cell types and DKD 
GO ID Term Label Type # cell marker # disease 

marker 
# of common 

genes 
GO:0005576 extracellular region CC 34 29 2 
GO:0005615 extracellular space CC 37 27 2 
GO:0070062 extracellular exosome CC 56 18 3 
GO:0006955 immune response BP 17 8 1 
GO:0005578 proteinaceous 

extracellular matrix 
CC 9 6 1 

GO:0006954 inflammatory response BP 13 7 0 
GO:0001666 response to hypoxia BP 8 7 1 
GO:0071356 cellular response to 

tumor necrosis factor 
BP 6 5 0 

GO:0009986 cell surface CC 21 7 1 

4. Discussion 

In this paper, we systematically collected and annotated various biomarkers for regular kidney cells 
as well as for DKD, and ontologically represented these kidney biomarkers in KTAO. Such ontological 
representation provides standardized computer-interpretable knowledge representation and supports 
automated semantic queries and data analyses of kidney biomarkers. And the ontological representation 
can serve as a knowledge base and be used to compare and analyze the results from high throughput 
omics studies, supporting kidney diseases diagnosis, mechanisms study and rational treatment design. 
In addition, the KTAO representation can be incorporated into our KPMP web application development 
for more advanced browsing, reasoning, and data analysis.    

The systematical and logical KTAO representation of the biomarker types, biomarker locations, and 
their involving biological processes supports integrative analysis of the biomarkers. We can 
systematically find those biomarker-associated cellular components or biological processes and inspect 
potential mechanisms of actions of these biomarkers in normal kidney functions or disease formation. 
For example, NPHS1 is a gene marker for DKD, and it is a kidney podocyte-specific marker, and it can 



 

 

be found in extracellular exosomes. Detection of NPHS1 in podocytes may be a potential sign of DKD, 
and we can also infer that NPHS1 play important role in cell junctions. Some of the disease markers 
may also be potential drug targets for DKD treatment. To facilitate such analysis, we may develop new 
models and representation of the drug-biomarker associations in KTAO.  

Admittedly, this work has limitation and further study is going on. Due to the time restriction, only 
a small number of papers were reviewed and used. Further literature mining is necessary to identify and 
annotate more kidney biomarkers. Our future work includes the expansion of the kidney biomarker 
presentation to include more inclusive biomarkers for DKD, and additionally for other types of CKD 
and AKI. We will also include other types of biomarkers such as RNA and metabolite markers. We 
welcome researchers interested in the topic to participate in the community-based KTAO development 
and its applications.   

5. Conclusion 

Kidney biomarkers are critical to the fundamental study of kidney functions and disease 
development. In this study, we started with 150 cell gene markers and 38 DKD protein markers, 
analyzed and incorporated them into the KTAO. Nine enriched Gene Ontology terms were identified 
in these two groups of biomarkers. These DKD gene markers and their associations with different 
kidney cell types, cellular components and biological processes were systematically represented in 
KTAO. A DL-query demonstrated the KTAO support for computer-assisted reasoning and query. 
Overall, our ontological knowledge representation facilitates systematic kidney biomarker 
standardization, integration, and analysis.    
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