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Abstract

Modern vehicles are built of onboard networked computers, known as Electronic Control Units, to realise a
range of functionality and features. Due to their connectivity, they are vulnerable to cyberattacks through
various vectors including wired (e.g., CAN, Lin) and wireless (e.g., Bluetooth, WiFi) communications.
To facilitate building and validating security measures against these attacks, it is vital to replicate the
on-board networks and their components, along with a connected external environment representing
required use cases and driving scenarios in an instrumental and controllable environment. In this paper,
we propose a multi-component testbed representing a flexible and functional in-vehicle architecture for
training and validating machine learning-based Intrusion Detection Systems (IDS).
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1. Introduction

Modern vehicles comprise multiple networked computers, known as Electronic Control Units
(ECUs), to realise a range of functionality and features such as driving and powertrain control,
connectivity, sensing and body modules. Such ECUs are interconnected through onboard
networks, including typically a data bus known as the Controller Area Network (CAN). As such
modern vehicles are an example of a Cyber-Physical System (CPS).

Due to a combination of connectivity (over various interfaces) and complexity (of design
and features), modern vehicles are also subject to cyber attacks. With trends towards intercon-
nections of sensors, actuators and devices, modern cars now often possess interfaces enabling
wired (e.g., USB) or wireless (e.g., Bluetooth, WiFi, Cellular) communication with the outside
world. Therefore, the various computing systems embedded in modern cars can no longer be
considered as a closed network, and opportunities for cyberattacks targeting the embedded
automotive networks have become a reality. It has been already shown that a cyber attack can
seriously impact the safety of a vehicle if packets are successfully sent on the vehicle’s internal
wired network [1]. A number of articles have investigated the potential security risks with
modern vehicles focusing on specific attack goals and vectors (e.g. [2, 3, 4, 5,6, 1, 7, 8, 9, 10, 11]).
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Counteracting automotive cybersecurity threats requires the investigations of threat models,
counter measures, detection methods and resolution options. This presents a number of chal-
lenges specific to the automotive field. First, it is difficult to conduct experimentation on real
systems. Conducting tests on live vehicles is costly and might result in vehicle damage or risks
to property and life. It also presents challenges regarding ethics, insurance and legality, and the
researchers may not have access to rolling roads or private tracks. Given such challenges, it
is understandable why research into automotive cyberattack detection has tended to be done
using offline experiments on previously captured data (e.g., [12], [13], [14], [15]). A second
challenge concerns ensuring the scope and validity of testing. Testing across a representative
range of conditions and operating scenarios would require capturing vast amounts of data,
or controlling factors such as the weather, environmental conditions and traffic flows. These
challenges may be compounded when testing attack detection methods employing machine
learning, where the behaviours of the methods might not be fully described [16]. Moreover,
vigorous testing needs to account for system interactions that might not be determinable from
studying behaviours of the vehicle components in isolation.

To facilitate building and validation of security measures as well as to assure a secure
automotive CPS, it is vital to replicate the on-board network and a series of components, along
with a connected external environment representing required use cases and driving scenarios
in an instrumental and controllable environment. Such a setting will be useful for:

« assessing the resilience of components, subsystems and the whole system, to cyber attacks,
as part of a mix of commodity and bespoke multi-vector attacks;

« tracing and auditing low-level behaviours for evidence-driven assessment;

« amassing datasets for industry use and wider experimental-led collaborations with aca-
demic and developer communities.

While several in-vehicle network testbeds [17, 18, 5, 19, 20, 21, 22, 23, 24] have been proposed
recently, they only focus on the in-vehicle network components and ignore providing multiple
realistic driving scenarios. This means any dataset generated by these testbeds is not suitable
for training and validating machine learning-based Intrusion Detection Systems (IDS) which
are used to rapidly detect cyberattacks on in-vehicle networks [25].

In this paper, we propose a multi-component testbed representing a flexible and functional
in-vehicle architecture for real environment trials to train, test, validate and demonstrate IDS
solutions. Our contribution is the logical design and implementation of a real-time testbed that
allows cybersecurity researchers and engineers an in-depth security evaluation of in-vehicular
network components. This testbed will provide various features including:

+ A CAN Bus representing a full-scale functional in-vehicle network;

« Support for generating realistic driving scenarios;

+ A plug-and-play facility for testing and evaluation of hardware such as hacking devices,
telematics, sensors, infotainment, in-cabin and body modules;

« Support for integrating security solutions for testing and evaluation purposes.

The paper is structured as follows. Section 2 presents and evaluates existing testbeds for
automotive cybersecurity testing. It focuses on their configuration, hardware and software



Table 1
Types of Automotive Cybersecurity Testbeds

Name of Testbed Test Platform ‘ Reference ‘
Open Car Testbed and Network Experiments (OCTANE) Hybrid [17]
Resistant Automotive Miniature Network Hybrid [23]
Design, Implementation, Validation and Implications of a Real- .

world V2I Prototype Testbed Hybrid (22]
Dev'eloplng a QRNG ECU for automotive security: Experience of Hybrid [24]
testing in the real-world

Testbed for Security Analysis of Modern Vehicle Systems Hybrid [21]
Mobile Testing Platform Hardware [5]
Hardware—ln—IF)op based Automotive Embedded Systems Cyberse- Simulator [19]
curity Evaluation Testbed

Portable Automotive Security Testbed with Adaptability (PASTA) Simulator [20]
A Cyber Assurance Testbed for Heavy Vehicle Electronic Controls Simulator [18]

packages. It also discusses existing approaches to CAN attack detection and outlines the
challenges specific to detection on CAN networks. Then, we recall the CAN-BUS protocol and
present the relevant software and hardware used to implement a full-scale testbed including
vehicle simulators and automotive in-vehicle communications in Section 3. The implementation
detail of our testbed is presented in Section 4. Section 5 demonstrates the integration of the
testbed with an exemplary IDS, which shows how the testbed can be used in future research.
The IDS is used to detect typical attacks to in-vehicle communication CAN. Finally, the paper is
concluded in Section 6.

2. Related work

2.1. Automotive Cybersecurity Testbeds

Testbeds can generally be categorised into three different types: simulation-based, hardware-
based, and hybrid. Simulation-based testbeds rely solely or substantially on software to simulate
the behaviour of ECUs and in-vehicle networks. Since they do not include real cyber-physical
components, simulation-based testbeds are generally cheaper to build and provide a safer
environment for the testers. Hardware-based testbeds, on the other hand, include real or
emulated hardware components. As opposed to software-based testbeds, hardware-based
testbeds enable testers to study interactions between components through physical inputs and
outputs. Hybrid testbeds include both software and hardware components, offering the strengths
of simulation-based and hardware-based testbeds. Table 1 presents an overview of the surveyed
testbeds, indicating whether they are simulation-based, hardware-based, or hybrid. The mobile
testing platform [5] is the only testbed that uses real physical components and a vehicle (go-cart)
for investigating cybersecurity threats. OCTANE, Resistant Automotive Miniature Network,



Realworld V2I Prototype Testbed and Developing a QRNG ECU for automotive security are
hybrid testing environments. All other testbeds rely on virtual/software components only. Table
1 lists the most recent and relevant testbeds (introduced in the cited articles) to date. They are
categorised initially based on their platform structure as previously noted.

Testbeds should also be evaluated based on their various characteristics, such as adaptability,
portability, fidelity, cost and types of attacks, attack surfaces, attack targets, and communication
protocols supported. This characterisation is essential to choose an appropriate platform with
regard to the testing scenarios.

To facilitate the testbeds for more thorough and optimised testing, a generic testing framework
based on existing and emerging standards for cybersecurity engineering has been recently
introduced [26]. This framework enables the automotive cybersecurity testbeds to conduct
automated security tests and a systematic process for verifying and validating automotive
cybersecurity based on ISO/SAE DIS 21343. This framework is also flexible to allow extension
beyond its common structure to utilise additional toolsets.

2.2. Automotive Cybersecurity Attacks and Detection

Attacks to the CAN network entail the attacker changing the packet broadcasts [27]. An attack
might disrupt the packet broadcast rates, for example, to stage a DoS (Denial of Service) by
flooding the network with fabricated packets, thus incapacitating the vehicle or some function.
Although immediately disruptive, such crude attacks are considered relatively easy to detect.
Potentially more difficult to detect are attacks that seek to control some functionality of the car
or meaningfully alter information presentation. For example, by broadcasting fabricated packets
with misleading data payloads. Such attacks might force the car into dangerous situations,
systematically change the car performance or efficiency, or manipulate for financial gain or
dissatisfaction [28]. These attacks might entail the fabrication of legitimate-looking packets
from attack systems masquerading as legitimate control units [4, 29, 30].

A well-publicised attack [4] on a Jeep Cherokee required the attackers to broadcast fabricated
packets that contained plausible, but altered speed data, thus fooling the car systems into
believing the car was travelling more slowly — this, in turn, allowed other functions, such as
park-assist, to be activated. A problem in detecting such an attack is that the manipulated data
values remain within legitimate bounds, so might not look obviously malicious [31].

Two common approaches to detecting attacks on any computer network, including the CAN,
are signature approaches and anomaly approaches [32, 33]. Signature approaches compare
traffic patterns against rule bases. Although these approaches can be accurate, they assume the
ability to determine, encode and distribute evolving attack models. This can be problematic for
automotive CAN systems because (i) the data derivations are usually secret to the manufactures;
and (ii) cars have diverse locations, usage patterns and lifecycles making it difficult to maintain
and update signature databases; and, iii) the attack scenarios are still emerging. Signature
approaches for detecting CAN attacks are thus generally seen as less favourable[34]. Anomaly
approaches seek to use statistical or machine learning algorithms to identify data outliers
indicative of attacks. They tend to be more prone to false detections, but hold the potential to
detect novel attacks, are less reliant on maintaining updates, and can be applied generically
across car models. But they assume that ample data is available for training and testing.



As discussed in Section 1, generating test data and testing detection methods presents chal-
lenges when attempted on real vehicles. This has led researchers to attempt to develop and
validate security methods using data from previously captured data logs, with the log ma-
nipulated offline to fabricate the likely results of an attack, and then used offline for testing
(e.g., [12], [13], [14], [15]). Such methods are safer than attacking a real, driven vehicle, and
give the researcher control over the attack manifestation on the data. However, they limit the
researcher to only testing scenarios that have previously been captured. Also, the simulated
attack data may be difficult to fabricate; and packet timings and interactions between CAN
connected systems or ECUs are difficult to accurately mimic in the fabricated data. A further
complication is presented by the packet arbitration and error confinement processes of the CAN
protocol (discussed in Section 3.1). These govern the priority, curtailment and rebroadcast of
CAN packets, and for the validity of testing would need replicating in fabricated logs.

3. Background

In this section, we recall the CAN-BUS protocol, the main in-vehicle communication of the
testbed. We also briefly review the two simulators employed to realise driving scenarios and
the CAN-BUS network activity. We also outline an example IDS approach which we later use
as a demonstration of integration into our testbed.

3.1. CAN-BUS - an in-vehicle communication protocol

Internal vehicle networks which provide the ECUs communication are based on the CAN
standard. The CAN 2.0 and SAE J1939 protocols are the two broadly used application protocols
for passenger and heavy-duty vehicles, respectively. Features that make CAN desirable for
automotive applications are its range of adoption, its lower cost and lower complexity (compared
with FlexRay, TTE, e.t.c.), its robustness, and its bounded delays.

The physical structure of CAN comprises a shared physical medium to which multiple nodes
are connected. These nodes can transmit/receive data over unshielded twisted pair cables. If
any node transmits a logical zero then the bus only remains in state zero, even if all the other
nodes transmit a logical one. As CAN is an event-based communication protocol, it requires
a synchronised start of communication for all of its nodes. Each message is encapsulated in
frames which can be transmitted periodically or occasionally between nodes. In general, the
CAN frame includes seven distinguished sections as depicted in Figure 1. Most importantly, the
arbitration holds an 11-bit Identifier and is used to determine the priority of a message, with
smaller Identifiers having higher priority [35].

Data 0 I Data 1 ‘ ‘ Datan

S’ Arbitration ‘ Control CRC ‘ Ack. ‘ EOF ‘ IFS
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12 Bits 16 Bits 0 to 8 Bytes payload 16 Bits 2 Bits 2 Bits

Figure 1: CAN data frame format

The CAN-BUS protocol specification is able to format error frames and overload frames. Each
of these frames includes two sections of flag and delimiter field. Transmission of an error frame



interrupts the normal frames, thus indicating the error condition to all nodes. Overload frames
are used for flow control by the receiver [36].

Despite the popularity of the CAN, several related vulnerabilities and attacks have been
reported [5]. There is no message authentication mechanism in the CAN, and most of its
vulnerabilities are associated with this. This means that the protocol can not associate a
message with its sender and thus fails to distinguish between a legitimate and a malicious
message. Additionally, the absence of any encryption standard in the CAN protocol reduces the
message’s integrity and confidentiality [37]. Implementation of an encryption algorithm is also
challenging due to the low computational power of the car’s ECUs along with other limitations
such as lack of backward compatibility, cost and insufficient implementation details, among
others [38]. These reasons make it convenient for any device connected to the same physical
CAN bus to listen and intercept messages.

3.2. CANoe - an in-vehicle network simulator

CANoe [39], from Vector, is a software application primarily used by automotive manufacturers
and ECU suppliers for developing, simulating, and testing on-board networks and individual
ECUs. An advantage of CANoe is the faithful simulation of on-board networks in terms of
timing accuracy and the support of multiple vehicle bus systems. It creates virtual ECUs
using Communication Application Programming Language (CAPL), an event focused language
developed by Vector Informatik to support their CAN toolsets [40]. Additionally, CANoe allows
hybrid network configurations where one part of an on-board network is virtually simulated
while the other is physically set up.

In the testbed, the physical CAN bus network of the demonstrator is interfaced with the
simulated one in CANoe via a CAN bus interface device.

CANoe enables communication with 3rd party applications to provide external inputs and
outputs for the simulation. In particular, CANoe uses Fast Data Exchange protocol (FDX) which
enables bi-directional data exchange with other applications. A vehicle simulated in CARLA
provides car physical data which are sent to CANoe simulator by FDX. To maintain timing in
CARLA and CANoe, the timers in Python program is deployed. These data provide inputs for
virtual ECUs simulated in CANoe to function and generate CAN traffic on the simulated network
as well as the physical one. Conversely, any CAN message occurring on the network and aiming
at creating effects on the simulated vehicles are translated into control signals by CANoe and
forwarded to CARLA also by FDX. They enable CARLA to simulate the corresponding effects on
the simulated car. Therefore, CARLA functionalities are first to generate realistic car physical
data and secondly to realise the effects of received CAN messages from CANoe on the simulated
car.

CANoe enables the researchers with tools for real-time CAN bus network simulation. Various
options such as message timing, easy observation of data traffic and comprehensive network
analysis, time-synchronous analysis of multiple buses, Interactive sending of predefined mes-
sages and various types of stimulation of network traffic provide full control on the simulation;
hence more realistic scenarios can be implemented.



3.3. CARLA - a car simulator

CARLA [41] is an open-source simulator for autonomous vehicles. The advantages of CARLA
include autonomous driving baselines, Robot Operating System (ROS) integration, multiple
repeatable and customisable traffic scenarios, flexible API (to control all aspects related to
the simulation, including traffic generation, pedestrian behaviors, weathers, sensors), maps
generation, traffic scenarios simulation and a wide range of sensors and sensor data (such as
images, depth, semantics, Lidar). Furthermore, simulated cars can also be driven manually
using car-like inputs such as steering wheels and foot pedals. Data from CARLA can be easily
exchanged with 3rd party applications via Python programming. All required libraries come
with CARLA. CARLA runs on a separate PC.

3.4. Example CAN bus IDS classifier

Later in this paper we show how IDS methods can be integrated with the testbed for testing,
demonstration and validation. Our goal here is not to present a detailed explanation of any
particular IDS method, but we use for demonstration a representative IDS example presented in
[42], where the reader can find a full explanation of its methods and data parsing process.

The approach assumes that the role of each CAN packet is unknown to the IDS developer,
which is likely given the manufacturer’s secrecy regarding the CAN data together with CAN
data variations specific to the make and model of cars. The approach first determines a cluster
of CAN data fields which might be combined to provide a situational context. To achieve this,
likely sensor data fields (including fields that might be composite) are determined by considering
the statistical profiles and pairwise characteristics of the individual data fields from all the CAN
packets identified. Next, a clustering algorithm is applied to determine whether the identified
sensor data fields might be split into functional clusters.

Having determined a candidate cluster, a buffer is used to store the most recent data value
from each field in the cluster. Thus, at each packet broadcast, the current data values from the
cluster are examined together as a snapshot. This presents the option for using the cluster as
a contextual gauge for evaluating each of its components at the current point in time. Thus
the cluster can be used for anomaly detection using a classifier, such that malicious changes
in some of the data fields might appear anomalous according to the context described by the
whole cluster.

A one-class classifier is used since this might determine outlier boundaries, even where the
anomaly data is not yet available, or cannot be obtained, or is difficult to fully determine. Such
one-class classifiers have been considered pertinent to automotive networks [43, 13]. For our
demonstration, we use a One-class Support Vector Machine (OCSVM) for the classifier. OCSVMs
try to find the largest margin between the projected training data and its origin, thus demarking
data-dense regions in input space [44]. Target instances are thus classified according to their
position relative to the margin. For this demonstration, we retain the parameters found [42] to
be optimal with comparable CAN networks tested on other vehicles (Radial Basis Function, Nu
0.015 and gamma 0.5). For classifier training data, multiple snapshots are collated and processed
offline. During online testing, the current snapshot is tested in real-time against the trained
classifier.
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4. Testbed

This section presents our testbed which facilitates building and validation of security measures
on in-vehicle networks. First, the logical design of the testbed is introduced. Then, we will
provide the detail of the testbed implementation.

4.1. Logical Design

The section 3 outlined the basic requirements that any automotive testbed should satisfy
regarding vehicle-security technology development and research application. Logically, the
demonstrator consists of a car simulator, an on-board network simulator, a physical network
and a data storage service. Figure 3 depicts the logical setup of the testbed. A car simulator is
used to generate car physical data for the on-board network simulator. These include engine
information such as engine rev speed, vehicle velocity, gear, acceleration throttle, and brake
status. The on-board network simulator is used to simulate the operation of an on-board
network.

The simulated network contains several virtual ECUs to mirror those inside an actual car such
as Engine ECU, Transmission ECU and Light ECUs. The virtual ECUs operate by leveraging the
car physical data from the car simulator to generate data traffic on the simulated network. A
physical network is attached to the simulated network via a suitable interface.
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Figure 3: Logical setup of the demonstrator

In the next section, the components of the logical setup are realised by a physical setup as



illustrated in Figure 2.

4.2. Implementation

In this section, implementation details of a testbed that can represent a vehicle IT network are
described. The proposed automotive testbed includes a car simulator, an on-board network
simulator, a physical network, a real car’s instrument cluster and a spoofing hardware.

Figure 2 provides an overview of the testbed architecture. Most of the vehicle architecture
and its CAN bus network is realised within a virtual environment using Vector CANoe network
simulator. The network and car simulations is run on a Vector hardware simulator and a
separate machine, respectively. The Vector hardware simulator is also employed as a middle
layer, where an additional physical component requires to be integrated into the testbed. In the
proposed testbed, a real car’s instrument cluster and a CAN filter is interfaced by the Vector
hardware simulator to form the physical CAN bus network. Additionally, this hardware expands
the testbed’s operational capability to perform real-time simulation. This hardware-in-loop
simulation setup creates a realistic framework of physical ECUs talking with each other over a
physical bus and with simulated ECUs via the virtual bus. Finally, in order to provide a real
driving behaviour, a full set of driving wheel, pedals and gear Shifter is attached to the car
simulator.
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Figure 4: UDP datagram layout consisting two major sections: a) 16 bytes of datagram header consists
of a FDX signature, b) 28 bytes of datagram command

CARLA is used as the car simulator to generate car physical data for the on-board network
simulator. These include engine information such as engine revolution speed, vehicle velocity,
gear, acceleration throttle, and brake status. Also, to achieve CAN bus network simulation,
Vector CANoe is employed. CARLA generates realistic car physical data which are sent to
CANoe by Fast Data eXchange (FDX).



CANoe FDX is a UDP-based protocol (User Datagram Protocol / IPv4) for simple, fast and
real-time exchange of data between CANoe and other systems via an Ethernet connection.
This protocol enables other 3rd party software both read and write access to CANoe system,
environment variables, and bus signals. To this end, each FDX message is designed to contain the
simulated car information including Engine RPM, Speed and Lights’ status. These FDX messages
are sent by CARLA. UDP is a commonly used protocol which uses a simple connectionless
transmission model which means often there must be already a UDP stack available on the
CARLA [45]. As there is no pre-defined UDP stack available on the CARLA, it must be first
implemented prior to use. The transmitted data by CARLA simulator is achieved through
reciprocal transmission of the UDP on a specific port. As a matter of principle, CARLA always
sends a datagram to CANoe first and therefore has to know the IP address and port number used
by CANoe for the FDX protocol. CANoe evaluates all incoming datagrams to determine the
sender’s IP address and port number and always responds only to the sender that requested the
data. UDPClient class in python is an convenient way of sending and receiving UDP datagrams.

Therefore, to establish a UDPClient, the specification of a designated socket should be defined
in CARLA python code in order to communicate with CANoe. The socket specification includes
the port number and the IP address of the CAN simulator (Vector VN89XX). As illustrated
in Figure 4b, a new command section including the selected telemetry data is created. The
entire process is implemented in the CARLA running code as send CANoe function in order to
continually send the telemetry data while the game is running.

Receiving these FDX messages requires configuring the CANoe environment in order to
receive the incoming data in an appropriate order. The FDX message structure must be specified
by a FDX description file and added to the CANoe configuration. The FDX description file is an
eXtensible Markup Language (XML) file. It specifies the data contents and variables within UDP
data groups that is being sent reciprocally by CARLA. The FDX description file comprises from
two data groups: grouplID ‘1’ and ‘2’. Each data group can be used for sending and receiving
data. In the proposed testbed, groupID ‘1’ and '2’ are used to receive data from CANoe and send
data to CANoe, respectively [45]. The FDX option must also be enabled. The XML file can also
be configured using the edit option within the CANoe environment. This includes assigning
several parameters given to the data group members such as the data symbols, identifier, offset,
size and type.

A separate machine is used to configure the simulated CAN bus network and their attached
virtual ECUs. To maintain timing in CARLA and CANoe, the timers in Python program are
deployed. The simulation configuration is then loaded into a Vector hardware simulator (VN8914)
with the communication module (VN8972) to ensure the real time processing.

The simulated CAN messages are transmitted to the physical CAN bus and then received by
the instrument cluster through the hacking device that can change the odometer’s value.

The hacking device is a CAN filter that can manipulate the CAN traffic between the CAN
bus and one or more ECUs. To realise the CAN filter, the ARM-based MCU STM32F105 from ST
is used in the testbed. It features two CAN interfaces, one is connected to the CAN bus and
the other is connected to the instrument cluster. We implemented and installed firmware into
the MCU so that it is acted as a mileage corrector. The CAN filter then has four operational
modes. In mode 1, it is inactivated. This means the CAN filter simply replay all the CAN frame it
receives from the interface to the CAN Bus to the other interface connected with the instrument



cluster. In modes 2, 3 and 4, the CAN filter is activated. This means it makes changes to some of
the CAN frames to reduce the incremental rate of the odometer on the instrument cluster:

+ In mode 2, the incremental rate is reduced by 90%, i.e., for every 10 miles of travel, the
odometer increases by only 1 mile.

+ In mode 3, the incremental rate is reduced by 50%, i.e., for every 10 miles of travel, the
odometer increases by only 5 miles.

+ In mode 4, the incremental rate is reduced by 100%, i.e., for every 10 miles of travel, the
odometer does not increase.

One can switch between the modes by quickly flashing the full beam on the CARLA simulator
four times. The CAN filter starts in mode 1. If it is in mode n € {1, 2, 3}, then switching moves
it into mode n + 1. If it is mode 4, then switching moves it back to mode 1.

The filtered CAN messages are then sent to the real instrument cluster CAN transceiver and
the IDS.

5. IDS Integration

In this section we show how the testbed employing a hacking device such as described in
Section 4 can be used for testing a potential IDS implementation. We take the approach outlined
in Section 3.4 whereby, following CAN packet log analysis to determine data field clusters,
a classifier is trained offline using captured CAN logs, but is then tested in real-time on the
testbed.

5.1. Cluster Detection and Offline Training

Analysis of the packet flow generated by the CARLA simulator showed an average of 643 packets
broadcast per second, with a mean broadcast interval of 0.0016 seconds. Twenty-four different
CAN packets were identified. The approach outlined in Section 3.4, suggested a correlated
cluster which was used for the subsequent snapshots and anomaly detection (Fig. 5). For the
training data, the log from a 30-minute journey was captured and converted into a series of
snapshots. The classifier was then trained offline using snapshot records selected at random.
The fitted model and the scaling objects are saved using Python’s pickling framework, so they
can be loaded into our intrusion detection script and used for the classifier.

5.2. Online Testing

The online testing using the trained classifier and the testbed is summarised in Figure 6. We
run our Python intrusion detection script on a laptop connected to the testbed via a Kvaser Leaf
Light HS v2 logger.

The script reads the CAN messages via the CAN channel presented by the logger. This setup
requires drivers (e.g. Kvaser Drivers for Windows) freely available from Kvaser [46], and the
python-can library [47] to connect to the CAN channel. Python-can presents each packet as it
is broadcast, including the ID and eight data fields.
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Figure 6: Overview of the online process for the IDS

As each packet is detected, the script checks the ID for a match against the cluster list. If the
packet ID is in the cluster list, its relevant data fields are parsed, combined if needed, and the
resulting converted integer field values are updated in the snapshot array. The updated array
is then fed to the classifier, which uses the pickled fitted model and scaling objects gathered
during the training stage. The snapshot is then classified according to the OCSVM prediction.
If the prediction is an anomaly, the CAN packet is considered an attack packet.

5.3. Experiment Results

Prior to testing on the testbed, we tested the classifier by running the Python detection script
against output generated by replaying previously captured log files to a virtual CAN network.
The data for this used different journeys to those used for training. Each log file represented a
30-minute journey representing one of the operational attack modes described above. Each log
file was fed into the trained IDS to make predictions if the CAN filter is activated, i.e., in modes
2, 3 or 4. The evaluation is facilitated by two counters, “inliers” and “outliers”, implemented
in the IDS to count how many times it predicts “inactivated” and “activated”. Collecting the



values of the counters in each run, we obtained a result described in Table 2. For these results
“accuracy” is 0.7636, “recall” is 0.6964, “precision” is 0.9788, and “F1” is 0.8138.

Table 2
Results from testing the IDS via replay of CAN logs on a virtual CAN network
’ CAN Filter Mode ‘ Predicting Activation ‘ Predicting Inactivation
Mode 1 (inactivated) | 25155 556672
Mode 2 (activated) 406834 156727
Mode 3 (activated) 382645 172793
Mode 4 (activated) 373270 177498

In comparison, we evaluated the IDS online by plug-n-playing into our testbed. The CAN
messages between the instrument cluster and the CAN filter were collected by the Kvaser logger.
We ran the test four times, each time running 30 minutes journeys where the CAN filter was
set in one of the four modes. In spite of the high throughput of records broadcast, the script
was able to process each in real-time. Clearly, an in-vehicle version would need to be run on
different hardware compared to the laptop we used, though the testbed would facilitate the
evaluation of alternative implementations. Similar to the previous test, we obtained a result
described in Table 3.

Table 3
Results from live-testing the Online IDS on the testbed
’ CAN Filter Mode ‘ Predicting Activation ‘ Predicting Inactivation
Mode 1 (inactivated) | 359336 143963
Mode 2 (activated) 392678 177223
Mode 3 (activated) 426183 143715
Mode 4 (activated) 376455 193490

The testbed detection (Table 3), which was processed in real-time, in comparison to the virtual
CAN reply (Table 2), showed more false positives in classifying. Using this method, we obtained
“accuracy” 0.6052, “recall” 0.6991, “precision” 0.7689, and “F1” 0.7323. The accuracy reduces
to 60% on the testbed, compared with 76% when tested using replay on the virtual network.
We repeated the testing using additional journeys and training data but obtained similar results.

The reasons for the reduced detection accuracy on the testbed are still being investigated.
The log was replayed at the fastest available replay broadcast speed for the virtual CAN, even
so, perhaps a difference in the speed of transmission on the testbed was sufficient to hamper
calculations on the laptop running the IDS script. It is also possible that behaviours were
observed on the testbed car operation that was not captured for the training data or the test
log used for the virtual CAN testing. It is thus possible that the trained model is overfitted
and more training data might be required to improve the live prediction performance on the
testbed. A further cause of poor prediction might stem from the data parsing algorithm deployed.
Again, more research is needed to refine and test this. Whatever reason is eventually uncovered,
the results indicate the need for further exploration for real-time tracking. Importantly, they
highlight the benefit of using the testbed for validating the trained model against live data where



driving behaviours and experiences might be different from those captured when the datasets
were collected for training. The approach adopted, which assumes the CAN data dictionary and
data derivations are unknown, clearly cannot give a complete picture of the CAN data, or reveal
what the data represents. Also, without a more thorough analysis, it is difficult to determine
whether convoluted manipulations or conditional calculations might have been used to derive
the data. These would reduce the detection reliability.

6. Conclusion

In this paper, we presented a novel approach for building an automotive security testbed that
comprises both a full-scale in-vehicle network and a car simulator to generate network traffic in
realistic driving scenarios. The in-vehicle network utilises Vector CANoe software and hardware
to resemble a real CAN Bus within a vehicle to a high degree of precision. These enable a
flexible configuration of the network in terms of (1) receiving input from external sources to
enrich simulations and (2) allowing plug-n-playing both virtual and physical components. To
this end, we realise driving scenarios by employing CARLA, a car simulator, which is highly
customisable with respect to driving environments (e.g., driving maps and traffic participants),
as input to the CAN Bus to generate realistic CAN traffic. The testbed, therefore, can be used to
generating datasets and testing machine learning-based IDS.

This was illustrated by the example of training and testing an IDS implementation. Testing
a classifier in real-time using the testbed revealed poorer detection rates compared to testing
performed by running the trained classifier offline against previously captured logs. The precise
reasons for the poorer detection and the circumstances in which classifier detection deterio-
rates, need investigating - something the testbed can facilitate through its ability to replicate
diverse driving scenarios. It is conjectured that the difference between driving behaviours and
experiences, and those captured when collecting datasets for training might have contributed
to the reduction of the implemented IDS accuracy when its performance online on the testbed
is compared against running a virtual simulation. These test results reveal the benefit of using
the testbed for validating the trained model against live data in real-time. Thus, testing using
the live-journey replicating testbed can uncover issues in attack detection that might be missed
in offline testing.

While this paper only focused on the IDS as anomaly detection, other well known detection
methods such as potentially against nearest neighbour, fuzzy logic and neural net based methods
will be bench-marked against each other to further investigate the role of testing platform on
their accuracy. Additionally, more physical components will be added to the test bench in order
to include more abuse cases. Also, the data exchange with CARLA will become bi-directional to
study the effect of anomaly in the driving behavior.
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