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Abstract. A nearest neighbor search procedure is presented, for retrieving re-
sources in knowledge bases expressed in OWL. The procedure exploits a semi-
distance for annotated resources, that is based on a number of dimensions corre-
sponding to a committee of features represented by OWL concept descriptions.
The procedure can retrieve resources belonging to query concepts expressed in
OWL, by analogy with other training instances, on the grounds of the classifica-
tion of the nearest ones w.r.t. the dissimilarity measure. Besides, it may also be
able to suggest new assertions that are not logically entailed by the knowledge
base due to open world semantics. In the experimentation, where we compare the
performance of the procedure to running a reasoner, we show that it can be quite
accurate and augment the scope of its applicability, improving w.r.t. previous pro-
totypes that adopted other semantic measures.

1 Introduction

In the perspective of resource retrieval, purely logical approaches pursued so far, in
the context of the Semantic Web, may fall short in terms of noise-tolerance and effi-
ciency. Hence, analogical methods applied to multi-relational domains appear particu-
larly well suited, since they are known to be more efficient and noise-tolerant, which is
very important in contexts where knowledge is intended to be acquired from distributed
sources. To this purpose, a relational distance-based framework for retrieving resources
contained in semantic knowledge bases has been devised to infer inductively consistent
class-membership assertions that may be not logically derivable due to the open-world
semantics. The main idea is that similar individuals, by analogy, should likely belong
to the extension of similar concepts.

Specifically, we present a retrieval procedure that constitutes a multi-relational ex-
tension [5] of the well-known Nearest Neighbor approach (henceforth, NN) [10]. These
algorithms may be quite efficient because they require checking query-membership for
a limited set of training instances on such concepts and making a decision on the clas-
sification of new instances.

From a technical viewpoint, extending the NN setting to work on multi-relational
representations, such as concept languages like OWL, required suitable metrics whose
definition could not be straightforward. In particular, a theoretical problem has been
posed by the Open World Assumption (OWA) that is generally made in the target con-
text, differently from typical databases settings where the Closed World Assumption
(CWA) is the standard. Indeed the NN algorithms are devised for simple classifications



where classes are assumed to be pairwise disjoint which is quite unlikely in the Seman-
tic Web context.

As pointed out in [3], most of the existing measures focus on the similarity of atomic
concepts within hierarchies or simple ontologies. Moreover they have been conceived
for assessing concept similarity. Conversely, for our purposes, a notion of similarity be-
tween individuals is required. Recently, dissimilarity measures for specific description
logics concept descriptions have been proposed [3, 4]. Although they turned out to be
quite effective for the inductive tasks of interest, they are still partly based on struc-
tural criteria (a notion of normal form) which determine their main weakness: they are
hardly scalable to deal with standard languages, such as OWL-DL, commonly used for
ontologies and knowledge bases.

A new semantic pseudo-metric [7] is exploited in order to overcome these limita-
tions. Following the distance-induction method proposed in [9], the proposed measures
are based on a committee of features (concepts) onto which individuals are projected
for being compared. As such, these measures are not absolute, yet they depend on the
knowledge base they are applied to. However, the measures are suitable for a wide
range of languages, since they merely depend on the discernibility of the input individ-
uals w.r.t. a fixed set of concepts. The choice of optimal committees may be performed
in advance through randomized search algorithms [7].

Such measures have been integrated in the NN procedure presented in [4]. Essen-
tially the classification of a resource w.r.t. a query concept is performed by selecting the
closest resources in the knowledge base and then determining the membership through
a weighted voting procedure based on the neighbor similarity.

The resulting system allowed for an experimentation of the method on performing
instance retrieval with real ontologies drawn from public repositories comparing its
predictions to the assertions that were logically derived by a standard reasoner. These
experiments show that the novel measure considerably increases the effectiveness of
the method with respect to past experiments where the same procedure was integrated
with other dissimilarity measures [4].

The paper is organized as follows. The basics of the instance-based approach ap-
plied to the standard representations are recalled in Sect. 2. The next Sect. 3 presents
the semantic similarity measures adopted in the retrieval procedure. Sect. 4 reports the
outcomes of experiments performed with the implementation of the procedure. Possible
developments are finally examined in Sect. 5.

2 Resource Retrieval as Nearest Neighbor Search

2.1 Representation and Inference

In the following sections, we assume that concept descriptions are defined in terms of a
generic sublanguage based on OWL-DL that may be mapped to Description Logics with
the standard model-theoretic semantics (see the handbook [1] for a thorough reference).

A knowledge base K = 〈T ,A〉 contains a TBox T and an ABox A. T is a set of
axioms that define concepts. A contains factual assertions concerning the resources,
also known as individuals. Moreover, the unique names assumption may be made on



the ABox individuals, that are represented by their URIs. The set of the individuals
occurring in A will be denoted with Ind(A).

As regards the inference services, like all other instance-based methods, our proce-
dure may require performing instance-checking [1], which roughly amounts to deter-
mining whether an individual, say a, belongs to a concept extension, i.e. whether C(a)
holds for a certain concept C. Note that because of the OWA, a reasoner may be un-
able to give a positive or negative answer to a class-membership query. This service is
provided proof-theoretically by a reasoner.

2.2 The Method

Query answering boils down to determining whether a resource belongs to a (query)
concept extension. Here, an alternative inductive method is proposed for retrieving the
resources that likely belong to a query concept. Such a method may also be able to
provide an answer even when it may not be inferred by deduction, Moreover, it may
also provide a measure of the likelihood of its answer.

In similarity search [10] the basic idea is to find the most similar object(s) to a query
one (i.e. the one that is to be classified) with respect to a similarity (or dissimilarity)
measure. We review the basics of the k-NN method applied to the Semantic Web context
[4] context.

The objective is to induce an approximation for a discrete-valued target hypothesis
function h : IS 7→ V from a space of instances IS to a set of values V = {v1, . . . , vs}
standing for the classes (concepts) that have to be predicted. Note that normally |IS| �
|Ind(A)| i.e. only a limited number of training instances is needed especially if they are
prototypical for a region of the search space. Let xq be the query instance whose class-
membership is to be determined. Using a dissimilarity measure, the set of the k nearest
(pre-classified) training instances w.r.t. xq is selected: NN(xq) = {xi | i = 1, . . . , k}.

In its simplest setting, the k-NN algorithm approximates h for classifying xq on the
grounds of the value that h is known to assume for the training instances in NN(xq),
i.e. the k closest instances to xq in terms of a dissimilarity measure. Precisely, the value
is decided by means of a weighted majority voting procedure: it is simply the most
voted value by the instances in NN(xq) weighted by the similarity of the neighbor
individual.

The estimate of the hypothesis function for the query individual is:

ĥ(xq) := argmax
v∈V

k∑
i=1

wiδ(v, h(xi)) (1)

where δ returns 1 in case of matching arguments and 0 otherwise, and, given a dissimi-
larity measure d, the weights are determined by wi = 1/d(xi, xq).

Note that the estimate function ĥ is defined extensionally: the basic k-NN method
does not return an intensional classification model (a function or a concept definition),
it merely gives an answer for the instances to be classified. It should be also observed
that this setting assigns a value to the query instance which stands for one in a set
of pairwise disjoint concepts (corresponding to the value set V ). In a multi-relational



setting this assumption cannot be made in general. An individual may be an instance of
more than one concept.

The problem is also related to the CWA usually made in the knowledge discov-
ery context. To deal with the OWA, the absence of information on whether a training
instance x belongs to the extension of the query concept Q should not be interpreted
negatively, as in the standard settings which adopt the CWA. Rather, it should count as
neutral (uncertain) information. Thus, assuming the alternate viewpoint, the multi-class
problem is transformed into a ternary one. Hence another value set has to be adopted,
namely V = {+1,−1, 0}, where the three values denote, respectively, membership,
non-membership, and uncertainty, respectively.

The task can be cast as follows: given a query conceptQ, determine the membership
of an instance xq through the NN procedure (see Eq. 1) where V = {−1, 0,+1} and
the hypothesis function values for the training instances are determined as follows:

hQ(x) =

+1 K |= Q(x)
−1 K |= ¬Q(x)

0 otherwise

i.e. the value of hQ for the training instances is determined by the entailment1 the cor-
responding assertion from the knowledge base.

Note that, being based on a majority vote of the individuals in the neighborhood,
this procedure is less error-prone in case of noise in the data (e.g. incorrect assertions)
w.r.t. a purely logic deductive procedure, therefore it may be able to give a correct
classification even in case of (partially) inconsistent knowledge bases.

It should be noted that the inductive inference made by the procedure shown above
is not guaranteed to be deductively valid. Indeed, inductive inference naturally yields
a certain degree of uncertainty. In order to measure the likelihood of the decision
made by the procedure (individual xq belongs to the query concept denoted by value
v maximizing the argmax argument in Eq. 1), given the nearest training individuals in
NN(xq, k) = {x1, . . . , xk}, the quantity that determined the decision should be nor-
malized by dividing it by the sum of such arguments over the (three) possible values:

l(class(xq) = v|NN(xq, k)) =
∑k

i=1 wi · δ(v, hQ(xi))∑
v′∈V

∑k
i=1 wi · δ(v′, hQ(xi))

(2)

Hence the likelihood of the assertion Q(xq) corresponds to the case when v = +1.

3 A Semantic Pseudo-Metric for Individuals

As mentioned in the first section, various attempts to define semantic similarity (or dis-
similarity) measures for concept languages have been made, yet they have still a limited
applicability to simple languages [3] or they are not completely semantic depending also
on the structure of the descriptions [4]. Moreover, for our purposes, we need a function
for measuring the similarity of individuals rather than concepts. It can be observed that

1 We use |= to denote entailment, as computed through a reasoner.



individuals do not have a syntactic structure that can be compared. This has led to lifting
them to the concept description level before comparing them (recurring to the notion of
the most specific concept of an individual w.r.t. the ABox [1], yet this makes the mea-
sure language-dependent. Besides, it would add a further approximations as the most
specific concepts can be defined only for simple DLs.

For the NN procedure, we intend to exploit a new measure that totally depends on
semantic aspects of the individuals in the knowledge base.

3.1 The Family of Measures

The new dissimilarity measures are based on the idea of comparing the semantics of
the input individuals along a number of dimensions represented by a committee of
concept descriptions. Indeed, on a semantic level, similar individuals should behave
similarly with respect to the same concepts. Following the ideas borrowed from [9],
totally semantic distance measures for individuals can be defined in the context of a
knowledge base.

More formally, the rationale is to compare individuals on the grounds of their se-
mantics w.r.t. a collection of concept descriptions, say F = {F1, F2, . . . , Fm}, which
stands as a group of discriminating features expressed in the OWL-DL sublanguage
taken into account.

In its simple formulation, a family of distance functions for individuals inspired to
Minkowski’s norms Lp can be defined as follows [7]:

Definition 3.1 (family of measures). Let K = 〈T ,A〉 be a knowledge base. Given a
set of concept descriptions F = {F1, F2, . . . , Fm}, a family of dissimilarity functions
dF

p : Ind(A)× Ind(A) 7→ [0, 1] is defined as follows:

∀a, b ∈ Ind(A) dF
p(a, b) :=

1
|F|

 |F|∑
i=1

| πi(a)− πi(b) |p
1/p

where p > 0 and ∀i ∈ {1, . . . ,m} the projection function πi is defined by:

∀a ∈ Ind(A) πi(a) =

 1 Fi(a) ∈ A (K |= Fi(a))
0 ¬Fi(a) ∈ A (K |= ¬Fi(a))

1/2 otherwise

The superscript F will be omitted when the set of features is fixed.
The alternative definition for the projections, requires the entailment of an assertion

(instance-checking) rather than the simple ABox look-up; this can make the measure
more accurate yet more complex to compute unless a KBMS is employed maintaining
such information at least for the concepts in F.

3.2 Discussion

It is easy to prove [7] that these functions have the standard properties for pseudo met-
rics (i.e. semi-distances [10]):



Proposition 3.1 (pseudo-metric). For a given a feature set F and p > 0, dp is a
pseudo-metric.

It cannot be proved that dF
p(a, b) = 0 iff a = b. This is the case of indiscernible

individuals with respect to the given set of features F. To fulfill this property several
methods have been proposed involving the consideration of equivalent classes of indi-
viduals or the adoption of a supplementary meta-feature F0 determining the equality of
the two individuals.

Compared to other proposed dissimilarity measures [3, 4], the presented functions
do not depend on the constructors of a specific language, rather they require only (re-
trieval or) instance-checking for computing the projections through class-membership
queries to the knowledge base.

The complexity of measuring he dissimilarity of two individuals depends on the
complexity of such inferences (see [1], Ch. 3). Note also that the projections that de-
termine the measure can be computed (or derived from statistics maintained on the
knowledge base) before the actual distance application, thus determining a speed-up in
the computation of the measure. This is very important for algorithms that massively
use this distance, such as all instance-based methods.

The measures strongly depend on F. Here, we make the assumption that the feature-
set F represents a sufficient number of (possibly redundant) features that are able to
discriminate really different individuals. The choice of the concepts to be included –
feature selection – is beyond the scope of this work (see [7] for a randomized optimiza-
tion procedure aimed at finding optimal committees). Experimentally, we could obtain
good results by using the very set of both primitive and defined concepts found in the
knowledge base.

Of course these approximate measures become more and more precise as the knowl-
edge base is populated with an increasing number of individuals.

4 Experimentation

4.1 Experimental Setting

In order to test the NN procedure integrated with the pseudo-metric proposed in the
previous section, we have applied it to retrieval problems on random queries.

To this purpose, a number of OWL ontologies was selected, namely: FINITE STATE
MACHINES (FSM), SURFACE-WATER-MODEL (SWM), part of SCIENCE and NEW
TESTAMENT NAMES (NTN) from the Protégé library2, the Semantic Web Service Dis-
covery dataset3 (SWSD) and the FINANCIAL ontology4. Tab. 1 summarizes the details
of these knowledge bases.

For each ontology, 30 queries were randomly generated by composition of primitive
or defined concepts. The performance was evaluated comparing the decisions made by
the NN procedure to those returned by a standard reasoner5 as a baseline.

2 http://protege.stanford.edu/plugins/owl/owl-library
3 https://www.uni-koblenz.de/FB4/Institutes/IFI/AGStaab/Projects/xmedia/

dl-tree.htm
4 http://www.cs.put.poznan.pl/alawrynowicz/financial.owl
5 We employed PELLET v. 1.5. See http://pellet.owldl.com



Table 1. Data concerning the ontologies employed in the experiments.

knowledge base DL language #concepts #object prop. #data prop. #individuals

FSM SOF(D) 20 10 7 37
SWM ALCOF(D) 19 9 1 115

SCIENCE ALCIF(D) 74 70 40 331
NTN SHIF(D) 47 27 8 676

SWSD ALCH 258 25 0 732
FINANCIAL ALCIF 60 17 0 1000

The parameter k was set to log |Ind(A)| depending on the number of individuals in
the ontology. Yet we found experimentally that much smaller values could be chosen,
resulting in the same classification. We employed the simpler version of the distance
(dF

1) using all the concepts in the knowledge base for determining the set F.

4.2 Results

Standard IR measures. Initially the standard IR measures precision, recall, and F1-
measure were employed to evaluate the system performance. The outcomes are reported
in Fig.2. For each knowledge base, we report the average values obtained over the 30
queries as well as their standard deviation and minimum-maximum ranges of values.

It is possible to note that precision and recall are generally quite good except in the
experiment with the SWSD ontology where precision was significantly lower. Namely,
SWSD turned out to be more difficult (also in terms of recall) for two reasons: a very
limited number of individuals per concept was available and the number of concepts is
larger than in other knowledge bases. For the other ontologies scores are quite high, as
testified also by the F-measure values. The results in terms of recall are also more stable
than those for recall as proved by the limited variance observed, whereas some queries
turned out to be quite difficult w.r.t. the correctness of the answer.

The reasons for precision being less than recall are probably related to the OWA.
Indeed, in a many cases it was observed that the NN procedure deemed some individ-
uals as relevant for the query issued while the DL reasoner was not able to assess this
relevance and this was computed as a mistake while it may likely turn out to be a correct
inference when judged by a human agent.

Because of the problem issued by the OWA, in some cases it could not be (de-
ductively) ascertained whether a resource was relevant or not for a given query. Thus
explicitating both the rate of inductively classified individuals and the real nature of the
mistakes would be needed. This leads to consider different indices.

Alternative measures. In previous works [4], we had employed the following indices
for the evaluation:

– match rate: rate of individuals whose classification matched the reasoner decision;
– omission error rate: rate of individuals for which inductive method could not de-

termine whether they were relevant to the query (or not) while they were actually
relevant according to the reasoner;



Table 2. Experimental results in terms of standard IR measures: average ± standard deviation
and [min.;max.] intervals.

precision recall F-measure

FSM
89.22 ± 15.88 91.63 ± 12.41 90.26 ± 14.46
[28.60;100.00] [50.00;100.00] [36.39;100.00]

SWM
73.35 ± 11.66 89.56 ± 9.35 80.52 ± 10.55
[52.90;93.80] [73.30;97.50] [62.04;93.80]

SCIENCE
94.55 ± 6.03 97.12 ± 2.78 95.79 ± 4.45
[86.70;99.70] [93.50;99.70] [89.97;99.70]

NTN
78.73 ± 9.98 92.28 ± 4.58 84.63 ± 7.84
[34.60;95.60] [ 85.30;99.70] [49.23;97.61]

SWSD
55.30 ± 11.01 70.59 ± 10.37 61.51 ± 9.68
[31.90;74.10] [56.80;86.20] [41.03;79.69]

FINANCIAL
89.57 ± 19.48 97.80 ± 5.06 92.43 ± 15.47
[22.40;99.70] [84.70;100.00] [35.75;99.85]

– commission error rate: rate of individuals inductively found to be relevant to the
query concept, while the reasoner assigned them to its negation (and vice-versa);

– induction rate: rate of individuals whose relevance (or irrelevance) relevant w.r.t.
the query concept could be determined by the inductive method, while this classi-
fication could not be derived logically by the reasoner.

Tab. 3 reports the outcomes in terms of these new indices. Preliminarily, it is im-
portant to note that, in each experiment, the commission error was low or absent. This
means that the search procedure is quite accurate: it did not make critical mistakes i.e.
cases when an individual is deemed as an instance of a concept while it really is an
instance of a disjoint one. Furthermore, the rate of omission errors was quite low, yet it
is more frequent for the considered ontologies especially when few disjointness axioms
were specified. A noteworthy difference was observed for the case of the FINANCIAL
ontology for which we found the lowest match rate and the highest variability in the
observed results over the various query concepts.

Comparing these outcomes to those reported in other works on the same task [4],
where the highest average match rate observed was about 80%, we find a significant
increase of the performance due to the accuracy of the new measure. Also the elapsed
time (not reported here) was much less with the new measure: once the values of the
projection functions are pre-computed, the efficiency of the classification, which de-
pends on the similarity computation gains a lot of speed-up.

The usage of all concepts for the feature committee F made the measure quite ac-
curate, which is the reason why the procedure resulted quite conservative as regards
inducing new assertions. In many cases, it matched rather faithfully the reasoner deci-
sions (the top k nearest neighbors had null distance w.r.t. the query instance). Namely,
we found that a choice for lower values for k could have been made, for in many cases
the decision on the correct classification was easy to make even on account of fewer
(the closest) neighbor instances. This yielded also that the likelihood of the inference
made (see Eq. 2) turned out quite high.



Table 3. Results with alternative indices: average± standard deviation and [min.;max.] intervals.

match r. commission e.r. omission e.r. induction r.

FSM
94.51 ± 6.63 5.49 ± 6.63 0.00 ± 0.00 0.00 ± 0.00

[73.00;100.00] [0.00;27.00] [0.00;0.00] [0.00;0.00]

SWM
85.38 ± 5.69 0.00 ± 0.00 2.68 ± 0.92 11.95 ± 5.37
[75.70;98.30] [0.00;0.00] [0.90;4.30] [0.90;20.90]

SCIENCE
97.31 ± 1.97 0.00 ± 0.00 0.98 ± 0.61 1.71 ± 1.41
[94.60;99.40] [0.00;0.00] [0.30;1.80] [0.30;3.60]

NTN
88.06 ± 6.95 0.00 ± 0.00 2.12 ± 0.77 9.83 ± 7.12
[74.60;95.40] [0.00;0.00] [0.30;3.40] [4.30;24.30]

SWSD
85.40 ± 4.96 0.00 ± 0.00 4.76 ± 1.86 9.84 ± 3.97
[74.50;92.20] [0.00;0.00] [2.70;8.70] [4.00;19.00]

FINANCIAL
93.34 ± 11.55 6.30 ± 11.55 0.01 ± 0.03 0.35 ± 0.06
[54.80;99.70] [0.00;44.70] [0.00;0.10] [0.30;0.50]

Cases of induction are particularly interesting because they suggest new assertions
which cannot be logically derived by a deductive reasoner and they might be used to
complete a knowledge base [2], e.g. after being validated by an ontology engineer. Eq. 2
should be employed to assess the likelihood of the candidate assertions and hence de-
cide on their inclusion in the ABox.

5 Conclusions and Outlook

This paper explored the application of a distance-based procedure for semantic search
to knowledge bases represented in OWL. To this purpose, a novel family of language-
independent semantic pseudo-metrics was exploited. Specifically, these measures were
integrated in a nearest neighbor search procedure which can be employed for solving
approximate retrieval problems.

This turns out to be more effective w.r.t. purely logical methods, especially in the
presence of incomplete (or noisy) information in the knowledge bases. Experiments
made on various ontologies showed that the method is quite effective and also robust
since it seldom made commission errors during the various runs. As expected for an
instance-based learning method, the overall performance depends on the number (and
distribution) of the available training instances.

As regards the dissimilarity measures, we argue that more efficiency may be reached
when statistics (on class-membership) are maintained by the KBMS [8]. Besides, so
far, the subsumption relationships among concepts in the feature committee are not
explicitly exploited, which might likely make similarity measurements more accurate.

Further developments can be also foreseen as concerns the choice of good feature
committees. Namely, since measures are very dependant on this choice, some immedi-
ate lines of investigations arise: studying how to maintain limited-sized concepts com-
mittees, yet saving those sets which altogether are endowed of a real discriminating
power.



Randomized optimization procedures can be used to learn maximally discriminating
sets of features, by allowing the composition of concepts through the specific construc-
tors made available by the representation language of choice [7]. This can be accom-
plished especially well when large sets of individuals are available for the ontologies.
Namely, part of the entire data can be drawn in order to learn optimal feature sets, in
advance with respect to the next stage.

As mentioned, the measures can be adopted in other instance-based machine learn-
ing methods which can be applied to several further tasks. For instance, the measures
have been exploited in a hierarchical conceptual clustering algorithm where clusters
would be formed grouping individual resources on the grounds of their similarity [6].

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors. The
Description Logic Handbook. Cambridge University Press, 2003.

[2] F. Baader, B. Ganter, B. Sertkaya, and U. Sattler. Completing description logic knowledge
bases using formal concept analysis. In M. Veloso, editor, Proceedings of the 20th In-
ternational Joint Conference on Artificial Intelligence, pages 230–235, Hyderabad, India,
2007.

[3] A. Borgida, T.J. Walsh, and H. Hirsh. Towards measuring similarity in description logics.
In I. Horrocks, U. Sattler, and F. Wolter, editors, Working Notes of the International De-
scription Logics Workshop, volume 147 of CEUR Workshop Proceedings, Edinburgh, UK,
2005.

[4] C. d’Amato, N. Fanizzi, and F. Esposito. Reasoning by analogy in description logics
through instance-based learning. In G. Tummarello, P. Bouquet, and O. Signore, editors,
Proceedings of Semantic Web Applications and Perspectives, 3rd Italian Semantic Web
Workshop, SWAP2006, volume 201 of CEUR Workshop Proceedings, Pisa, Italy, 2006.

[5] W. Emde and D. Wettschereck. Relational instance-based learning. In L. Saitta, editor,
Proceedings of the 13th International Conference on Machine Learning, ICML96, pages
122–130. Morgan Kaufmann, 1996.

[6] N. Fanizzi, C. d’Amato, and F. Esposito. A hierarchical clustering procedure for semanti-
cally annotated resources. In R. Basili and M.T. Pazienza, editors, Proceedings of the 10th
Congress of the Italian Association for Artificial Intelligence, AI*IA2007, volume 4733 of
LNAI, pages 266–277. Springer, 2007.

[7] N. Fanizzi, C. d’Amato, and F. Esposito. Induction of optimal semi-distances for individu-
als based on feature sets. In D. Calvanese, E. Franconi, V. Haarslev, D. Lembo, B. Motik,
A.-Y. Turhan, and S. Tessaris, editors, Working Notes of the 20th International Descrip-
tion Logics Workshop, DL2007, volume 250 of CEUR Workshop Proceedings, Bressanone,
Italy, 2007.

[8] I. R. Horrocks, L. Li, D. Turi, and S. K. Bechhofer. The Instance Store: DL reasoning with
large numbers of individuals. In V. Haarslev and R. Möller, editors, Proceedings of the
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