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Abstract
With the rise in popularity of smart objects and online services, the use of Trigger-Action Platforms
for the definition of custom behaviors is growing significantly. These platforms enable end-users to
create Event-Condition-Action (ECA) rules for triggering actions upon event occurrences on physical
devices or online services in different domains. ECA rules could easily expose end-users to security
risks mainly due to their low level of knowledge and awareness. To alleviate this problem, classification
models can be used for identifying possible security issues that ECA rules could inflict when triggered.
However, the results produced by these classifiers may not be understood by end-users. This position
paper provides first insights concerning the application of AI models for generating natural language
explanations according to the identified risks of ECA rules.
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1. Introduction

The Internet of Things (IoT) is an innovative paradigm that allows end-users to put smart objects
and online services in direct communication with each other. Recently, we have witnessed the
rise of many platforms that facilitate the interaction between end-users and their ecosystems.
Among them, the most popular ones follow the trigger-action programming (TAP) paradigm,
which empowers end-users to create automation through conditional rules. In particular, these
rules are based on the Event-Condition-Action (ECA) paradigm, where an action is performed
when an event that satisfies a specific condition is triggered. From this perspective, it is easy to
understand why such rules are massively employed. In fact, non-expert end-users can avoid
worrying about low level technical details and focus their attention on the custom behaviors they
want to define. However, it is necessary to consider that most end-users using these platforms
do not have a technical or security background. This lack of knowledge could lead end-users
to define rules that might compromise their privacy or the security of their environment. For
instance, at first sight, the rule “Keep your Facebook and Twitter profile pictures in sync” could
not seem harmful. However, an end-user may forget that such a rule is active, allowing the
upload of an unwanted photo to Twitter, causing possible embarrassment. Thus, it is essential
to identify these situations in order to warn end-users about the risks they expose themselves.
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Many works have addressed these issues by carefully categorizing the types of harm that
could be inflicted [1, 2, 3, 4]. An approach for their detection is the use of Artificial Intelligence
(AI) techniques, since they allow for analyzing the semantic and contextual information in
which an ECA rule is applied. In [5], we firstly evaluated the feasibility of classifying ECA rules
by training a classification model on manually labeled rules with respect to four classes of risk
[2]. Such a solution provides many advantages over static approaches, such as the analysis of
the information flow [2], which performs a static services analysis without considering the
context where a rule is employed.

The results produced by classification models are difficult to understand without expert
knowledge. Thus, it is fundamental to provide end-users with valid explanations describing the
risks connected to a rule in a comprehensible manner, with the aim of enhancing the end-users
trust. Such a task can be faced by employing the Explainable Security (XSec) paradigm, which is
inspired by the eXplainable Artificial Intelligence (XAI) research field [6].

This position paper highlights existing AI techniques that can be used for generating natural
language explanations clarifying why an ECA rule might cause harm.

2. Generation of explanations

Over the last few years, the need for solutions supporting end-users in understanding the results
of AI techniques is progressively increasing. To this end, the Defense Advanced Research Projects
Agency proposed the XAI paradigm [6], which deals with elucidating, in total transparency, the
reason behind the outputs of an AI model.

Many XAI-based solutions have been proposed in the literature. For instance, Ribeiro et al.
introduced Local Interpretable Model-Agnostic Explanations (LIME) [7], a technique that can
faithfully explain the results of any AI model using a linear model. More specifically, we can
use LIME to plot information about a model prediction, such as the probability distribution over
target classes, the relevance of each feature of an instance in the classification task, and the set
of words in a sentence that leads the model towards a specific decision. Similarly, Lundberg et
al. presented SHapley Additive exPlanations (SHAP) [8], an additive feature attribution method
based on Shapley values and game theory. SHAP makes it possible to identify the predictive
power of features and the relationships between them and the target class.

Although these solutions allow for increasing end-user confidence and trust in prediction
models by providing knowledge that can be easily interpreted, they may be ineffective for the
audience we consider. Indeed, it is worth noting that such solutions arise intending to define
visual representations that facilitate end-users to comprehend model decisions in producing
a specific output (e.g., which features lead to a prediction rather than another). Instead, in
the context of ECA rules, we need to explain to end-users the scenarios in which a rule could
become dangerous for their privacy or security.

Inspired by the XAI paradigm, Viganò et al. proposed a new paradigm: XSec [9]. The latter
aims to explain reasoning about privacy and security vulnerabilities and concrete attacks on
systems. The authors suggest several approaches to produce different explanations according
to the levels of detail required by the stakeholders. For instance, explanations for a system
analyst might be presented with a low level of abstraction, such as explanation trees, attack



trees, formal languages, and so forth. Instead, non-expert end-users need easily understandable
explanations, so a higher level of abstraction must be adopted.

A possible solution is using natural language explanations, which are immediately under-
standable by all types of end-users and can be customized according to the context of the use
of rules. Figure 1 shows an example of the process yielding the generation of explanations
for risky ECA rules. In particular, features concerning an ECA rule, i.e., event, condition, and
action, are considered by a classification module, which identifies the class of risk. Finally, the
XAI module will generate an explanation by considering both the ECA rule characteristics and
the identified risk.
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Figure 1: An example of the flow for generating explanations concerning risky ECA rules

The automatic generation of textual explanations is faced by another branch of XAI, called
Explainable AI with Natural Language Explanations (Natural-XAI) [10]. The latter aims to build
AI models capable of generating sentences that justify the ground-truth predictions inferred by
classification models. Several approaches could be adopted to generate textual explanations
that express the reason involving the risks associated with ECA rules. Among them, language
models represent an effective way to achieve this goal since they can produce a structured
text relating the risk and the rule’s context of use. The existing models differ in the way they
manipulate the data. For instance, Text-to-Text-Transfer-Transformer (T5) [11] is a model that
can generate a sentence by taking a list of keywords as input. Thus, it is required to employ a
further module for extracting the keywords from the rules’ information. On the other hand,
a model as Generative Pre-trained Transformer 2 (GPT-2) [12] requires the definition of a
specific format for the rules to produce the textual explanations corresponding to the risks.
Concerning this matter, one approach that could be exploited is prompt-based learning [13].
The latter focuses on finding the most appropriate prompt to adopt with a language model in
order to manipulate its behavior and predict the desired output. Recently, models capable of
jointly generating the prediction and explanation for a given instance are becoming increasingly
popular [14, 15]. These models provide an advantage with respect to the necessity of applying
in combination two different models, i.e., a classifier and a language model.

At the workshop, we will present how language models can be adopted to achieve the
discussed goals.
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