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Abstract 
The aim of this paper is to present the development and improvements 
done in the specific stochastic branching model during the progress of the 
COVID’19 pandemic caused by SARS-CoV-2 coronavirus up to spring 
of the year 2022. Our approach is data-driven and uses the parsimonious 
continuous time Crump-Mode-Jagers branching processes (CMJBP) 
model. The model provides a basis for decision makers to understand the 
likely trade-offs as an outbreak begins.
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1. Introduction

The theory of branching processes is a powerful tool for study of population 
dynamics where the members of the population produce new members whose 
evolution is driven by one and the same stochastic laws. That is why branching 
processes have relevant applications in physics, biology, medicine, demography, 
epidemiology, economics, computer science and many other areas where such 
patterns appear in a natural way. We would like to point out the classical mono-
graph [1] and some recent ones [2]–[6] among others where fundamental models 
and results of branching processes are presented. Related to the applications of 
branching processes in biology and medicine [7]–[9] could be pointed out as use-
ful references. On the other hand, statistical inferences of branching processes are 
considered in [10]–[13].

This paper continues the stochastic modelling research based on the continu-
ous time Crump-Mode-Jagers branching model started in [14] at the beginning of 
the COVID’19 pandemic. In the two-year period of time we were witnessed of 
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five waves of the pandemic due to the different variants of the SARS-CoV-2 coro-
navirus, which were spreading with various intensities all over the world. That is 
leading to the need of many improvements and modifications of the general tool 
[15] and in [16] we are using for the simulation and computational procedures, 
as well.

In what follows we would like to make a short review of the papers devoted 
to the stochastic modelling of COVID’19 in Bulgaria for the same period. Con-
cerning the lines of research towards the modeling of COVID’19 and statistical 
procedures for estimating model parameters, the recent paper by [17] could be 
pointed out. The results reported there extend the previous research of the authors 
initiated in [18]. More precisely, the authors incorporated into the model an im-
migration component, vaccination policy and adaptive immunity as additional 
factors that turned out to be important for the pandemic spreading in Bulgaria. 
The parameters of the model were estimated from daily available data, repre-
senting the number of registered infected individuals. That is mainly the basic 
reproduction number or the mean number of daily secondary cases, i.e., number 
of infected individuals by one individual per day. The analyses are made in the 
frame of two-type Galton-Watson branching process. 

In [19] using official data for Bulgaria, the authors investigated the relation 
between registered COVID’19infections and related deaths by age and time to 
estimate the absolute and relative mortality risk. Their aim is to design a basic 
framework for risk management strategies in order to minimize deaths during the 
ongoing COVID’19 epidemic in countries with similar quality of healthcare. The 
used statistical methods are based on dynamic regression models and classical 
time series analysis.

The paper is organized as follows: Section 2 briefly reminds some prelimi-
naries of the CMJBP model, while Section 3 is devoted to the improvements 
of the statistical methodology developed in [16] and aims to present the results 
established by simulation method with especially calibrated parameters of the 
model fitted to the available data. 

We end up the paper by discussion of the results and a brief plan for future 
work in Section 4.

2. Preliminaries of Crump-Mode-Jagers branching processes 
model

Before proceeding we give outline descriptions of some common branch-
ing process models (see e.g., Jagers [9] for further details), which describe the 
evolution of a single-type population, which in what follows will be supposed 
to be the one of infected individuals. In all these branching models, individuals 
have independent and identically distributed reproduction processes. The re-
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production process in terms of epidemic spread is meaning the random process 
signifying the new infected by each contact with infectious one. In the case of 
SARS-CoV-2 coronavirus it is known that each contact results in new infective. 
In a general branching process, also called a Crump-Mode-Jagers branching 
process (CMJBP), each individual lives until a random age, distributed accord-
ing to I, and reproduces at ages according to a point process ζ. More precisely, 
if an individual, i say having reproduction profile (Ii,ξi), is born at time bi and 0 
≤ τi1 ≤ τi2 ≤ ... ≤ Ii denote the points of ξi, then individual i has one child at each 
of times bi + τi1,bi + τi2,.... This model allows that a mother could have more than 
one child during her life or in terms of epidemic that every contaminated case 
could contact and pass the viral infection to more than one susceptible during 
its infectious period. However, the situation with SARS-CoV-2 coronavirus is 
rather different in comparison to other viruses existed till now. It was reported 
that an individual could just transfer the virus without being ill and/or symp-
tomatic, which complicates the contact process as a whole and the tracing of 
contacts consequently.

This paper is primarily concerned with models for epidemics of diseases 
which follow the so-called SEIR (Susceptible → Exposed → Infective → Re-
moved) scheme in a closed, homogeneously mixing population or some of its 
extensions. A key epidemiological parameter for such an epidemic model is 
the basic reproduction number R0 (see Heesterbeek and Dietz [20]), which in 
the present setting is given by the mean of the offspring distribution of the ap-
proximating branching process. A major outbreak (i.e., one whose size is of the 
same order as the population size) occurs with non-zero probability if and only 
if R0 > 1. 

Let us point out another interesting model proposed in [21] where a gamma 
negative binomial branching process is accepted for the number of new infections 
generated by an infected individual.

Suppose that R0 > 1 and some preventive transmission measures are taken 
in advance of an epidemic. If there were a vaccine this could be expressed in 
such a way that fraction c of the population is vaccinated with a perfect vaccine 
in advance of an epidemic. Then R0 is reduced to (1 − c) R0, since a proportion 
c of infectious contacts is with vaccinated individuals. It follows that a major 
outbreak is almost surely prevented if and only if c ≥ 1 – R0

-1. This well-known 
result, which gives the critical vaccination coverage to prevent a major outbreak 
and goes back at least to 1964 (e.g., Smith [22]), is widely used to inform public 
health authorities, but only if there is a vaccine.
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3. Improvements of the statistical method and simulation results

3.1. Improvements of the statistical modelling
Our methodology is based primarily on the CMJBP as a model of epidemic 

spread. We would like to point out here the fundamental result of Ball and Don-
nelly [23] giving us the theoretical evidence of the almost sure convergence of 
the epidemic models to the proper CMJBP under certain conditions. By use of 
the statistical software especially developed for branching processes simulations 
[16] we first fit the parameters of the model to the data available for particular 
country. The two main characteristics running the behavior of the CMJBP are the 
distribution of the life period of individuals and the point process governing the 
reproduction process of any infected individual which may depend on the age of 
individual. These quantities in terms of epidemic spreading mean the distribution 
of the serial interval which is the sum of incubation period and delay period and 
the point process signifying the number of new infected individuals any infective 
individual may pass the virus to.

In the present study for the parameters of the CMJBP, we use the left-trun-
cated normal distribution N(35,5.12), using the estimates from [16]. For the point 
process modelling, i.e. the number of infected individuals by one infected, we 
use gamma distribution with appropriately defined parameters, i.e. Γ (7.27,1.32) 
(see [16]). 

The essential changes we make in the tool [15] are as follows: we started 
with variables’ initialization: dates range, R0, horizon, µ – the immigration mean, 
confidence interval, number of simulations. We have applied three forecast mod-
els called: 

• Main scenario corresponding to the case when an immigration and R0 es-
timation is determined, so that the algorithm recalculates them until is found 
such R0 s in [0.3; 5] which are smoothly changing in time. For them is calcu-
lated the immigration mean (outside incoming infectious people), being the 
newly infected ones in the population;
• Optimistic scenario that is the main scenario with new R̃ = R0 – 0.2;
• Pessimistic scenario that is the main scenario with new R0 + [0.8; 1.2].
Data filtering options have been added so that process research can be done 

after a certain date. They not to be dependable by year (it was hardcoded in the 
original version). We have added the ability to smooth the data, given that we are 
seeing several waves of the pandemic. We have created a version of the code with 
Bulgarian text on the generated graphics (before is missing language support). 
The number of simulations initially in [15] was set to be 1000. It was time con-
suming still in parallel work. After repeated attempts and testing with the number 
of simulations in the interval [100; 1000] it was found that the critical minimum 
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that provides normally good and almost indistinguishable results compared to 
1000 is 150 simulations. Therefore, all subsequent predictions were made with 
150 simulations.

3.2. From the last two waves in Bulgaria
We are illustrating the methodology using the CMJBP after fitting the theo-

retical model to the historical data published at Worldometer (see [25]) for Bul-
garia illustrated the fourth wave on Figure 1 and fifth one on Figure 2. This way 
we acquire the values which are best revealing and explaining the structure of 
the historical data representing the new cases and total cases, as well. Then we 
are projecting further the behavior of the new daily cases in three scenarios in 45 
days horizon.

3.2.1. Fourth wave caused by the Delta variant of the virus 
We have considered the period between July 27, 2021 – December 12, 2021, 

as the fourth wave of pandemic with observed maximum on October 26, 2021, of 
new cases of 6 816 and duration of 5 months.

We have obtained the following computer visualization as a result of the 
implementation of the code: 

• the model fit versus observed data for the total and new daily cases during 
the period between  July 27, 2021 –December 12, 2021 (see Figure 3);
• the estimated R0 and immigration (see Figure 4);
• the three forecasts for new daily cases corresponding to the three sce-
narios (see Figure 5).
• On Figure 3 (on the left) could compare the behavior of the branching 
processes model (in blue dotted line) to the observed size (in black line) for 
the total cases and new daily cases during the fourth wave. The conclusion 
that could be drawn is that the graphs reveal the good fit of the model to data 
observed, in general.
It is worth mentioning here (Figure 4) that the peak of curve representing the 

behavior of R0 has its peak in the week between 21st and 28th of October 2021, 
which is agree with the peak in real data observed on 26th of October. On the 
other side, the immigration curve (in red dotted line) is following the occurrence 
of immigration wave at the beginning of August 2021, then its gradual decrement 
and slight increment after that at the end of the year.
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Figure 1: The fourth wave of the pandemic in Bulgaria – July 27, 2021 –Decem-
ber 12, 2021

Figure 2: The fifth wave of the pandemic in Bulgaria – 15 December 2021 – 25 
March 2022
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Figure 3: Fit of the model vs observed data

Figure 4: The change of estimated 
basic reproduction number and immi-
gration in time

Figure 5: Forecast of new daily in Bul-
garia – 45 days forecasts

3.2.2.	 Fifth	wave	caused	by	the	Omicron	variant	of	the	virus	
We have considered the period between December 15, 2021 – March 25, 

2022 as the fifth wave of pandemic with observed maximum on January 25, 2022 
of new cases of 12 399 and duration of 2.5 months.

We have obtained the following computer visualization as a result of the 
implementation of the code: 

• the model fit versus observed data for the total and new daily cases during 
the period between  July 13, 2021 – March 25, 2022 (see Figure 6);
• the estimated R0 and immigration (see Figure 7);
• the three forecasts for new daily cases corresponding to the three sce-
narios (see Figure 8). 
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Figure 6: Fit of the model vs observed data during the period between 

Figure 7: The change of estimated basic reproduction number and immigration 
in time



151

Figure 8: Forecast of new daily in Bulgaria – 45 days forecasts

The Fifth wave was not possible to be calculated accurately before param-
eters’ changes in MATLAB tool, described in Sections 3.1 and 4.1, nor just the 
Fifth wave, nor both Fourth and Fifth waves. The reason in Figure 6, Figure 7, 
and Figure 8 to be shown both waves is to test if the tool has the possibility to 
analyze and fit both waves. It is evident the success we made with the param-
eters’ optimization. The optimization shows correctly at the same time main, 
optimistic, and pessimistic scenario including in retrospection. If we have to 
make some general remark on the obtained results, we could say there is no 
significant difference in trends for all scenarios in both waves. We could make 
similar conclusions also for the Immigration processes, shown on Figure 4 and 
Figure 7.

4. Discussion

4.1. Discussion on obtained prognosis with branching processes
In this paper we have presented an updated mathematical tool to tackle pan-

demic outbreaks considering the effect of immigration. This tool (see description 
in 3.1) addresses various technical questions to support the ongoing public health 
response to COVID’19. Our approach considers both estimation efforts for key 
parameters, and investigative efforts (often numerical simulations) in assessing 
the effectiveness of various intervention or control measures. The tool is written 
in MATLAB and has the described structure bellow:
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• buildPlots_filtered plots_wit_bg_subs.m: includes only function 
buildPlots(NewCasesDaily, TotalCasesDaily, ActiveCasesDaily, NewCase-
sHist, dates, horizon, detection_time, alpha, scenario_name, scenario_title, 
varargin) which is used for plot generating with Bulgarian interface 
• buildPlots.m: the original plot generating function
• Confinterval.m: includes only one function that calculates the confidence 
interval: function [Z_mean, Z_lower, Z_upper, Z_median]=confInterval(Z, 
alpha). Currently, it works with the mean measure, but it is possible to be 
used the calculated median with branching process’s function.
• Im_function.m: The function determines immigration process: Im_ma-
trix = Im_function(mu, sgm, Im_age_struct_prob)
• obj_Mu_and_Im.m: The function aims to evaluate BP’s parameters such 
as R0 and the Immigration probability.
• Y_projection.m: Applies numerical method to calculate the BP’s gen-
eration with the presumption there is no fatal cases at any time point. This 
should be used by BP Simulator.
• readCSVData.m: used for CSV data reading. We rewrote the script as the 
time pass the resource links were changed several times. 
• readWorldometerData.m: Reads COVID’19 data from Worldometer. We 
rewrote the main part of the script, so now it is not dependent by the year.
• BranchingProcessSimulator.m: Includes the function that simulates 
Branching processes.
• new_bg.m: The main script. It includes parameters’ settings and uses all 
the other script. We modified the script, so now it is possible to choose date 
range and time lags.
It is possible the tool to be optimized using Python and fully rewritten in-

cluding in additionally graphic user interface. Even more BP model is applicable 
not only in analyzing epidemic data but also in analyzing demographic processes 
and many other areas, that implying branching in next generations.

4.2. Comparative analysis with other forecasting Methods
Some of the classical methods for forecasting time forecasts with variables 

have been selected: Autoregression (AR), Moving Average (MA), Autoregressive 
Moving Average (ARMA), Autoregressive Integrated Moving Average (ARI-
MA), Seasonal Autoregressive Integrated Moving-Average (SARIMA), Simple 
Exponential Smoothing (SES), Holt Winter’s Exponential Smoothing (HWES). 
These methods are widely used for data analyzing when it is needed to forecast 
a process.

Due to the nature of time-series data, there are several specificities involved 
in time series modeling that are not relevant to other datasets as the timestamp 
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that identifies the data has intrinsic meaning. Time-series data are mostly Univar-
iate, which doesn’t mean there is no Decomposition. Contrariwise, the decompo-
sition is a technique to determine whether there is seasonality, trend or stationery, 
and noise in data. The main rule is if there is present trend then the data are not 
stationary. The time series models bellow are not able to deal with trends. We can 
detect non-stationarity using the Dickey-Fuller Test and if it is present, we can 
remove non-stationarity using differencing.

ARIMA family (AR, MA, ARMA, ARIMA, SARIMA, SARIMAX) models 
are used to forecast the observation at (t+1) based on the historical data of previ-
ous time spots recorded for the same observation. All these models give close 
enough prediction about any particular time series. 

Simple research in Web of Science shows what looks like the use or ARIMA 
family in forecasting over the years, as all numbers are in terms of ‘about’:

 Applied model ARMA ARIMA SARIMA
Over the time 5000 9000 1100
In last 6 years 1500 4000 600
In last 6 years, only for analyzing COVID’19 
data (only by search term ‘covid’) 23 345 44

We can make an aggregated formula for all ARIMA family models in form 
of parameters describing the model:

ARIMA_family_model (p,d,q)
will describe models AR, MA, ARMA, ARIMA, SARIMA, where:
p: is how many previous timesteps adjusted by a multiplier and then adding 

white noise we are using. Comes from AR model.
d: is the difference order, which is the number of transformations needed to 

make the data stationary. Comes from I model.
q: is the number of lagged forecasting error terms in the prediction. Comes 

from MA model. In an MA (1) model, the forecast is a constant term plus the 
previous white noise term times a multiplier, added with the current white noise 
term. This is just simple probability and statistics, as we are adjusting our forecast 
based on previous white noise terms.

Obtained result for stationarity has p-value<0.05 which means that COV-
ID’19 time-series is stationary, so all the above models are applicable. We are 
using AR, MA, ARMA and ARIMA with the presumption the data are not sea-
sonal, as there is not exactly and identical measure for seasons in COVID’19 data 
nevertheless we have several waves. In the table below are shown the values of 
parameters p, d, and q for MA, ARMA, ARIMA and SARIMA that were applied 
testing the model with COVID’19 data:
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Model p d q
AR 1 NA NA
MA NA NA 1
ARMA 2 0 1
ARIMA 1 1 1
SARIMA 1 1 1

SARIMA model is very similar to the ARIMA, except that there is an addi-
tional set of autoregressive and moving average components. The additional lags 
are offset by the frequency of seasonality (ex. 12 — monthly, 24 — hourly). Im-
plementation doesn’t include seasons, but it is possible to introduce for example 
weekly dependence as it is a well-known fact the values for Saturday and Sunday 
often are smaller than the values from the other days. So, on a weekly base it 
is possible to identify mini waves. The other opportunity is to approximate the 
intervals between picks of waves and to use this measure as seasonal parameter.

Data on new daily cases for COVID’19 were downloaded from the Worl-
dometer website and processed using the listed methods using Python [27] with 
Python module statsmodels 0.14.0 [28]. There is comparability because the al-
gorithm for branching processes uses the same data set. Forecasts are generated 
quickly and represent specific integers that should reflect new cases. Each pre-
dicted value is added to the original data so that we can predict the next one in 
chronological order. The forecast horizon is 45 days. 

Figure 9: ARMA vs ARIMA prognosis
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Figure 10: ARIMA forecast Figure 11: AR forecast

The SES and HWES methods are not applicable, as manage to make a fore-
cast in just two days and then there is no change in the forecast value within the 
desired forecast period. The ARIMA and SARIMA methods give similar results, 
with the difference that they manage to make a forecast for the next 6 days. How-
ever, they could be used for short-term forecasts, and in both cases the trend is 
sharply rising, but the slope is low. The results themselves are identical. The 
AR and ARMA methods are interesting because the forecast is not monotonous. 
For them, the maximum of possible days for forecast is 26, and then contin-
ues unchanged. We could refer them to the pessimistic variant in the simulation 
of branching processes. The MA method gives a negative trend but manages to 
make predictions for 3 consecutive days. It could be assumed that it reflects the 
optimistic option in simulating branching processes.

The conclusion to be drawn is that branching processes can be taken as a meth-
od that can summarize the trends, we obtain through other forecasting methods.

4.3. Future work
Work on the analysis of the predictions obtained through branching process-

es will continue with the conduct of a series of comparative analyzes, including 
modern methods such as neural networks, including transfer neural networks. At 
a minimum, the following forecasting options will be considered:

1. A neural network that uses the entire time series of data
2. A set of at least 3 separate neural networks, each working on a piece 
of data. The idea comes from the fact that the algorithm we use to predict 
branching processes makes data smoothing – sometimes every 3 days, some-
times every 5 days. This allows us to use different windows to generate dif-
ferent data sets based on the original complete data set. This technique will 
ensure, among other things, comparability of results with different start dates 
and the same smoothing window.



156

3. Variant of 2., in which neural networks will be represented as a convo-
lutional neural network. The result should be a consolidated forecast with a 
horizon of 45 days.
4. Variant of 2. using transfer training. A study by Todor Tsokov, Milena 
Lazarova and Adelina Aleksieva-Petrova will be used for the “Spatial-tem-
poral neural model for predicting air pollution”, presented at the spring sci-
entific session of FMI 2022 FMI SU “St. Kliment Ohridski” [26]. We believe 
that there is a great similarity between the spread of dust particles and the 
spread of viruses. This gives us reason to test the theory by applying transfer 
learning with the data from the distribution of COVID’19 on the neural net-
work from the cited study.
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