
© 2022 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR Workshop Proceedings (CEUR-WS.org)

CVE (NVD) Ontology Generator

Vladimir Dimitrov 1

1 University of Sofia, 5 James Bourchier Blvd., Sofia, 1164, Bulgaria

Abstract
NVD is a very huge database. The corresponding ontology generated from
this database therefore is huge one. An ontology to be manageable by
humans must be organized in adequate way.
The biggest issues in NVD ontology generation are ontology structuring
and performance.
Generation of NVD ontology originally continues in 2–3 days. Maximum
parallelism must be used to short this execution time.
NVD ontology structuring must be done in a way permitting only parts of
the whole ontology to be used.
These issues and the solution are discussed is this paper.

Keywords
CVE, ontology, vulnerabilities, Semantic Web

1. Input data and organization

NIST provides data on zip-compressed vulnerabilities in JSON format. From
2002 until now, there is a separate file for each year with vulnerabilities registered
in that year. There is also an additional file nvdcve-1.1-modified.json.zip, which
contains the latest changes made to vulnerabilities from previous years. This is
done in order not to have to re-download the files in which changes should be
made. In practice, the last file can be used as a patch on the contents of files from
previous years.

There is another file nvdcve-1.1-recent.json.zip, which contains the latest
registered vulnerabilities, but the information from it is duplicated with that of
the current year’s file.

The description of the ontology used in the generation can be found in the
shell.owl file, and the descriptions of the ontology used in the generation of the
individual parts of the ontology can be found in the shellPart.owl.

There is another file for generating shellConfig.owl configurations.
The size of the whole ontology are enormous. Now, a complete generation of

the ontology has not been made, but only in separate parts years.

Information Systems & Grid Technologies: Fifteenth International Conference ISGT’2022, May 27–28, 2022, Sofia, Bulgaria
EMAIL: cht@fmi.uni-sofia.bg (V. Dimitrov)
ORCID: 0000-0002-7441-253X (V. Dimitrov)

254

The reason for these ontology volume related to the size of the configurations
(platforms) to which the individual vulnerabilities relate.

The decision is fully to deploy CPE expression matches to base CPE names
is because RDF is a static graph. It does not execute requests to track the links.
In NVD, vulnerabilities are not directly indicated in the base CPE names [1], but
CPE expression expressions from the CPE language [2] are most commonly used.
Thus, NIST maintains the database compressed. This approach creates problems
when using the NVD database by external users and therefore NIST provides
another file nvdcpematch-1.0.json.zip, which contains these queries (CPE com-
pliance expressions) to the base CPU names.

A separate ontology is generated for each year, which can be presented inde-
pendently and integrated by inclusion in the full ontology.

On the other hand, most of the years, ontologies are also huge and cannot
be viewed with normal text editors or such specialized for ontologies. This ne-
cessitated the breakdown of the ontology for a given year into parts that can be
presented (and used) independently in the Protégé [3]. These parts for the year are
combined in one ontology for the respective year.

These breakdowns of the ontology are not enough – the configurations for
the vulnerabilities are also very huge. In fact, the configurations are exported in
separate files.

Finally, for each part of the ontology of a given year, the configurations of
the vulnerabilities contained in it are exported in a separate series of files.

The ontology for a given part of the year can be considered independently
because it includes all its configurations (files).

2. The implementation

The generator code is in the generateNVDontology.py file.
This program can be started with parameters. The first one is for download-

ing files from the NIST website, and the second – for which years to generate the
ontology.

Copies of the files from the NIST site are stored in the “data” subdirectory.
Along with the files themselves, their meta-files are also downloaded, which in
particular contain information about the date and time of generation of the re-
spective file by NVD.

The operation of the generator main(download, feeds) begins with
the generation of the basic ontology. This is done by the genOntology()
function. In fact, this function generates an ontology (file cve.owl), which in-
cludes (import) the ontologies of the given years, i.e. does not include ontologies
of all years.

The results are saved in the subdirectory “results”.

255

If the download parameter for a fresh copy of the database from the site is
set, then the downloadNVD() function is called. The last function obligatorily
downloads the files nvdcve-1.1-modified.json.zip and nvdcpematch-1.0.json.zip,
but for the years it first downloads the respective meta-file and checks by date
in it whether the copy that is available differs from that on the site (the available
files are possibly older), if there is a difference then download the corresponding
file. If a file is not downloaded at all, then it is downloaded. The checks are made
by the function is_downloaded(name), and the download itself from the
download(url, fileName).

There is a danger here that if the system crashes during the download and the
meta-file may have been downloaded but the file itself is not. In this situation, it is
recommended simply to clear the entire contents of the “data” directory and then
run the program again with the desired parameters.

As noted above, the cve.owl file contains an ontology that includes the se-
lected generation ontologies. In the file nvd.owl the description of the ontology
(shell) is generated – this is the next step in the execution of the program.

The next step is to create a dictionary of configuration-base CPE names. The
contents are found in the file nvdcpematch-1.0.json. A secondary structure of the
scheme is used, due to which the control is weak. Fields that do not belong to them
or empty configurations are published in this file from time to time, i.e. without
base names. The latter are saved in the log file of the respective part (log extension).

However, this dictionary is central to the generation of configurations.
The further processing continues in parallel mode by years.
The file with the changed vulnerabilities is always processed first.

For this purpose, the standard process is run with appropriate parameters
processFeed(inQueue, resultQueue, cpeFeeds, modified =
None, onlyModifiedCVEs = False). There are two options for this pro-
cessing: to include the modified vulnerabilities in the resulting ontology or not.
In any case, it is necessary to know which are changed vulnerabilities are so that
they are not re-included in the ontologies of the respective years.

The processing of the modified vulnerabilities is done in parallel with the
main process, although this is unnecessary, but the scheme of work this process is
more convenient to be slightly modified for the case than other code to write. The
processing process itself is described below.

After processing the modified vulnerabilities (or obtaining at least the set of
their names), the processing itself begins.

First, as many parallel processes as there are cores in the machine are cre-
ated. In the inQueue input queue for them, the main process loads the names
of the years for which ontologies will be generated. If is planned to be generated
for an ontology for the modified vulnerabilities, it is skipped, as this has already
happened in the previous step.

256

When the main process completes loading the input queue, it sends one
DONE “signal” for each of the processes. This is a message loaded in the queue.
It is a string and the process stops when it reads that string.

The loading of the input queue takes place in parallel with the operation of the
processes. After loading the queue, the process main(download, feeds)
waits for the processes to finish and then ceases to exist.

Processes communicate with the main process through the resultQueue
queue. By default, it sends the number of processed vulnerabilities and an end
signal. When modified vulnerabilities are processed, the set with their names is
sent to this queue. The latter, by default, is transmitted during the initialization of
the main parallel processes.

The parallelism scheme is shown in Figure 1.
Parallel processes process one piece (year) of vulnerabilities. In fact, the

level of parallelism is by years.
The processFeed() process reads the name of another year from the

inQueue queue. Stops (exits the cycle) when it receives a DONE signal.
It then reads the file of its year and begins to cycle through its vulnerabilities.
In order to be able to read the year in Protégé, the year is presented as a sepa-

rate ontology, but it is also very large and is therefore broken into parts. Each part
can be used independently.

In addition, the configurations (CPEs) to which the vulnerabilities are as-
sociated are very large and are therefore exported to a separate file, which is also
broken down into parts as separate ontologies due to their size.

In fact, each part of the year has its own series of configurations, which
allows both the part and the ontology of a separate configuration to be loaded
independently.

There are two template files for this purpose: shellPart.owl and shellConfig.
owl, which are used to create ontologies.

The mechanism of part generation and automatic switching from file to file is
implemented with the BF class, which in its methods resembles an ordinary file,
but it takes care of breaking the year into parts and configurations of a part into
individual subparts.

The BF class contains two variables, ontoPart and ontoConfig, which are
initialized with the contents of the shellPart.owl and shellConfig.owl files. These
are the shells (templates) for part ontology (year, feed) and CPE configurations.

The newPart() and newCPart() methods create the next file from the
corresponding part. Templates are also used there. The logic of these methods is
related to the file organization of bait ontologies. For example, for the year 2017
a file o2017.owl is created, which contains only the inclusion of the ontologies
generated for the year. In this case, these are ontologies in the o20170.owl to
o20178.owl files.

257

The names of the ontologies are after the names of the files, i.e. without the
“owl” extension.

A file with a number added to the name of the main ontology is created for
each subpart. Each subpart is a separate ontology and can be used as such. These
ontologies contain descriptions of the vulnerabilities only, but not of the platform
configurations (CPE Names) they refer.

Platform configurations are found in a series of files that begin with the file
name of the subpart, but with an added number preceded by a “c”. For example,
the o20170.owl partition has o20170c0.owl configuration files up to o20170c3.
owl. These files are also stand-alone ontologies that have names in their files,
similar to the subdivisions of the part.

The BF class supports this organization files.
The BF writing methods are write() and cwrite(). The first is for writ-

ing in the file of the part (file), and the second – in the configuration file (cfile).
The size of the files (subpart and configurations) is controlled by the flush()

and cflush() methods. If the maximum limit is exceeded, then the current sub-
part or configuration is closed and new files are created.

Closing both files is done using the close() and cclose() methods.

258

Figure 1: Scheme of the parallelism

There are two other help methods, getOntoName(), which returns the
name of the current ontology, and the parts() method, which returns the num-
ber of subparts generated.

The very work of the process processFeed(inQueue, result-
Queue, cpeFeeds, modified = None, onlyModifiedCVEs =
False) consists in traversing the structure of the individual vulnerability and
the generation of the respective individuals from this description.

259

Because processFeed() works as an isolated process, some basic means
of communication need to be passed as parameters. This is the inQueue input
queue that receives the baits and the results queue that sends the results. As a re-
sult, it returns the number of individuals generated. When working on the Modi-
fied, the result queue also returns the set of names of modified vulnerabilities.
When a set of names of the modified parameter is given, it is understood that it
is working on a standard bait, otherwise this parameter is None by default and
means that it is working on Modified, i.e. many of the names of the modified vul-
nerabilities will be generated. However, if the onlyModifiedCVEs parameter
is true, then an ontology of the modified vulnerabilities will be generated, but this
is not done by default because the parameter is false.

The cpeFeeds parameter is a dictionary that has all keys from def_
cpe_match to nvdcpematch-1.0.json without cpe_name. The key thus formed
uniquely identifies an element of compliance. The value in the dictionary ele-
ments is a list of CPE names – basic, not templates.

The internal function genFeedOntology(feedName, parts) of the
process function generates a description of the bait ontology.

The generation of vulnerabilities is in the body of processFeed(), and
in a separate internal function generateProps(item) the generation of con-
figurations is outlined.

The body of generateProps() generates descriptions of both versions
of the CVSS metric and some other simple vulnerability properties. The internal
function writeFacts(txt) is widely used here, as it is code with a high fre-
quency of use and otherwise obscures the readability of the code.

In a separate internal function of generateProps() is a separate func-
tion for generating effects generateAffects(). This information is obviously
outdated and is from older versions – missing in the NIST dictionary, but left as a
description in the diagram. Eventually, it can be removed in the future.

The configuration text is generated from
generateConfigurations(outFile) to generateProps(). This
is a relatively simple function, but relatively difficult to understand and work
with is the other internal findNode(node) function, which generates CPE
configurations, and its internal findMatch(match) function. The latter two
functions have been developed in the CPE language for applicability of com-
pliance [2]. The reason for this is that there is no clear description provided by
NIST of the application of the language in this case. This of course leads to a
number of problems in the dictionary itself for the generated configurations.
For example, CPE names are missing. Maybe in the future the situation will
change. However during the development of the generator for a relatively short
period of 2-3 months were generated by NIST files for configurations that were
incompatible and these necessitated refinements to avoid these problems. De-

260

tailed diagnostics for missing CPE names are also provided. The weak control
between the applicability language expressions and the configurations in the
CPE dictionary is obvious.

The first findNode(node) function works with nodes in the applicability
language. A node is an operation with its operands.

The second findMatch(match) function works on CPE templates. Here
we are talking about templates in the language of applicability, but the problem
is that the CPE names themselves can be considered in particular as templates.

Finally, there is another common function codeString(s). It deals with
the annoying, but intense, encryption of the Python escape symbol in OWL.

Due to the high level of parallelism, the application of functions is applied
here in order to avoid possible errors in copying the environment in the individual
processes. In this course of the strategy, the cpeFeeds configuration dictionary
is also copied.

3. Parallelism formalization

The parallelism used here is at the level of feeds. As explained above, the
Modified feed is first processed in a separate process, as it contains the changes
made to the feed of previous years. If Modified is included in the list of processed
feeds, then its ontology is generated, but at least the set of names of modified
vulnerabilities that are not processed in other feeds, i.e. for them no individuals
are generated in the respective ontologies.

The same function is used to generate the ontologies of the individual feeds
and the Modified ones, as there is too much common code and small differences.
In the specification of parallelism, however, these two behaviors are presented as
separate processes for greater clarity.

The function, which implements the process of generating ontologies for the
individual feed, is performed sequentially and therefore the details of its work
are reduced to the level of parallel interaction. In fact, this function generates a
general ontology for the entire feed by including its individual parts, which can
also be opened independently as ontologies in Protégé. For all feeds, a common
ontology is also generated by including the feeds so that they can be opened to-
gether as one ontology.

This approach of building independent ontologies through inclusion was
chosen because of the huge ontology volume. However, and in order to be able to
control the content of the individual parts by opening them in Protégé.

The CSP specification code [6] in PAT version 3 [7] is:
#define queueBufferLength 10;
#define noProc 4;
channel inQueue queueBufferLength;

261

channel resultQueue queueBufferLength;
channel sync[noProc] 1;
channel msync 1;
#define mModified 1;
#define mSet 2;
#define mDONE 3;
#define mFEED 4;
#define mS 5;
#define mCount 6;

processFeedModified() =
 (
 inQueue?mModified -> produceModifiedFeedOntology ->
 resultQueue!mS -> resultQueue!mCount ->
 resultQueue!mDONE -> Skip
 [*]
 inQueue?mSet -> produceModifiedSet -> resultQueue!mS ->
 resultQueue!mDONE -> Skip
) ;
 inQueue?mDONE -> resultQueue!mDONE -> msync!mDONE -> Skip;
processFeed(i) =
 inQueue?mFEED -> produceFeedOntology ->
 resultQueue!mCount -> processFeed(i)
 [*]
 inQueue?mDONE -> resultQueue!mDONE -> sync[i]!mDONE ->
 Skip;
main(first) =
 if (first) {
 (
 processFeedModified() |||
 (
 MODIFIED -> inQueue!mModified ->
 inQueue!mDONE -> resultQueue?mS ->
 resultQueue?mCount -> resultQueue?mDONE -> Skip
 [*]
 SET -> inQueue!mSet -> inQueue!mDONE ->
 resultQueue?mS -> resultQueue?mDONE -> Skip
)) ;
 resultQueue?mDONE -> msync?mDONE -> (main(false) |||
 (|||i:{0..noProc-1}@processFeed(i)))}
 else {
 FEED -> inQueue!mFEED -> resultQueue?mCount ->
 main(false)
 [*]
 END -> (|||{noProc}@inQueue!mDONE -> Skip) ;

262

 (|||{noProc}@resultQueue?mDONE -> Skip) ;
 (|||i:{0..noProc-1}@sync[i]?mDONE -> Skip)};
System() = main(true);
#assert System() deadlockfree;
#assert System() divergencefree;
#assert System() deterministic;
#assert System() nonterminating;
The queueBufferLength buffer size definition has been reduced to 10,

which is not the case in Python – there the queues can be considered infinite,
although in reality they have a limit.

The number of noProc processes is modeled by the number of cores in the
test machine – 4.

The inQueue and resultQueue queues are modeled by channels.
The synchronization to complete the sync[noProc] workflows, the Mod-

ified processing process(msync), and the main process is modeled with buff-
ered channels 1.

The messages exchanged on the channels are numerically modeled as fol-
lows mModified(1), mSet(2), mDONE(3), mFEED(4), mDict(5)
and mCount(6). In the model, the message values are not important for the
parallelism, only their type.

The system is modeled through the System() process, which is very simi-
lar to the implementation.

The main (first) process is divided into two parts: Modified bait processing
and standard bait processing.

In the first case, processFeedModified() is started in parallel with
overlap processFeedModified(). There are two ways to do this: when
Modified is included in the ontology (MODIFIED event) and when it is not (SET
event). In the first case, the mModified and mDONE messages are loaded in the
inQueue queue to inform the process that only the Modified will be processed,
but with ontology generation. The processFeedModified() process returns
the resultQueue set of modified vulnerability names via the mS message and
the number of individuals generated in the ontology mCount. The same queue
informs that the work with the mDONE message is completed.

Similarly, the process operates in the second case, but then does not return
the number of generated individuals.

Both cases continue with the completion of the processFeedModified()
process on both resultQueue and csync queues, i.e. receive a mDONE mes-
sage on each of them.

The mDONE message is used to inform that the process itself has completed
its processing operation and to inform it that it is shutting down. The second type
of information is disseminated in both queues, as there is a difference in the fact

263

that the process has completed its work, but the recording of the results has not
been completed. For this reason, although not very clear from the specification,
the mDONE message is transmitted a second time in the resultQueue queue.

Finally, the first start of main (first) ends with the parallel start of workflows
and main (false), i.e. the second part of the main process.

In fact, as many processFeed(i) processes are run in the implementa-
tion as there are feeds if they are less than the number of CPU cores, or if there
are more, as many as the CPU cores. In this case, it is firmly modeled with 4
processes as many as the cores of the test machine, but this is not a problem from
the point of view of parallelism.

The second part of the main process, false, processes the individual baits
(FEED event) and terminates the system (END event).

The processing of the baits consists in loading in the queue inQueue a mes-
sage for the next bait mFEED and then reading from the queue the results of the
message for the number of generated individuals, after which there is recursion
in the second part of the main process, i.e. address main(false).

In an END event, i.e. the processing are exhausted, as many mDONE end
messages are loaded in the input queue, as there are workflows. The same num-
ber of messages is then read from the results queue. Finally, the sync[i] sync
channels read the same end-of-work message. In the specification, these steps
are presented in parallel, but in the implementation, the steps are implemented
sequentially.

The processFeedModified() process begins with two alternatives to
the contents of the input queue. When the mModified message is received, it
bears the name of the bait, processes it (produceModifiedFeedOntology
event), displays a set of modified vulnerability names with the mS message in the
resultQueue queue, the number of individuals generated in the ontology, the
end message (again in the same queue), and finally completes the implementation
of this branch.

The second alternative (mSet event) is analogous to the first, with no return
of the number of generated individuals, and the processing is for the produc-
eModifiedSet event.

After processing the alternatives, the processFeedModified() process
waits for an end message mDONE, then displays the end message in the resulting
queue and in its csync sync channel.

In the implementation, the processFeedModified() process is a modi-
fied processFeed(i) process with direct control from the main process, but
it is also parallel. The idea is one code for both processes.

Here in the specification processFeedModified() waits for an end mes-
sage after executing one of the two alternatives, but in fact this logic is set by the
main process in the implementation, and in the specification.

264

The processFeed(i) workflows handle two events: the next feed
(mFEED message) and the end of work (mDONE message).

The generation of the ontology is modeled with the produceFeedOn-
tology event. The number of generated individuals is then displayed in the
resulting queue and a recursive reference to the same process follows.

The order of the number of generated individuals does not matter, because in
the main process it is summed up for the whole ontology, not for the individual
parts. In fact, this amount is informative and does not participate in ontologies.

Processing events (such as produceFeedOntology) in both workflows
processFeedModified() and processFeed(i) are intrinsic in nature
and have nothing to do with process synchronization (i.e., overlapping concur-
rency), but are complex to illustrate the logic of work.

The second processing that the processFeed(i) process does is end
(mDONE). The process then displays the mDONE end message in the resulting
queue and in its sync[i] sync channel, and Skip successfully completes the
job.

Finally, the specification contains the standard checks for the system, which
pass successfully when verifying the expected behavior.

4. Conclusion

The generated ontology of vulnerabilities exceeds terabytes in volume. The
management of such a huge ontology is possible only by breaking the parts and
therefore when starting the generator it is specified which years of vulnerabilities
to be generated.

It is possible to generate and publish the entire ontology on the Web, but
the server resources must be large in order for the entire ontology to be used and
shared.

Unlike the CPE ontology, the NVD ontology is too large to be manipulated
in Protégé as a single file.

The parallelism in the generator is fixed by the number of cores and is at the
level of the year, i.e. if released in just one year, there will be virtually no paral-
lelism.

Breaking parallelism at a lower level is not justified.
With the CPE ontology generator, each platform can be processed indepen-

dently and the generation result can be inserted into one ontology file. The ordi-
nance of the individuals in this file does not matter.

The NVD ontology generator requires that all individuals in a part be linked
to the ontologies of their configurations, i.e. generation is in order: generating
the individual vulnerability followed by generating vulnerability configurations.

265

In principle, the level of parallelism could be raised by generating configura-
tions in parallel. This can be achieved by redesigning the ontology: the individual
parts of the configurations are combined into one ontology of configurations,
which is included in each part of the ontology of the year. With this approach, the
size of the configuration ontology will be very large and will most likely not be
able to load into Protégé.

However, there is another problem here, the number of cores is limited, and
i.e. the number of truly parallel processes is limited. No matter how much we
increase parallelism, it depends on the number of cores.

A distributed parallel version of several computers is also possible. This is
quite easy to do with Python, but it seems the most reasonable is the chosen level
of parallelism in this case as well.

In the case of the distributed variant, there is also the issue of collecting
the results of the generation. The data is huge; it is possible to be redirected to
a server with significant disk space. This functionality is easy to implement, but
network traffic will jump sharply.

In the distributed version, the data may remain on the computers on which it
is generated – something like the Map phase in MapReduce computing [4], but
there must be greater clarity about their use, i.e. whether there will be a Reduce
phase or directly where the ontologies are located there will be accessible. This is
a mixture of MapReduce and access to the Semantic Web.

Let us return to the parallel variant by separating the generation of individu-
als from that of configurations. Another problem is that the mechanisms of data
transmission are quite heavy. It is worth transferring some data to the process
and it will take much longer, and most likely, this will not be the case, i.e. there
will be a lot of heavy traffic that will exceed the calculation process. Something
similar to the problem in CORBA [5] where the traffic between sites significantly
exceeds the calculation process in them.

Of course, the considerations given here are of the most general nature and
considerable research effort is needed to reject or validate the hypotheses raised
here about parallelism and distribution on several computers.

5. Acknowledgements

This paper is prepared with the support of MIRACle: Mechatronics, Innova-
tion, Robotics, Automation, Clean technologies – Establishment and develop-
ment of a Center for Competence in Mechatronics and Clean Technologies –
Laboratory Intelligent Urban Environment, funded by the Operational Program
Science and Education for smart growth 2014–2020, Project BG 05M2OP001-
1.002-0011.

266

6. References

[1] NIST, Information Technology Laboratory, National Vulnerability Data-
base (NVD), 2022. URL: https://nvd.nist.gov

[2] NIST, NISTIR 7698, Common Platform Enumeration: Applicability Lan-
guage Specification Version 2.3, 2022. URL: https://csrc.nist.gov/publica-
tions/detail/nistir/7698/final

[3] Musen, M.A. The Protégé project: A look back and a look forward. AI Mat-
ters. Association of Computing Machinery Specific Interest Group in Arti-
ficial Intelligence, 1(4), June 2015. DOI: 10.1145/2557001.25757003.

[4] Dean, J. and S. Ghemawat, MapReduce: Simplified data processing on
large clusters. In Proceedings of Operating Systems Design and Implemen-
tation (OSDI). San Francisco, CA. 137-150, 2004.

[5] CORBA. URL: https://www.corba.org
[6] Hoare C. A. R., Communicating Sequential Processes, 1985–2004

