
Towards Better Understanding of the Performance
and Design of Datalog Systems
Zhiwei Fan1, Sunil Mallireddy2 and Paraschos Koutris3

1University of Wisconsin-Madison, WI, USA
2University of Wisconsin-Madison, WI, USA
3University of Wisconsin-Madison, WI, USA

Abstract
Recent years have seen a resurgence of interest in the Datalog language and its syntactic extensions from
both the industry and academia. Such interest has motivated a line of work to build efficient Datalog
systems that support expressing data analytics of different types such as program and graph analyses in a
concise and simple way. However, besides the performance improvement of different systems presented
in these works over existing competitors, little understanding has been gained about the property of
varying Datalog workloads (i.e., program and data), and the computation resource usage of different
systems (i.e., memory and CPU utilization), which are crucial for understanding the essence behind the
performance difference observed in different systems. When such knowledge is gained, clear guidance
could be provided for users to choose between different Datalog systems depending on their use cases
and system builders to improve the existing system or build more efficient new systems. In this paper,
we propose the general profiling of the Datalog program evaluation and present the corresponding
visualizations. We further discuss the insights gained from the produced visualizations and how these
insights shed light on the pros and cons of existing Datalog systems, which further provides guidance on
making improvements over the existing system and designing/building more efficient new systems.

Keywords
Datalog Systems, Recursive Computation, Benchmarks, Profiling

1. Introduction

Datalog is seeing a resurgence of interest over the past years and has found new applications
in multiple domains such as graph analytics, program analysis, data integration, security,
etc. The regained popularity of Datalog is largely attributed to its superior ability to express
applications involving recursive computations concisely. To provide high-performance and
scalable computation, multiple research efforts [1, 2, 3, 4, 5] have explored ways to develop
Datalog systems that are able to handle recursive computation efficiently, often focusing on a
particular application domain. For example, Souffle[3] is mainly designed and built for static
program analysis, and DDlog [2] is a Datalog implementation built on top of Differential
Dataflow [6] that focuses on efficient incremental computation.

However, in most of these works, besides the better performance numbers shown for the
systems being presented compared to existing competitors on the chosen workloads, little or

Datalog 2.0 2022: 4th International Workshop on the Resurgence of Datalog in Academia and Industry, September 05,
2022, Genova - Nervi, Italy
$ zhiwei@cs.wisc.edu (Z. Fan); sunlim@cs.wisc.edu (S. Mallireddy); paris@cs.wisc.edu (P. Koutris)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

166

mailto:zhiwei@cs.wisc.edu
mailto:sunlim@cs.wisc.edu
mailto:paris@cs.wisc.edu
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Zhiwei Fan et al. CEUR Workshop Proceedings 166–180

no description has been provided for the profile of the recursive computation. Here, by profile,
we mean information such as the number of iterations, how many facts are produced in every
iteration, etc. As shown in RecStep [1], the relative performance of different Datalog systems
may not translate across different workloads (i.e., a system that performs well on one Datalog
program and a particular dataset does not show comparable performance on the others). The
lack of a closer look at the recursive computation profiles makes it difficult to analyze and
explain the performance difference across different systems and workloads. In turn, this makes
choosing the best system for applications of interest (for users) and improving existing systems
(for system builders) challenging. For example, when attempting to build a new Datalog system,
we need to answer questions such as what techniques in existing systems can we leverage? what
are the limitations of existing systems? are there Datalog workloads of different characteristics that
need to be handled differently? what could be done to improve existing techniques?

To address the aforementioned issue, we argue that a general-purpose recursive computation
profiling framework that can provide insights across systems and workloads is needed. In
this work, we make the first step towards building such a profiling framework by presenting
four important profiling components: recursion profile, runtime, CPU utilization and memory
utilization. First, we describe these four components and briefly discuss their importance. Then
we present case studies based on the profiling visualizations of Datalog workloads from two
application domains: graph analytics and program analysis. As shown in Section 3, there is
no single system always being the winner across all Datalog workloads, even within the same
application domain. With the help of profiling visualizations, we analyze the causes behind
the inefficient executions, extracting insights regarding the proper use cases and limitations
of the studied systems (Section 3.3). By analyzing high-level causes (revealed by the profiling
components) of the inefficiency exposed by a system, one is able to connect these high-level
observations to the specific technical components in the system (e.g., data structures, algorithms),
understanding the system limitations better.

In this paper, we focus on single-node systems, mainly looking at three recently published
well-documented Datalog engines that are publicly available: RecStep [1], Souffle [3], and
DDlog [2]. Souffle is a new recent high-performance Datalog system that is mainly designed
for program analysis and uses optimization techniques such as efficient program synthesis,
specialized parallel data structures for indexing and compression, and automatic index selection.
RecStep is a Datalog engine built on top of an efficient single-node in-memory database called
Quickstep[7], leveraging multiple years of efforts in the advancement of database techniques
such as query optimization and efficient parallel query execution. DDlog translates a set
of Datalog rules into the corresponding Differential Dataflow [6] program that allows for
incremental computation. Other Datalog systems such as BigDatalog [4], BDDBDDB [8] have
been shown to be significantly outperformed by two of the systems (i.e., RecStep, Souffle)
studied in this paper [1] with some notable system limitation and performance issues and
therefore are excluded from the study. We do not consider solvers designed for answer-set
programming such as clingo [9] and dlv [10] as the recent study [11] shows that they are
not capable of handling Datalog workloads in our interested application domains (e.g., graph
analytics, program analysis) due to inefficient use of memory. Our study focuses on positive
Datalog programs (i.e., without negation) that involve recursion.

We use the profiling functionalities embedded in RecStep [1], which is able to provide general

167

Zhiwei Fan et al. CEUR Workshop Proceedings 166–180

profiling information of different systems on the Datalog workload evaluation that is not tied to
a specific system. Although the profiling components presented are fairly simple, they already
provide meaningful insights that can aid further system analysis and improvement, which is
not possible by looking solely at the performance numbers.

2. Recursive Computation Profiling

Most existing systems evaluate Datalog programs using a type of bottom-up evaluation called
semi-naïve evaluation (SN) [12] either explicitly (e.g., RecStep, Souffle) or implicitly (e.g., DDlog).

At each iteration of the recursive computation, there are three types of facts that are important
to consider. Facts of the first type are generated from the evaluation of each recursive rule
(generated facts, GF). The generated facts can contain duplicates, so we also need to consider
the facts after deduplication, called unique generated facts, UGF. Finally, the set-difference
is performed between the unique generated facts and the existing facts to produce the new
facts, NF. Some Datalog systems perform the deduplication and set-difference separately (e.g.,
RecStep), and other systems (e.g., Souffle, DDlog) fuse these two steps into one, often through
the maintained indexes built on the IDB relations throughout the whole computation procedure.

As we will see in Section 3, the sizes of these three different types of facts in different iterations
serve as the primary fingerprint of the Datalog workload and help better understand the behavior
of various systems along with other profiling information such as runtime and resource usage.
Next, we briefly discuss a few major components for recursive computation profiling. We note
that these components are not the only ones to look at when analyzing the system performance
on varying Datalog workloads. When being available, additional information such as the size of
input data, and hot code paths could be useful and provide additional insights.

1 2 3 4 5 6 7
Iteration #

0
1
2
3
4
5

of

 F
ac

ts

1e8
La

st
 It

er
at

io
n

(7
)Generated Facts
Unique Generated Facts
New Facts

Figure 1: Recursive Profile of TC-G10k

Recursion Profile The sizes of facts of three
different types in each iteration of the recursive
computation characterize the Datalog workload,
which consists of a specific Datalog program (i.e.,
a set of Datalog rules) and a specific dataset (i.e.,
ground facts of the EDB/input relations). At each it-
eration, let GF𝑠𝑖𝑧𝑒, UGF𝑠𝑖𝑧𝑒, and NF𝑠𝑖𝑧𝑒 denote the
sizes of GF, UGF, and NF respectively. Note that
we always have GF𝑠𝑖𝑧𝑒 ≥ UGF𝑠𝑖𝑧𝑒 ≥ NF𝑠𝑖𝑧𝑒. In-
tuitively, a large gap between GF𝑠𝑖𝑧𝑒 and UGF𝑠𝑖𝑧𝑒
indicates that many facts were produced multi-
ple times in the same iteration, while a large gap
between UGF𝑠𝑖𝑧𝑒 and NF𝑠𝑖𝑧𝑒 indicates that many
facts have already been produced in previous iter-
ations. Note that NF𝑠𝑖𝑧𝑒 also indicates the amount of work to be done during the next iteration
in SN. As an example, Figure 1 is the recursive profile showing the sizes of facts of three types
across seven iterations during SN of transitive closure evaluated on G10𝑘 dataset, which will
be analyzed in detail in Section 3.

168

Zhiwei Fan et al. CEUR Workshop Proceedings 166–180

Runtime Runtime is probably the most straightforward performance measure of different
systems on a given workload. The runtime of many existing Datalog systems can be divided
into compilation time and evaluation time. Systems such as Souffle and DDlog first generate
the code given the input program, followed by compilation-level optimizations and executable
binary generation. The overhead induced by code generation and compilation can be safely
ignored, assuming that the generated executable files will be used repetitively later with different
inputs. However, such an assumption might not always hold and may not be acceptable in
circumstances where the overhead far exceeds the evaluation time. Thus, it is crucial to have
access to a clear view of runtime breakdown when considering a specific application.

CPUUtilization Like other data-parallel compute engines, recent Datalog systems [1, 2, 3, 11]
exploit the parallelism packed inside modern servers to achieve high performance and scalability.
However, achieving consistent high CPU efficiency and utilization across different workloads is
challenging. Low performance could occur due to either low CPU efficiency (suggesting that
the system might handle more work than necessary), or low CPU utilization (meaning that the
system does not utilize multiple CPU cores well).

Memory Consumption Many recent works focus on building in-memory Datalog systems [1,
2, 3, 4]. However, most of them either ignore the evaluation of memory utilization [4] or miss the
comparison with other existing Datalog systems [3, 2]. Since most of the evaluations presented
in these works are standalone (i.e., a system only evaluates one workload at a time in a server
without interference), the lack of understanding of the memory footprint makes it hard to
choose the proper hardware (e.g., a server with small or large memory), estimate the scalability
of a Datalog program (e.g., the maximum dataset the system can handle), and the applicability
(e.g., whether concurrent evaluation is feasible or not).

3. Case Studies

We next present the Datalog programs that arise from graph analytics (TC, SG, REACH) and
program analysis (AA, CSPA, CSDA) followed by the case studies of the corresponding Datalog
workloads. These Datalog programs are supported by all three systems of interest in this paper.
We first look at the linear recursive Datalog programs (TC, SG, REACH, CSDA), in which each
program consists of one non-recursive rule and one linear recursive rule (i.e., the rule body
contains only one recursive IDB predicate). Then, we study the Datalog workloads of non-linear
recursive programs (AA, CSPA) each of which contains at least one recursive rule that has
more than one recursive IDB predicate in the rule body. As we will see from the recursive
computation profiles of these workloads, even when two Datalog programs look very similar,
the relative performance of different systems can be very different. This happens when two
programs are from the same domain (e.g., TC, REACH) or different application domains (e.g.,
REACH, CSDA).

All experiments are conducted on a bare-metal server in Cloudlab [13], a large cloud in-
frastructure. The server runs Ubuntu 18.04 LTS and has two Intel Xeon E5-2660 v3 2.60 GHz
(Haswell EP) processors. Each processor has 10 cores, and 20 hyper-threading hardware threads.

169

Zhiwei Fan et al. CEUR Workshop Proceedings 166–180

Table 1
Summary of EDB/Input and IDB/Output in Different Workloads

Program Dataset EDB Tuple # IDB Tuple # Reference
SG G5𝑘 arc: 9.98e4 tc: 1.00e8 [1]
TC G10𝑘 arc: 2.50e4 sg: 2.47e7 [1]

REACH

livejournal
arc: 6.90e7

id: 100
reach: 4.40e6 [1]

orkut
arc: 1.17e8

id: 100
reach: 2.90e6 [1]

twitter
arc: 1.47e9

id: 100
reach: 2.24e7 [1]

AA D7

assign: 1.00e7
load: 3.30e7
store: 2.10e7

addressOf: 4.00e6

pointsTo: 5.30e6 [1]

CSPA

linux
assign: 1.98e6

dereference: 7.50e6

valueFlow: 5.50e6
valueAlias: 3.09e7

memoryAlias: 1.37e7
[1]

postgresql
assign: 1.20e6

dereference: 3.46e6

valueFlow: 3.71e6
valueAlias: 2.23e8

memoryAlias: 8.94e7
[1]

httpd
assign: 3.62e5

dereference: 1.14e6

valueFlow: 1.36e6
valueAlias: 2.34e8

memoryAlias: 8.89e7
[1]

CSDA

linux
arc: 4.34e7

nullEdge: 5.89e5
null: 5.57e7 [1]

postgresql
arc: 3.45e7

nullEdge: 2.17e5
null: 2.15e7 [1]

httpd
arc: 9.90e6

nullEdge: 1.38e5
null: 9.39e6 [1]

The server has 160GB memory and each NUMA node is directly attached to 80GB of memory.
We only consider the CPU and memory utilization of the systems during their actual execution
period and thus the time period used for code generation and compilation is excluded for CPU
and memory profiling. Information about the input and output is summarized in Table 1.

3.1. Simple Linear Recursion

Transitive Closure (TC):

tc(X, Y) :- arc(X, Y).

tc(X, Y) :- tc(X, Z), arc(Z, Y).

Same Generation (SG):

sg(X, Y) :- arc(P, X), arc(P, Y), X ̸= Y.

170

Zhiwei Fan et al. CEUR Workshop Proceedings 166–180

1 2 3 4 5 6 7
Iteration #

0
1
2
3
4
5

of

 F
ac

ts

1e8

La
st

 It
er

at
io

n
(7

)Generated Facts
Unique Generated Facts
New Facts

(a) Recursion Profile

recstep souffle ddlog
Datalog Systems

0
50

100
150
200
250
300
350

Ti
m

e
(s

)

Evaluation
Compilation

(b) Runtime

0 20 40 60 80 100 120 140 160
Time (s)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

recstep
souffle
ddlog

(c) CPU Utilization

0 20 40 60 80 100 120 140 160
Time (s)

0
5

10
15
20
25
30

Pe
rc

en
ta

ge
 (%

)

recstep
souffle
ddlog

(d) Memory Consumption

Figure 2: Transitive Closure on G10𝑘

1 2 3 4 5 6
Iteration #

0

1

2

3

4

of

 F
ac

ts

1e8

La
st

 It
er

at
io

n
(6

)Generated Facts
Unique Generated Facts
New Facts

(a) Recursion Profile

recstep souffle ddlog
Datalog Systems

0

50

100

150

200

Ti
m

e
(s

)

Evaluation
Compilation

(b) Runtime

0 10 20 30 40 50
Time (s)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

recstep
souffle
ddlog

(c) CPU Utilization

0 10 20 30 40 50
Time (s)

2

4

6

8

10

Pe
rc

en
ta

ge
 (%

)

recstep
souffle
ddlog

(d) Memory Consumption

Figure 3: Same Generation on G5𝑘

sg(X, Y) :- arc(W, X), sg(W, U), arc(U, Y).

Figure 2 and Figure 3 show the recursive computation profiles of TC and SG of three systems
on G10𝑘 and G5𝑘 respectively. The G10𝑘 and G5𝑘 datasets are random graphs of 10𝑘 (∼ 100𝑘
edges) and 5𝑘 (∼ 25𝑘 edges) vertices generated based on the Erdős-Rényi model [14], in which
each edge is included with probability 0.001. Although the sizes of the input datasets are fairly

171

Zhiwei Fan et al. CEUR Workshop Proceedings 166–180

small (< 1MB), large intermediate results (i.e., three types of facts) as shown in Figure 2a
and Figure 3a are generated. We observe the following features across all recursion profiles
for the above tasks: (𝑖) the number of iterations is relatively small, (𝑖𝑖) there is a large gap
between GF𝑠𝑖𝑧𝑒 and UGF𝑠𝑖𝑧𝑒 , which suggests efficient deduplication is critical to the overall
good performance, and (𝑖𝑖𝑖) the gap between UGF𝑠𝑖𝑧𝑒 and NF𝑠𝑖𝑧𝑒 is small or non-existent in
most cases.

For TC and SG, while all three systems have relatively high CPU utilization throughout the
evaluation (Figures 2c, 3c), the runtime varies. Besides the relatively long compilation time
of DDlog (∼ 200𝑠), DDlog’s evaluation time is about 2 − 3𝑋 longer than that of the other
two competitors (i.e., Souffle and RecStep), using a large amount of memory (Figures 2c, 3c).
The performance number of DDlog is significantly worse than that of its runtime primitive
Differential Dataflow [6] as shown in [15]. The inefficiency of DDlog could be attributed to the
fact that its design heavily focuses on incremental computation (e.g., maintaining intermediate
states of large sizes, separate management of existing computation and monitoring new input,
etc), sacrificing the performance for batch processing.

RecStep uses significantly more memory (Figures 2d, 3d) on the small input datasets (i.e.,
G10𝑘 and G5𝑘) compared to other workloads (Figures 4d-12d), the sizes of input datasets of
which vary from 22MB to 1.7GB. This is because RecStep performs deduplication as a separate
step, relying on its backend in-memory relational database QuickStep [7], which pre-allocates
the memory to the hash table for deduplication based on the size of the generated facts. Due
to the memory inefficiency observed in such cases, RecStep soon runs out of memory when
evaluating TC and SG on graphs with a large number of vertices. At the same time, the edge
inclusion probability remains the same. We run RecStep using its default interpretation mode
without the specialized parallel bit-matrix evaluation (PBME) designed for dense graphs of small
vertices. While PBME [1] is an efficient technique to address this issue, it is specifically designed
for graphs with a relatively small number of vertices, and its generality is limited.

In contrast, Souffle has acceptable overhead from the code generation and compilation
(∼ 10𝑠), showing the overall best performance on TC-G10𝑘 and SG-G5𝑘 with a small memory
footprint mainly thanks to its specialized parallel data structure Brie [16] for relation storage
and indexing, which provides good compression capability for high-density relations of large
sizes and support of efficient parallel operations (e.g., insertion, lookup).

Reachability (REACH):

reach(Y) :- id(Y).

reach(Y) :- reach(X), arc(X, Y).

Context-Sensitive Dataflow Analysis (CSDA):

null(X, Y) :- nullEdge(X, Y).

null(X, Y) :- null(X, W), arc(W, Y).

172

Zhiwei Fan et al. CEUR Workshop Proceedings 166–180

2 4 6 8 10 12 14 16 18
Iteration #

0

1

2

3

4

of

 F
ac

ts

1e7

La
st

 It
er

at
io

n
(1

9)Generated Facts
Unique Generated Facts
New Facts

(a) Recursion Profile

recstep souffle ddlog
Datalog Systems

0

100

200

300

400

Ti
m

e
(s

)

Evaluation
Compilation

(b) Runtime

0 50 100 150 200 250
Time (s)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

recstep
souffle
ddlog

(c) CPU Utilization

0 50 100 150 200 250
Time (s)

2
4
6
8

10
12
14

Pe
rc

en
ta

ge
 (%

) recstep
souffle
ddlog

(d) Memory Consumption

Figure 4: Reach on orkut

2 4 6 8 10 12 14
Iteration #

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

of

 F
ac

ts

1e7

La
st

 It
er

at
io

n
(1

4)Generated Facts
Unique Generated Facts
New Facts

(a) Recursion Profile on livejournal

recstep souffle ddlog
Datalog Systems

0
50

100
150
200
250
300

Ti
m

e
(s

)

Evaluation
Compilation

(b) Runtime on livejournal

2 4 6 8 10 12 14
Iteration #

0

2

4

6

8

of

 F
ac

ts

1e8

La
st

 It
er

at
io

n
(1

4)Generated Facts
Unique Generated Facts
New Facts

(c) Recursion Profile on twitter

recstep souffle ddlog
Datalog Systems

0
200
400
600
800

1000
1200
1400

Ti
m

e
(s

)

Ou
t o

f M
em

or
y

Evaluation
Compilation

(d) Runtime on twitter

Figure 5: Reach on livejournal and twitter

We run REACH on orkut, a relatively large real-world online social network dataset in which
the friendship of users is represented as edges. REACH finds the friends of a given set of user ids.
Figure 4 is the recursive computation profile of REACH-orkut and we observe that the relative
system performance looks quite different from what is observed on TC-G10𝑘 and SG-G5𝑘.
RecStep significantly outperforms Souffle and DDlog and the reasons are two-fold: (𝑖) GF𝑠𝑖𝑧𝑒 is

173

Zhiwei Fan et al. CEUR Workshop Proceedings 166–180

relatively small across just a few number of total iterations, resulting in the negligible overhead
of the separate deduplication step and overall efficiency of RecStep (𝑖𝑖) RecStep utilizes CPU
much more efficiently compared to Souffle and DDlog, which suffer from the long warm-up
phase (e.g., index building) due to the much larger EDB/input sizes. Systems such as Souffle
using a specialized data structure for indexing (i.e., Brie), may suffer from much bigger index
building overhead if the characteristic of indexed data is adversarial to the property of the
indexing data structure. For REACH on relatively sparse large real-world social graphs, we
observe larger indexing overhead in Souffle as the input graph size increases (e.g., livejounral
→ orkut→ twitter in Table 1), which results in larger relative performance gap between
Souffle and RecStep when the total number of iterations of recursive computation remains
small (e.g., Figures 5a, 4a, 5c). The observation suggests that the input data itself serves as
an important profiling component sometimes and should be considered together with other
profiling components (e.g., recursion profile, CPU utilization).

100 200 300 400 500 600 700 800
Iteration #

0

2

4

6

8

of

 F
ac

ts

1e5
La

st
 It

er
at

io
n

(7
78

)
Generated Facts
Unique Generated Facts
New Facts

(a) Recursion Profile

recstep souffle ddlog
Datalog Systems

0
100
200
300
400
500

Ti
m

e
(s

)

Evaluation
Compilation

(b) Runtime

0 100 200 300 400 500
Time (s)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

) recstep
souffle
ddlog

(c) CPU Utilization

0 100 200 300 400 500
Time (s)

2
4
6
8

10
12

Pe
rc

en
ta

ge
 (%

) recstep
souffle
ddlog

(d) Memory Consumption

Figure 6: Context-Sensitive Dataflow Analysis on linux

CSDA can be seen as a variant of transitive closure: first a set of null edges is given to initialize
the non-recursive rule, and then the linear-recursive rule looks the same as that of TC. However,
the recursive computation profiles of CSDA and TC workloads are very different. We observe
that RecStep performs significantly worse compared to Souffle and DDlog (Figures 6b, 7b, 8b)
while its CPU utilization over time is lower compared to Souffle and DDlog (Figures 6c, 7c, 8c).
Comparing with TC-G5𝑘 and REACH-orkut, the CSDA workloads on linux, postgresql and
httpd have a very long tail in their recursion profiles (Figures 6a, 7a, 8a): it takes a large number
of iterations for the evaluation to reach the fixpoint, and most of the work is performed during the
first few iterations. After further digging, we have confirmed that RecStep’s poor performance is
mainly due to the lack of continuously maintained indexes throughout the program evaluation
that its competitors Souffle and DDlog have. This forces RecStep to reconstruct hash tables and

174

Zhiwei Fan et al. CEUR Workshop Proceedings 166–180

80 160 240 320 400 480 560 640 720
Iteration #

0
1
2
3
4
5
6
7

of

 F
ac

ts

1e5

La
st

 It
er

at
io

n
(7

21
)

Generated Facts
Unique Generated Facts
New Facts

(a) Recursion Profile

recstep souffle ddlog
Datalog Systems

0

100

200

300

400

Ti
m

e
(s

)

Evaluation
Compilation

(b) Runtime

0 100 200 300 400
Time (s)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

) recstep
souffle
ddlog

(c) CPU Utilization

0 100 200 300 400
Time (s)

1
2
3
4
5
6
7
8

Pe
rc

en
ta

ge
 (%

) recstep
souffle
ddlog

(d) Memory Consumption

Figure 7: Context-Sensitive Dataflow Analysis on postgresql

20 40 60 80 100 120 140 160 180
Iteration #

0
1
2
3
4
5
6

of

 F
ac

ts

1e5

La
st

 It
er

at
io

n
(1

81
)

Generated Facts
Unique Generated Facts
New Facts

(a) Recursion Profile

recstep souffle ddlog
Datalog Systems

0
25
50
75

100
125
150
175
200

Ti
m

e
(s

)

Evaluation
Compilation

(b) Runtime

0 20 40 60 80 100
Time (s)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

) recstep
souffle
ddlog

(c) CPU Utilization

0 20 40 60 80 100
Time (s)

1.5

2.0

2.5

3.0

3.5

Pe
rc

en
ta

ge
 (%

) recstep
souffle
ddlog

(d) Memory Consumption

Figure 8: Context-Sensitive Dataflow Analysis on httpd

repeatedly probe the input table (i.e., arc) for joins in every iteration. The resulting overhead
accumulates across iterations, leading to poor CPU utilization and efficiency when the Datalog
workloads have very long-tail recursion profiles. This observation shows the necessity of
continuously maintained indexes for consistent efficient recursive Datalog program execution
in these cases.

175

Zhiwei Fan et al. CEUR Workshop Proceedings 166–180

3.2. Non-linear Recursion

Andersen’s Analysis (AA):

pointsTo(Y, X) :- addressOf(Y, X).
pointsTo(Y, X) :- assign(Y, Z), pointsTo(Z, X).
pointsTo(Y, W) :- load(Y, X), pointsTo(X, Z), pointsTo(Z, W).
pointsTo(Z, W) :- store(Y, X), pointsTo(Y, Z), pointsTo(X, W).

Context-Sensitive Points-To Analysis (CSPA):

valueFlow(Y, X) :- assign(Y, X).

valueFlow(X, X) :- assign(X, Y).

valueFlow(X, X) :- assign(Y, X).

valueFlow(X, Y) :- assign(X, Z), memoryAlias(Z, Y).

valueFlow(X, Y) :- valueFlow(X, Z), valueFlow(Z, Y).

valueAlias(X, Y) :- valueFlow(Z, X), valueFlow(Z, Y).

valueAlias(X, Y) :- valueFlow(Z, X), memoryAlias(Z, W), valueFlow(W, Y).

memoryAlias(X, X) :- assign(Y, X).

memoryAlias(X, X) :- assign(X, Y).

memoryAlias(X, W) :- dereference(Y, X), valueAlias(Y, Z), dereference(Z, W).

Switching from linear recursion to non-linear recursion, we observe that RecStep significantly
outperforms Souffle and DDlog (Figure 9b) for Andersen’s Analysis evaluated on the largest
input dataset (∼ 1.2G) used in [1]. Figure 9c shows that both Souffle and RecStep have a long
warm-up time in which the CPU utilization is very low. The reason is similar to that observed
in the evaluation of REACH on large graphs - since there are four EDB/input relations in AA,
the total size of which is relatively large, more preprocessing work for Souffle and DDlog (e.g.,
index construction) is needed.

Since the size of generated facts is relatively small across different iterations, RecStep evaluates
AA efficiently while using only a small amount of memory (Figure 9d). Additionally, AA
has nonlinear-recursive rules, and all rules in AA derive the facts for the same relation (i.e.,
pointsTo), in which case RecStep is able to fully utilize CPU and evaluate all rules in parallel.

The Datalog program itself alone is insufficient to characterize the recursive computation. For
CSPA, the recursive computation profiles of three systems on linux dataset look very different
from the ones on postgresql and httpd datasets. Interestingly, we can see that similar
recursive profiles (Figure 11a and Figure 12a) come along with similar profiling information on
runtime (Figure 11b and Figure 12b), CPU (Figure 11c and Figure 12c) and memory (Figure 11d
and Figure 12d). DDlog’s performance seems to be very sensitive to the sizes of the intermediate
results: when there are large number of facts being generated in several iterations, DDlog

176

Zhiwei Fan et al. CEUR Workshop Proceedings 166–180

3 6 9 12 15 18 21 24
Iteration #

0
1
2
3
4
5
6
7
8

of

 F
ac

ts

1e5

La
st

 It
er

at
io

n
(2

4)Generated Facts
Unique Generated Facts
New Facts

(a) Recursion Profile

recstep souffle ddlog
Datalog Systems

0
50

100
150
200
250
300

Ti
m

e
(s

)

Evaluation
Compilation

(b) Runtime

0 20 40 60 80 100 120 140
Time (s)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

recstep
souffle
ddlog

(c) CPU Utilization

0 20 40 60 80 100 120 140
Time (s)

2

4

6

8

10

Pe
rc

en
ta

ge
 (%

) recstep
souffle
ddlog

(d) Memory Consumption

Figure 9: Andersen’s Analysis

turns out to require a great amount of memory to maintain the intermediate states (Figure 11d
and Figure 12d) and the corresponding overhead also affects the overall performance greatly
(i.e., DDlog is outperformed by RecStep and Souffle as shown in Figure 11b and Figure 12b).
Such inference can be additionally strengthened by looking at Figure 10, in which Figure 10a
shows fewer facts are generated during the iterative evaluation and DDlog show better relative
performance over RecStep in Figure 10b while using considerably less memory as shown in
Figure 10d.

3.3. Discussion

The case studies above show how we can leverage the recursive computation profiling compo-
nents described in Section 2 to understand better the performance difference between different
Datalog systems on a given Datalog workload. This also allows us to identify the limitation of
existing systems. For example, DDlog is unsuitable for batch-processing on the workload that
generates intermediate results of large sizes but might be of proper use when GF𝑠𝑖𝑧𝑒 is small.
Souffle performs well primarily because of the heavy optimization of indexes, but indexing
could become a bottleneck in some cases (Figure 4b and Figure 9b). The large performance gap
between RecStep and the other two Datalog systems observed on CSDA reveals the importance
of continuously maintained indexes to good overall performance. Finally, the large memory
consumption of RecStep observed on TC-G10𝑘 and SG-G5𝑘 suggests such indexes should also
have good compression capability for memory efficiency.

177

Zhiwei Fan et al. CEUR Workshop Proceedings 166–180

3 6 9 12 15 18 21 24 27
Iteration #

0

2

4

6

8

of

 F
ac

ts

1e7

La
st

 It
er

at
io

n
(2

8)Generated Facts
Unique Generated Facts
New Facts

(a) Recursion Profile

recstep souffle ddlog
Datalog Systems

0
50

100
150
200
250

Ti
m

e
(s

)

Evaluation
Compilation

(b) Runtime

0 10 20 30 40 50 60 70
Time (s)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

) recstep
souffle
ddlog

(c) CPU Utilization

0 10 20 30 40 50 60 70
Time (s)

2
4
6
8

10

Pe
rc

en
ta

ge
 (%

)

recstep
souffle
ddlog

(d) Memory Consumption

Figure 10: Context-Sensitive Points-to Analysis Linux

4 8 12 16 20 24 28 32
Iteration #

0

2

4

6

8

of

 F
ac

ts

1e7

La
st

 It
er

at
io

n
(3

4)Generated Facts
Unique Generated Facts
New Facts

(a) Recursion Profile

recstep souffle ddlog
Datalog Systems

0
100
200
300
400
500

Ti
m

e
(s

)

Evaluation
Compilation

(b) Runtime

0 50 100 150 200 250 300
Time (s)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

) recstep
souffle
ddlog

(c) CPU Utilization

0 50 100 150 200 250 300
Time (s)

0

10

20

30

40

Pe
rc

en
ta

ge
 (%

)

recstep
souffle
ddlog

(d) Memory Consumption

Figure 11: Context-Sensitive Points-to Analysis Postgresql

4. Conclusion and Future Work

We have recently observed a renewed interest in Datalog. While recent work has significantly
advanced the state-of-the-art of Datalog evaluation techniques, we believe that a systematic
way to help gain a better understanding of these techniques is of great importance. Besides
the recursive computation profiling we propose in the paper, a standard benchmark covering

178

Zhiwei Fan et al. CEUR Workshop Proceedings 166–180

4 8 12 16 20 24 28 32
Iteration #

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

of

 F
ac

ts

1e8

La
st

 It
er

at
io

n
(3

1)Generated Facts
Unique Generated Facts
New Facts

(a) Recursion Profile

recstep souffle ddlog
Datalog Systems

0
100
200
300
400
500

Ti
m

e
(s

)

Evaluation
Compilation

(b) Runtime

0 50 100 150 200 250 300
Time (s)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

) recstep
souffle
ddlog

(c) CPU Utilization

0 50 100 150 200 250 300
Time (s)

0

10

20

30

40

Pe
rc

en
ta

ge
 (%

)

recstep
souffle
ddlog

(d) Memory Consumption

Figure 12: Context-Sensitive Points-to Analysis Httpd

different aspects of Datalog workloads is needed. This benchmark should be in analogy to
the online analytical processing benchmarks [17] that have been used for more than two
decades for performance validation of decision support systems. Without a benchmark suite
that covers Datalog workloads with different profiles, one can only gain a partial view of the
system performance, which could lead to the lack of essential factors needed during application
deployment (for users) and miss of system design decisions (for system builders).

Our ongoing and future work includes improving the recursive computation profiling by
adding other possible profiling components, building the new high-performance Datalog system
based on the recursive computation profiling, and creating a comprehensive benchmark suite.
Once such a benchmark is available and we have a better understanding of the characteristics of
different recursive profiles, we wish to find ways to estimate the recursive profile of a Datalog
workload without actually running it, which we believe will be helpful to think of evaluation
strategies and techniques that provide consistent, efficient execution across Datalog workloads
of different characteristics.

References

[1] Z. Fan, J. Zhu, Z. Zhang, A. Albarghouthi, P. Koutris, J. Patel, Scaling-up in-memory
datalog processing: Observations and techniques, arXiv preprint arXiv:1812.03975 (2018).

[2] L. Ryzhyk, M. Budiu, Differential datalog., Datalog 2 (2019) 4–5.
[3] B. Scholz, H. Jordan, P. Subotić, T. Westmann, On fast large-scale program analysis in

datalog, in: Proceedings of the 25th International Conference on Compiler Construction,
CC 2016, Association for Computing Machinery, New York, NY, USA, 2016, p. 196–206.
URL: https://doi.org/10.1145/2892208.2892226. doi:10.1145/2892208.2892226.

179

https://doi.org/10.1145/2892208.2892226
http://dx.doi.org/10.1145/2892208.2892226

Zhiwei Fan et al. CEUR Workshop Proceedings 166–180

[4] A. Shkapsky, M. Yang, M. Interlandi, H. Chiu, T. Condie, C. Zaniolo, Big data analytics
with datalog queries on spark, in: Proceedings of the 2016 International Conference on
Management of Data, SIGMOD ’16, Association for Computing Machinery, New York,
NY, USA, 2016, p. 1135–1149. URL: https://doi.org/10.1145/2882903.2915229. doi:10.1145/
2882903.2915229.

[5] Q. Zhang, A. Acharya, H. Chen, S. Arora, A. Chen, V. Liu, B. T. Loo, Optimizing declarative
graph queries at large scale, in: Proceedings of the 2019 International Conference on
Management of Data, 2019, pp. 1411–1428.

[6] F. McSherry, D. G. Murray, R. Isaacs, M. Isard, Differential dataflow., in: CIDR, 2013.
[7] J. M. Patel, H. Deshmukh, J. Zhu, N. Potti, Z. Zhang, M. Spehlmann, H. Memisoglu,

S. Saurabh, Quickstep: A data platform based on the scaling-up approach, Proceedings of
the VLDB Endowment 11 (2018) 663–676.

[8] J. Whaley, D. Avots, M. Carbin, M. S. Lam, Using datalog with binary decision diagrams
for program analysis, in: Asian Symposium on Programming Languages and Systems,
Springer, 2005, pp. 97–118.

[9] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, Clingo= asp+ control: Preliminary report,
arXiv preprint arXiv:1405.3694 (2014).

[10] M. Alviano, W. Faber, N. Leone, S. Perri, G. Pfeifer, G. Terracina, The disjunctive datalog
system dlv, in: International Datalog 2.0 Workshop, Springer, 2010, pp. 282–301.

[11] M. Yang, A. Shkapsky, C. Zaniolo, Scaling up the performance of more powerful datalog
systems on multicore machines, The VLDB Journal 26 (2017) 229–248.

[12] S. Abiteboul, R. Hull, V. Vianu, Foundations of databases, volume 8, Addison-Wesley
Reading, 1995.

[13] CloudLab, https://www.cloudlab.us/, 2018.
[14] D. A. Bader, K. Madduri, Gtgraph: A synthetic graph generator suite, Atlanta, GA, February

38 (2006).
[15] F. McSherry, A. Lattuada, M. Schwarzkopf, T. Roscoe, Shared arrangements: practical

inter-query sharing for streaming dataflows, arXiv preprint arXiv:1812.02639 (2018).
[16] H. Jordan, P. Subotić, D. Zhao, B. Scholz, Brie: A specialized trie for concurrent datalog, in:

Proceedings of the 10th International Workshop on Programming Models and Applications
for Multicores and Manycores, PMAM’19, Association for Computing Machinery, New
York, NY, USA, 2019, p. 31–40. URL: https://doi.org/10.1145/3303084.3309490. doi:10.1145/
3303084.3309490.

[17] M. Barata, J. Bernardino, P. Furtado, An overview of decision support benchmarks: Tpc-
ds, tpc-h and ssb, New Contributions in Information Systems and Technologies (2015)
619–628.

180

https://doi.org/10.1145/2882903.2915229
http://dx.doi.org/10.1145/2882903.2915229
http://dx.doi.org/10.1145/2882903.2915229
https://www.cloudlab.us/
https://doi.org/10.1145/3303084.3309490
http://dx.doi.org/10.1145/3303084.3309490
http://dx.doi.org/10.1145/3303084.3309490

	1 Introduction
	2 Recursive Computation Profiling
	3 Case Studies
	3.1 Simple Linear Recursion
	3.2 Non-linear Recursion
	3.3 Discussion

	4 Conclusion and Future Work

