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Abstract  
Recombinative innovation is the innovation generated by the combinations of existing technical 

elements or new technological characteristics. In this paper, we proposed a novel method for 

detecting technological recombination, which combines semantic analysis and dynamic 

network analysis. Firstly, the dynamic word embedding model is applied to generate the 

dynamic word vectors, and construct the dynamic keyword network. Then, the dynamic 

network link prediction method is trained to predict the future network and generate the 

technological recombination opportunity score, which represents the possibility of potential 

recombination between technologies. Finally, SLM community detection is combined with the 

PageRank algorithm to identify core keywords in communities of the future network, and then 

detect potential technological recombination candidates corresponding to core keywords. A 

case study on artificial intelligence domain demonstrates the reliability of the methodology, and 

the results provide guidance for enterprise managers and technical policymakers.  
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1. Introduction 

Recombinative innovation is the innovation 

generated by the combinations of existing 

technical elements or new technological 

characteristics [1], which has been considered a 

crucial way of innovation [2]. For example, 

OpenAI, an American artificial intelligence 

company, recombined natural language 

processing technology and computer vision 

technology to propose the DALL-E model, which 

is a multimodal transformer language model and 

improved the generation capabilities from text to 

image [3]. Detecting technological recombination, 

which can assist researchers in discovering 

potential technological innovation opportunities, 

exploring development trends of technologies, 
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breaking through technical bottlenecks, and thus 

providing guidance for enterprise managers and 

technical policymakers [4].  

In recent years, researchers have attached great 

importance to recombination innovation, 

especially in the service and manufacturing 

industries [5]. For example, Corrocher et al. 

developed performance evaluation systems to 

measure the recombination innovation ability in 

service firms [6]. However, few researchers 

consider the recombination of technological 

domains [1], and the study on quantitatively 

measuring technological recombination 

opportunity is still limited [7]. 

In the field of scientific and technological 

innovation management, network analytics has 

been widely used to explore innovation activities, 
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which can excavate the multi-dimensional 

relationship among knowledge elements [8]. The 

link prediction model is a network analysis-based 

method, which can determine the possibility of 

edges between unconnected nodes based on the 

topology information [9]. This method provides a 

novel perspective for exploring technological 

recombination opportunities, which could be 

applied to generate the probability of two 

technologies recombining in the future. However, 

recombinative innovation and technological 

advancement are continuous processes. With the 

emergence of new combinations among 

technologies, the technology network becomes 

highly dynamic [10]. Although many static link 

prediction methods have been developed, 

ignoring the time information and the dynamic 

evolution characteristics of the network over time, 

resulting in the inaccurate of the predicted 

network in dynamic network tasks [11]. Therefore, 

a future-oriented link prediction method based on 

dynamic network analysis should be presented to 

identify potential recombination opportunities. 

Furthermore, semantic analysis has been 

introduced in technological innovation research to 

capture the semantic association between 

technologies [12]. The word embedding method 

is a text mining technology, which can effectively 

excavate underlying semantic and contextual 

relationships between keywords [13]. However, 

the static word embedding methods ignore the 

potential semantic changes of words in the 

dynamic context and the transformations of 

hidden semantic association patterns behind 

temporal keyword networks, which leads to the 

inaccurate description of the relationship between 

keywords, and reduces the accuracy of dynamic 

keyword network construction [14].   

To address these concerns, we propose a novel 

framework for detecting technological 

recombination using semantic analysis and 

dynamic network analysis. The proposed method 

integrates a dynamic word embedding model, a 

dynamic network link prediction method, and 

machine learning technologies, which have the 

following three specific functions: 1) the dynamic 

network constructed by the temporal word 

embedding model to capture the changes of 

hidden semantic association patterns behind 

keyword networks over time and improve the 

accuracy of dynamic network construction; 2) the 

application of E-LSTM-D model 

comprehensively considering the network 

topological structure and time characteristics, and 

improving the accuracy of the predicted network; 

3) the combination of SLM (smart local moving) 

community detection and PageRank algorithm to 

identify core keywords in each community,  and 

then detect technological recombination 

candidates corresponding to the core keywords. 

We use a case study on artificial intelligence 

domain to demonstrate the reliability of our 

proposed method. 

2. Method 

The framework of detecting technological 

recombination is shown in Figure 1. 

 
Figure 1: Framework of detecting technological recombination 

2.1. Dynamic network construction 
2.1.1. Data collection and 
preprocessing 

The dataset gathered in this paper is acquired 

from the Web of Science (WoS) using a specific 

search strategy. The natural language processing 

function of VantagePoint (VP)  is used to extract 

terms from titles, abstracts, and author keywords, 

and the term clumping method is applied to 

process terms [15]. Following the theory of 

Arthur, we can understand the nature of 

technology and how it evolves [16]. This theory 

states that each technology is composed of some 

combination of components or principles and 

each component of the technology is a miniature 

technology. Therefore, the keywords (the research 
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objects of our study) are the terms processed by 

the term clumping method. 

2.1.2. Word vector acquisition based 
on temporal word embedding model 

The aim of this section is to generate the 

dynamic word vectors of keywords for each time 

slice by using temporal word embedding model. 

The temporal word embedding is a dynamic word 

embedding method [17], which has the following 

advantages: 1) solving the problem of polysemy 

in different contexts and improving the semantic 

accuracy of word representation; 2) capturing the 

transformation of hidden semantic association 

patterns in keyword networks over time and thus 

the accuracy of dynamic network construction can 

be improved; 3) processing a large number of 

corpus and words with a higher training speed and 

efficiency. The steps of generating word vectors 

are as follows. 

(1) Division of time periods 

The entire dataset, including text corpus and 

keywords, is divided based on the fixed time 

window method. It is a quasi-periodic time series 

division method that segments the text sequence 

into several slices with fixed length using the time 

window [18]. 

(2) Static word vector acquisition 

We use Word2Vec model, which is trained 

through the entire dataset as a corpus, to generate 

static word vectors corresponding to all keywords 

and set them as the input of temporal word 

embedding model. Word2Vec is a static word 

embedding method that can capture the semantic 

information between keywords effectively [19]. 

In our study, skip-gram method is applied, which 

has been proven to have certain advantages in the 

research of the bibliometric domain [20]. The 

input is a text corpus including titles and abstracts 

in the whole dataset. Finally, the keywords are 

mapped into low dimensional and dense static 

word vectors that contain semantic information. 

(3) Dynamic word vector acquisition 

Then, the temporal word embedding model is 

applied to generate the dynamic embeddings with 

higher semantic accuracy on each time slice. In 

our study, the generation process of dynamic word 

vectors is as follows. 

① PMI matrix generation 

PMI (pointwise mutual information) matrix is 

generated on each time slice based on the text 

corpus. PMI is an information measurement index, 

which has been widely applied to measure the 

semantic similarity between words in the natural 

language processing tasks [21]. In our study, the 

PMI matrix is used to measure the correlation of 

any two keywords on each time slice within a time 

window L. The calculation method of 𝑃𝑀𝐼𝑡(𝑎, 𝑏) 
is shown in formula (1). 

𝑃𝑀𝐼𝑡(𝑎, 𝑏) = 𝑙𝑜𝑔⁡(
𝐶(𝑎, 𝑏) ∙ |𝐷𝑡|

𝐶(𝑎) ∙ 𝐶(𝑏)
) 

(1) 

Where 𝐷𝑡  represents the corpus on time slice t, 
𝐶(𝑎, 𝑏) is the number of times that keyword a and 
b cooccur in corpus 𝐷𝑡 within a time window size 
L, 𝐶(𝑎)  and 𝐶(𝑏)⁡ represent the number of 
occurrences of keyword a and b in 𝐷𝑡 in time slice 
t, respectively, and ⁡|𝐷𝑡|⁡ is the total number of 
keywords appear in 𝐷𝑡. 
② PPMI matrix generation 

Considering that the 𝑃𝑀𝐼𝑡(𝑎, 𝑏) will approach 
a large negative value when two keywords appear 

at the same time on the time slice with a low 

frequency in our corpus, which will lead to the 

unreasonable decomposition process of the matrix. 

Therefore, the PPMI (positive PMI) matrix is 

replaced with the PMI matrix to alleviate the data 

sparsity and make the model more stable [22]. The 

calculation method of 𝑃𝑃𝑀𝐼𝑡(𝑎, 𝑏)  is shown in 
formula (2). 

𝑃𝑃𝑀𝐼𝑡(𝑎, 𝑏) = 𝑚𝑎𝑥⁡{𝑃𝑀𝐼𝑡(𝑎, 𝑏), 0} (2) 
Where 𝑃𝑀𝐼𝑡(𝑎, 𝑏)  represents the correlation 
degree of keyword a and b in the PMI matrix on 

time slice t. 

③ PPMI matrix factorization 

The PPMI matrix is factorized by solving the 

optimization problem (3) to generate the keyword 

vectors corresponding to each time slice. The 

optimal solution of this problem is the dynamic 

word vector corresponding to the keyword of each 

time slice. The dynamic word vector set is shown 

in formula (4). 

𝑚𝑖𝑛
𝑈1,⋯,𝑈𝑇

1

2
∑||𝑃𝑃𝑀𝐼𝑡 − 𝑈1𝑈𝑇

𝑇||𝐹
2

𝑇

𝑡=1

+
𝛼

2
∑||𝑈𝑡||𝐹

2

𝑇

𝑡=1

+
𝛽

2
∑||𝑈𝑡−1 − 𝑈𝑡||𝐹

2

𝑇

𝑡=2

 

(3) 

𝑈 = {𝑈1,⋯ , 𝑈𝑇} (4) 
Where 𝑃𝑃𝑀𝐼𝑡  represents the PPMI matrix on 

time slice t, 𝑈𝑡 ⁡(𝑡 = 1,⋯ , 𝑇) represents the word 
vector set on time slice t, T is the number of time 

slice, ||𝑈𝑡||𝐹
2   and ||𝑈𝑡−1 − 𝑈𝑡||𝐹

2   represent the 

penalty term and smoothing normalization term, 

respectively, and 𝛼 , 𝛽⁡  0 represent the 
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coefficients of penalty term and smoothing 

normalization term, respectively. 

In this section, we finally generate the 

keyword vectors for each time slice. 

2.1.3. Dynamic network construction 

The purpose of this section is to construct a 

dynamic network based on the keyword vectors in 

each time slice. Firstly, the semantic similarity 

between keywords is measured using the cosine 

distance between keyword vectors. The 

calculation method of the semantic similarity 

𝑠𝑖𝑚(𝑎, 𝑏)⁡between keyword a and b on time slice 
t is shown in formula (5). 

𝑠𝑖𝑚(𝑎, 𝑏) =
𝑈𝑡(𝑎)

𝑇𝑈𝑡(𝑏)

||𝑈𝑡(𝑎)||2 ∙ ||𝑈𝑡(𝑏)||2
 

(5) 

Where 𝑈𝑡(𝑎)  and 𝑈𝑡(𝑏)  denote the dynamic 
word vectors of keyword a and b on time slice t 

respectively. 

Then, the keyword network on each time slice 

is constructed based on the semantic similarity. In 

this paper, the keyword network on time slice t 

can be defined as 𝐺𝑡 = (𝑉, 𝐸𝑡 ,𝑊𝑡), where 𝑉, 𝐸𝑡, 
and 𝑊𝑡  denote the keywords, edges, and edge 

weights (semantic similarity) in 𝐺𝑡  respectively, 
⁡𝐴𝑡 is the adjacency matrix of 𝐺𝑡. Following the 
design of Zeng et al. [23], the similarity threshold 

filtering method is used to remove edges between 

the weak-related keyword pairs. When the edge 

weight is greater than the threshold, the edge 

between keywords is retained, otherwise, it is 

removed. 

Finally, the keyword networks in all time 

slices constitute the dynamic network 𝐺 , which 
can be represented as: 

𝐺 = {𝐺1,⋯ , 𝐺𝑡 ,⋯ , 𝐺𝑇} (6) 
where 𝐺𝑡  denotes the keyword network on time 
slice t. 

2.2. Future network prediction 

After constructing the dynamic network, the 

dynamic network link prediction method is 

applied to predict the future network, and generate 

the technological recombination opportunity 

score, which represents the possibility of potential 

recombination between technologies. This part 

includes two sections: 1) Dynamic network link 

prediction model construction and 2) Future 

network prediction. 

2.2.1. Dynamic network link 
prediction model construction 

The Encoder-LSTM-Decoder (E-LSTM-D) 

model, which is a dynamic network link 

prediction method based on deep learning, is 

applied to predict the future network. The E-

LSTM-D model showed its advantages in the 

dynamic network analysis [24]: 1) it can be 

suitable for different scale networks since the 

encoder-decoder architecture can deal with high-

dimensional, nonlinear, and data-sparse networks 

effectively; 2) the stacked LSTM structure can 

capture richer time information and better learn 

network topology characteristics and dynamic 

evolution patterns. The steps of constructing the 

dynamic network link prediction are as follows.  

(1) Network data modeling 

The dynamic network G is modeled as a series 

of graphic sequences with fixed length and time 

interval. In each graphic sequence, the future 

network is predicted based on the historical 

networks. Next, the training set and test set are 

proportionally divided, where the training set is 

used to train and generate the link prediction 

model, and the test set is used to evaluate the 

performance of the model based on indicators [10]. 

To evaluate the performance of our trained link 

prediction model, we choose three indicators: 

AUC [25], Precision [26], and Error rate [24]. The 

Error rate is a good supplement to AUC and can 

comprehensively measure the performance of the 

dynamic network link prediction method. 

(2) Dynamic network link prediction model 

training 

Firstly, the encoder-decoder architecture and 

the stacked LSTM structure are built. Then, 

forward propagation is used to obtain the loss, 

followed by back propagation to update all 

parameters, including the weight parameters and 

deviation parameters of the encoder layer, 

decoder layer, and LSTM structure. When the loss 

function is minimized, the trained link prediction 

model is generated.  

In this section, the final model is generated by 

testing the parameters constantly, including the 

number of encoder layers, decoder layers, LSTM 

modules, and their neural units. Then, the trained 

dynamic network link prediction model is used for 

predicting the future network. 

2.2.2. Future network prediction 
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The future network 𝐺𝑇+1 is predicted based on 
the latest networks {𝐺𝑇−𝑁+1, 𝐺𝑇−𝑁+2,⋯ , 𝐺𝑇} , 
which provides the basis for the technological 

recombination opportunity analysis. Since the 

latest network can better reflect the current 

development tendency of technologies, the well-

trained model is applied in 

{𝐺𝑇−𝑁+1, 𝐺𝑇−𝑁+2,⋯ , 𝐺𝑇}  to calculate the 

possibility of the connection between keywords in 

the future network. We define the possibility of 

keyword pairs to be connected as the 

technological recombination opportunity score, 

which denotes the possibility of potential 

recombination between technologies.  

Then, the technological recombination 

opportunity score is transformed into the edge 

weight in the future network. Following the study 

of Wang et al. [27], the weight threshold is set, 

and the technological recombination opportunity 

score greater than this threshold would be 

converted into the edge weight. In our study, the 

future network can be defined as 𝐺𝑇+1 =
(𝑉, 𝐸𝑇+1,𝑊𝑇+1) , where 𝑉 , 𝐸𝑇+1 , and 𝑊𝑇+1 

denote the keywords, edges, and edge weights 

(technological recombination opportunity score) 

in 𝐺𝑇+1  respectively, ⁡𝐴𝑇+1  is the adjacency 
matrix of 𝐺𝑇+1. 

In this section, we generate the future network 

𝐺𝑇+1 containing the technological recombination 
opportunity score (edge weight 𝑊𝑇+1). 

2.3. Technological recombination 
detection 

This part aims to analyze the potential 

technological recombination opportunities based 

on the technological recombination opportunity 

scores between technologies in the future network. 

2.3.1. Community detection based on 
SLM 

After constructing the future network, SLM 

(smart local moving) community detection is 

introduced to cluster keywords into communities. 

The identified community contains multiple 

keywords that are closely related to each other. 

Keywords within the same community are more 

likely to produce recombinative innovation than 

those within different communities. Therefore, 

potential technology recombination opportunities 

can be better discovered in the community. 

SLM is a modularity-based community 

detection algorithm, which can achieve high-

quality division results in large-scale networks 

[28]. Modularity was proposed by Newman and 

Girvan in 2004, which is an index to measure the 

quality of the detected community [29]. The 

greater the modularity, the better the performance 

of community division. In our study, the 

modularity can be calculated as: 

𝑀 =
1

2𝐿
∑ [𝑊𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝐿𝑖,𝑗 ]𝛿(𝑐𝑖, 𝑐𝑗)  
(7) 

where L is the total number of edges in the future 

network 𝐺𝑇+1 , 𝑘𝑖  and 𝑘𝑗  denote the sum of the 

edge weights of keyword i and j, respectively, 𝑊𝑖𝑗 

is the edge weight between keyword i and j. 𝑐𝑖 and 
𝑐𝑗  represent the community number which the 

keyword i and j belong to, respectively, if 𝑐𝑖 = 𝑐𝑗, 

then 𝛿(𝑐𝑖, 𝑐𝑗) = 1, otherwise, 𝛿(𝑐𝑖, 𝑐𝑗) = 0. 

In our study, the i-th community generated 

from community detection is defined as 𝐶𝑖 =
(𝑉𝑖, 𝐸𝑖 ,𝑊𝑖) , where 𝑉𝑖 , 𝐸𝑖 , and 𝑊𝑖  denote the 

keywords, edges, and edge weights (technological 

recombination opportunity score) in  𝐶𝑖 
respectively, 𝐴𝑖  is the adjacency matrix of 𝐶𝑖 . 
Finally, the community set 𝐶 is generated in the 
future network using SLM algorithm, which is 

represented as: 

𝐶 = {𝐶1,⋯ , 𝐶𝑖, ⋯ , 𝐶𝑠} (8) 
where 𝐶𝑖 denotes the i-th community in the future 
network, and s is the number of communities that 

has been detected. 

2.3.2. Core keywords identification 
based on PageRank algorithm 

In this section PageRank algorithm is applied 

to measure the importance score of keywords and 

thus identify the core keywords in the 

communities. This algorithm fully considers 

multiple factors including the local topological 

structure of the target node and the importance of 

the nodes connected with it [30], which has been 

widely introduced to identify core nodes in 

various complex networks [31]. Therefore, this 

method is introduced to rank the importance of 

keywords in each community. The importance 

score 𝑃𝑅(𝑖) is calculated as: 

𝑃𝑅(𝑖) = 𝑑 × ∑
𝑃𝑅(𝑇𝑗)

𝐶(𝑇𝑗)
𝑛
𝑗=1 + (1 − 𝑑)  (9) 

where d is the damping factor ( 0 ≤ 𝑑 ≤ 1 ), 

generally 0.85, 𝑇𝑗 denotes the keyword linked to 

the keyword 𝑖, 𝐶(𝑇𝑗) is the number of keywords 
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linked with 𝑇𝑗, and 𝑛 is the number of keywords 

linked with keyword 𝑖. 

Finally, we sort all keywords in the community 

based on the importance score, and select the top-

K keywords as the core keywords in each 

community. 

2.3.3. Potential technological 
recombination detection 

After identifying core keywords in 

communities, technological recombination 

candidates corresponding to core keywords are 

detected based on the technological 

recombination opportunity score, which reveals 

the recombinative innovation among technologies. 

This paper only considers whether the 

technologies’ new combination can produce 

recombinative innovation, provide researchers 

with solutions for difficult problems in a certain 

field and explore development trends of 

technologies in the future. 

Firstly, the predicted future network 𝐺𝑇+1  is 
compared with the current network 𝐺𝑇  to select 
new edges in each community and acquire the 

edge weights (technological recombination 

opportunity score) corresponding to the new 

edges. Then, according to the edge weights of the 

new edges, the top-3 technologies (keywords) are 

identified as the technological recombination 

candidate corresponding to the target keyword, 

revealing the potential recombinative innovation 

corresponding to the core keywords. 

3. Case study 

As an emerging field of multidisciplinary 

research and innovation, artificial intelligence (AI) 

has a broad prospect of continuous development, 

which offers potential opportunities for detecting 

technological recombination within this field. 

Given that AI is at the nascent stage of 

development and immature, we chose AI as the 

field to explore more cross integration directions, 

and verify the effectiveness of our framework. 

3.1. Dynamic network construction 

Following the study by Liu et al. [32], we 

acquired 240561 papers between 2014 to 2020 

from the Web of Science (WoS). The search 

strategy used in this paper is shown in "Appendix 

A". Then, VantagePoint (VP) and the term 

clumping method were used to process keywords 

and text corpus. Finally, a total of 11773 

keywords remained.  

The experimental environment is Windows 10 

operating system, the method is implemented 

using Python 3.7, mainly using dependency 

module genism, tensorflow, keras, pandas, and 

networkx. 

Then, a fixed time window method was 

introduced to divide the time periods, in which the 

time window was set to 1 year. The whole dataset 

was divided into seven time slices, of which the 

time slice of 2020 was used for validation analysis. 

Following the design in Section 2.1.2, the 

Word2Vec model was applied to generate static 

keyword vectors as the initial value of dynamic 

embedding vectors, in which the entire data set 

was used as a corpus. We set the word vector 

dimension to 100 and the window size to 5. Next, 

the temporary word embedding model was 

applied to generate the word vectors 

corresponding to the keywords on each time slice 

and set the parameter α=10 and β=50.  

Next, the semantic similarity between 

keywords was measured according to formula (5), 

and then similarity matrixes were generated. The 

partial similarity matrix of 2019 is shown in Table 

1. 

Table 1 
Partial similarity matrix of 2019 

 
support 
vector 

machine 

convolutional 
neural 

network 
random forest 

decision tree 
learning 

particle swarm 
optimization 

support 
vector 

machine 
1 0.7488 0.9385 0.9025 0.8743 

convolutional 
neural 

network 
0.7488 1 0.7445 0.7953 0.7195 
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random 
forest 

0.9385 0.7445 1 0.8715 0.7978 

decision tree 
learning 

0.9025 0.7953 0.8715 1 0.8843 

particle 
swarm 

optimization 
0.8743 0.7195 0.7978 0.8843 1 

Finally, similarity matrixes were transformed 

into keyword networks, and the keyword 

networks on six time slices constitute the dynamic 

network. 

3.2. Future network prediction 

After constructing the dynamic network, a 

future network was predicted subsequently. 

Firstly, we set 3 years as a length and 1 year as a 

sliding window to generate the graphic sequences. 

For each graphic sequence, the third network is 

predicted based on the first two networks. Four 

graphic sequences were acquired from the 

dynamic network in this paper. Table 2 shows the 

details of data division. In our study, the first three 

graphic sequences were set as the training set, and 

the last graphic sequence was the test set. 

Table 2 
Dataset division 

graphic 
sequence 

year 

1 2014-2016 
2 2015-2017 
3 2016-2018 
4 2017-2019 

Then, the well-trained dynamic network link 

prediction model was generated through a tuning 

process of parameters. The parameter 

configuration of our trained model is given in 

Table 3. 

Table 3 
Parameter configuration of our trained model 

Parameters Values 

No. units in encoder 1024|512 
No. units in stacked LSTM 384|384 

No. units in decoder 512|11773 
Learning rate 0.001 

Weight decay factor 5e-4 

After generating the model, the test set was 

inputted into the model to calculate the values of 

evaluation indicators (AUC, Precision, and Error 

rate). The AUC value is 0.902, the Precision value 

is 0.896, and the Error rate value is 0.960 in the 

trained model, which indicates that our trained 

model has a good performance. 

Following Section 2.2.2, we applied the 

trained model to the 2018 and 2019 networks and 

acquired the possibility of the connection between 

keywords in the predicted network, that is, the 

technological recombination opportunity score. 

With the weight threshold set as 0.9, we finally 

generated a future network with 2657691 edges 

and a network density of 0.038. 

3.3. Technological recombination 
detection 

The next stage was to detect the potential 

technological recombination. Following Section 

2.3.1, the SLM community detection algorithm 

was applied to divide the predicted network and 

11773 keywords were clustered into 42 

communities. We numbered each community 

according to the total number of keywords in each 

community. That is the number of keywords in 

communities 1 to 42 decrease sequentially.  

Next, the PageRank algorithm was used to 

calculate the important scores of keywords and 

thus identify the core keywords in 42 

communities, and we summarized the main 

research topics in the community (community 

description) according to the core keywords. 

Table 4 lists the details of top-5 core keywords 

contained in the community 1-5. The hot topics in 

the artificial intelligence domain can be explored 

according to the core keywords. 

Table 4 
Top-5 core keywords within the community 1-5 
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No Top-5 core keywords 
The description of 

the community   
No. keywords in 

community 

1 

reinforcement learning process, 
response functions, image 
coding, graph topology, posterior 
probability distribution 

Reinforcement 
learning 

459 

2 

semantic mapping, facial 
landmark detection, image 
inpainting, manifold alignment, 
hypergraph learning 

semantic 
comprehension 

449 

3 

heuristic search, hyperspectral 
band selection, functional data 
analysis, statistical hypothesis 
testing, stochastic learning 

stochastic search 440 

4 

sequential forward selection, grid 
search algorithm, hybrid learning 
algorithm, backward elimination, 
bootstrap method 

search algorithm 414 

5 
medical domain, clinical domain, 
social media, biological research, 
emotion analysis 

medical domain 399 

According to the results of the PageRank 

algorithm, the hot topics in artificial intelligence 

domain mainly include reinforcement learning, 

semantic comprehension, stochastic search, 

feature representation, multi-objective analysis, 

visual detection, and intelligent algorithm. The 

application fields mainly comprise medical 

science, ecosystem, social discovery, behavioral 

gene, and mechanical system. Meanwhile, the 

researchers in this field attach great importance to 

the evaluation and verification of methods. 

Following the design in Section 2.3.3, the top-

3 technologies (keywords) were selected as the 

technological recombination candidates 

corresponding to the core keywords within the 

community, based on the edge weight 

(technological recombination opportunity score) 

of the new edge. The core keywords (top-5) in 

community 1 and the technological reorganization 

candidates are given in Table 5. 

Table 5 
Potential technological recombination 

No Core keywords 
Important 
score 

Technological 
recombination candidates 

Technological 
recombination 
opportunity score 

1 
Reinforcement 
learning process  

0.00677 

spatial properties 0.9990 

system configuration 0.9980 

target location 0.9975 

2 
response 
functions 

0.00619 

video cameras 0.9999 

DFT calculations 0.9956 

reinforcement learning 
process 

0.9941 

3 image coding 0.00504 
Markov processes 0.9999 

probabilistic learning 0.9998 
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confidence value 0.9914 

4 graph topology 0.00499 

state estimates 0.9997 

Markov processes 0.9973 

reinforcement learning 
process 

0.9961 

5 
posterior 
probability 
distribution 

0.00483 

noise distribution 0.9930 

response functions 0.9921 

point estimates 0.9919 

Several observations can be acquired based on 

the above results. There are correlations between 

keywords in the technological reorganization 

candidates corresponding to each core keyword, 

and they all have great correlations with the target 

keywords, which demonstrates that the results of 

technological recombination identified are 

reliable.  

Two main patterns of potential technological 

recombination are identified in this paper: 1) a 

new combination of two previous technologies; 2) 

expansion of technological application scenarios. 

We further discuss the essence meaning 

between core keywords and their technological 

reorganization candidates. For example, the 

technological recombination candidates 

corresponding to the core keyword 

"reinforcement learning process" are "spatial 

properties", "system configuration", and "target 

location". In recent years, reinforcement learning 

is regarded as an intelligent search algorithm in 

the navigation domain, considering more space-

time characteristics, and proposing the solution of 

target location, system configuration optimization, 

and location search. Therefore, the recombination 

of core keywords with its technological 

recombination candidate can generate innovation 

and inspire new ideas. 

3.4. Validation 

In this part, we conducted the quantitative and 

qualitative methods to verify the reliability of our 

proposed method and technological 

recombination detection results. 

3.4.1. Verification of the trained 
model and prediction results 

The performance of the link prediction model 

trained in this paper was validated based on AUC, 

Precision, and Error rate by comparing with six 

traditional link prediction methods. Baseline 

methods include Adamic-Adar-based method 

[33], Preferential attachment-based method [34], 

Jaccard-based method [35], Spectral Clustering-

based method [36], Node2Vec-based method [37], 

and Variational Graph Auto-Encoders (VGAE) 

[38]. The comparison results are given in Table 6. 

Table 6 
The comparison of prediction performance 

Methods AUC Precision Error rate 

Dynamic network link prediction 
method (our method) 

E-LSTM-D  0.902  0.896 0.960  

Traditional link prediction method  

AA 0.613 0.712 2.961 

PA 0.701 0.760 2.944 

Jaccard 0.507 0.600 2.999 

SC 0.556 0.642 3.002 

Node2Vec 0.686 0.797 2.993 

VGAE 0.685 0.747 2.888 
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It can be seen that our method outperforms 

baseline methods in three evaluation indicators. 

Concretely, compared with the six traditional link 

prediction methods, the AUC value of our method 

increases by 28.9%, 20.1%, 39.5%, 34.6%, 21.6%, 

and 21.7%, respectively, the Precision value 

increases by 18.4%, 13.6%, 29.6%, 25.4%, 9.9%, 

and 14.9%, respectively, and the Error rate value 

decreases by 2.001, 1.984, 2.039, 2.042, 2.033, 

and 1.928, respectively. These results 

demonstrate the dynamic network link prediction 

model used in this paper has achieved good 

performance on our dataset.  

Furthermore, the accuracy of the prediction 

results has been verified via the comparison 

between the future network and the 2020 real 

keyword network. Specifically, the network of 

2020 was constructed, including 11773 nodes and 

3396060 edges, with a network density of 0.049. 

In the predicted future network, there are 1637788 

links with a connection possibility greater than 

0.95, of which 1416686 edges appear in the 2020 

real network, so the calculated Precision value is 

0.865. The results indicate that our trained 

dynamic network link prediction model can 

provide reliable results. 

3.4.2. Verification of detected 
technological recombination 

In this section, the qualitative method was 

applied to verify the reliability of the 

technological recombination detection results by 

searching relevant articles, patents, and other 

literature. Note that the published time of 

literature should be limited to 2020 and beyond. 

Table 7 shows the detailed empirical evidence of 

partial potential technological recombination. 

Table 7 
Relevant documentary proof of partial potential technological recombination 

No 
Core 
keywords 

Potential 
technological 
recombination 
candidates 

Relevant documentary proof 

1  
reinforcement 
learning 
process   

spatial 
properties 

Wang et al. recombined reinforcement learning and spatial 
properties, which solved the problem of sensor layout 
optimization in 2020 [39]. 

system 
configuration 

Wee and Nayak recombined reinforcement learning and 
system configuration, which solved the problem of data 
replication system configuration optimization in the IT 
environment in 2020 [40]. 

target location 
Song et al. recombined reinforcement learning and target 
location, which improved the accuracy of target positioning 
in 2020 [41]. 

2 
semantic 
mapping 

transfer 
learning 
algorithm 

Hou et al. recombined semantic mapping and transfer 
learning algorithm, which improved the accuracy of 
semantic mapping in 2020 [42]. 

person re-
identification 

Zhao and Xu recombined semantic mapping and person re-
identification, which improved the accuracy of the person 
re-identification task in 2020 [43]. 

medical 
images 

Li et al. proposed a novel method to recombine semantic 
mapping and medical images, which solved the problem of 
semantic segmentation of medical images in 2021 [44]. 

3 
heuristic 
search 

interval 
analysis 

Purini et al. recombined heuristic search and interval 
analysis to overcome the shortcomings of traditional 
distance analysis technology in 2020 [45]. 

grey system 
theory 

Yao et al. recombined heuristic search and grey system 
theory, which solved the problem of test selection in 2020 
[46]. 
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stochastic 
learning 

NESI et al. recombined heuristic search algorithm and 
stochastic learning, which proposed a novel super heuristic 
algorithm for acquiring, storing, and retrieving heuristic 
knowledge in 2020 [47]. 

Table 7 demonstrates the alignment between 

our technological recombination results detected 

and the literature. Therefore, the potential 

technological recombination identified in this 

paper is reliable, and the effectiveness of the 

proposed method has been further verified. 

4. Conclusion 

In this paper, we proposed a novel 

methodology to detect technological 

recombination using semantic analysis and 

dynamic network analysis. Temporal word 

embedding model was applied to construct the 

dynamic keyword network, capturing the changes 

of hidden semantic association modes in different 

keyword networks effectively, and improving the 

accuracy of the dynamic network construction. 

Further, the E-LSTM-D method based on the 

dynamic network analysis was combined with 

temporal word embedding model to predict the 

future network, exploring the dynamic evolution 

characteristics of the keyword network over time 

and improving the performance of potential 

technological recombination detection. 

Semantic analysis and dynamic network 

analysis were combined to identify potential 

technological reorganization, which provides 

technical intelligence on recombinative 

innovation. In addition, this method can not only 

identify the recombination innovation between 

technologies, but also explore the potential 

development trend of technologies and predict the 

research hot topics in the field of artificial 

intelligence in the future.  

Several limitations of our proposed method 

require further improvement: 1) The data is only 

limited to the period from 2014 to 2020, reducing 

the accuracy of network prediction. More 

abundant dataset should be further used for 

dynamic network link prediction research; 2) This 

paper does not provide a more detailed 

classification of technologies. In the future, the 

conceptual model should be considered to 

categorize the technologies in detail, making the 

research of technological recombination play a 

greater value; 3) More latest algorithms with good 

performance would be tried in our study, such as 

TextRank. 
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7. Appendix A. Search strategy for 
artificial intelligence 

This appendix shows the search strategy of 

papers for artificial intelligence used in this paper: 

TS=(“Artifcial Intelligen*” or “Neural Net*” or 

“Machine* Learning” or “Expert System$” or 

“Natural Language Processing” or “Deep 

Learning” or “Reinforcement Learning” or 

“Learning Algorithm$” or “*Supervised Learning” 

or “Intelligent Agent*”or (“Backpropagation 

Learning” or “Back-propagation Learning” or 

“Bp Learning”) or (“Backpropagation 

Algorithm*” or “Back-propagation Algorithm*”) 

or “Long Short-term Memory” or ((Pcnn$ not 

Pcnnt) or “Pulse Coupled Neural Net*”) or 

“Perceptron$” or (“Neuro-evolution” or 

Neuroevolution) or “Liquid State Machine*” or 

“Deep Belief Net*” or (“Radial Basis Function 

Net*” or Rbfnn* or“Rbf Net*”) or “Deep Net*” 

or Autoencoder* or “Committee Machine*” or 

“Training Algorithm$” or (“Backpropagation 

Net*” or “Back-propagation Net*” or “Bp 

Network*”) or “Q learning” or “Convolution* 

Net*” or “Actor-critic Algorithm$” or 

(“Feedforward Net*” or “Feed-Forward Net*”) 

or“Hopfeld Net*” or Neocognitron* or Xgboost* 

or “Boltzmann Machine*” or “Activation 

Function$” or (“Neurodynamic Programming” or 

“Neuro dynamic Programming”) or “Learning 

Model*” or (Neurocomputing or “Neuro-
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Computing”) or “Temporal Diference Learning” 

or “Echo State* Net*”or “Transfer Learning” or 

“Gradient Boosting” or “Adversarial Learning” or 

“Feature Learning” or“Generative Adversarial 

Net*” or “Representation Learning” or 

(“Multiagent Learning” or “Multi-agent 

Learning”) or “Reservoir Computing” or “Co-

training” or (“Pac Learning” or “Probabl* 

Approximate* Correct Learning”) or “Extreme 

Learning Machine*” or “Ensemble Learning” or 

“Machine* Intelligen*” or (“Neuro fuzzy” or 

Neurofuzzy) or “Lazy Learning” or (“Multi* 

instance Learning” or “Multiinstance Learning”) 

or (“Multi* task Learning” or “Multitask 

Learning”) or “Computation* Intelligen*” or 

“Neural Model*” or (“Multi* label Learning” or 

“Multilabel Learning”) or “Similarity Learning” 

or “Statistical Relation* Learning” or “Support* 

Vector* Regression” or “Manifold Regulari?ation” 

or “Decision Forest*” or “Generali?ation Error*” 

or “Transductive Learning” or (Neurorobotic* 

or“Neuro-robotic*”) or “Inductive Logic 

Programming” or “Natural Language 

Understanding” or (Adaboost* or “Adaptive 

Boosting”) or “Incremental Learning” or 

“Random Forest*” or “Metric Learning” or 

“Neural Gas” or “Grammatical Inference” or 

“Support* Vector* Machine*” or (“Multi* label 

Classifcation” or “Multilabel Classifcation”) or 

“Conditional Random Field*” or (“Multi* class 

Classifcation” or “Multiclass Classifcation”) or 

“Mixture Of Expert*” or “Concept* Drift” or 

“Genetic Programming” or “String Kernel*” or 

(“Learning To Rank*” or “Machine-learned 

Ranking”) or “Boosting Algorithm$” or “Robot* 

Learning” or “Relevance Vector* Machine*” or 

Connectionis* or (“Multi* Kernel$ Learning” or 

“Multikernel$ Learning”) or “Graph Learning” or 

“Naive bayes* Classif*” or“Rule-based System$” 

or “Classifcation Algorithm*” or “Graph* 

Kernel*” or “Rule* induction” or“Manifold 

Learning” or “Label Propagation” or 

“Hypergraph* Learning” or “One class Classif*” 

or “Intelligent Algorithm*”) OR WC=(“Artifcial 

Intelligence”). 
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