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Abstract  
The paper briefly summarizes the currently available results of recent research on improvement 
of decision support methods, based on pair-wise comparisons of alternatives. Pair-wise 
comparison structures (especially, incomplete ones) can be easily represented by non-directed 
incidence graphs. It turns out that smaller-diameter quasi-regular graphs ensure higher 
credibility and consistency of expert session results, and maintain stability of preference 
structures. Particular pair-wise comparison patterns, both taking and not taking the rough 
ranking of alternatives into account, allow expert session organizers to significantly reduce the 
minimum required number of pair-wise comparisons, especially on large numbers of 
alternatives, without compromising the quality of expert data and credibility of expert session 
results. Following these patterns also allows us to reduce the computational complexity of pair-
wise comparison-based decision support methods. Improved pair-wise-comparison-based 
decision support methods are widely applicable to decision-making problems in weakly-
structured subject domains, calling for expert estimation. 
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1. Introduction:  challenges  of  pair‐wise  comparison  methods  in  decision‐
making 

Decision-making in weakly-structured subject domains is characterized by high levels of 
uncertainty. In such domains it is problematic to measure or numerically describe (rate) objects or 
decision options. Moreover, even the criteria according to which the objects are compared cannot be 
easily formalized. Measuring of objects according to these “intangible” [1] criteria is also a challenge. 

At the same time, examples of weakly-structured domains span almost all the spheres of human 
activity. From selection of a car or house [2] to space industry [3], from supply chain management [4] 
to strategic planning [5]. That is why decision-making in these areas calls for formal description and 
numeric representation of options and criteria according to which these options are evaluated. 

Technically, any measurement of an object is the result of its comparison to some unit value. 
However, one of the challenges of weakly-structured subject domains is absence of such measurement 
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units. So, as many researchers (from Condorcet to Saaty [1], from Kendall to Hwang & Yoon [6]) show, 
the best to measure the objects and significance of criteria, by which these objects are evaluated, is to 
compare them with each other. This assumption provides the basis for a whole family of expert pair-
wise comparison (PWC) methods. 

The methods prove to be highly efficient, especially in weakly-structured subject domains. 
However, they have some common problems, which researchers around the globe are trying to solve. 
The key problems are as follows. 

1. Subjectivity of experts. Reasons: cognitive biases, mindsets, background, experience etc. 
2. Often, low credibility of expert session results. Reasons: expert estimation errors, inconsistency, 
incompatibility, incompleteness, insufficiency, low degree of detail of expert data. 
3. Large numbers of pair-wise comparisons required to obtain the resulting priorities, and high 
computational complexity of priority calculation methods. 
While selection of competent and unbiased experts (problem 1) is, mostly, the responsibility of the 

decision-maker (DM), high quality of expert data representation (problem 2), sufficient numbers of 
comparisons, and manageable computational complexity of priority calculation methods (problem 3) 
can be ensured through certain mathematical procedures.  

So, in our paper we are going to outline several approaches, based on graph theory, targeted at 
reduction of labor-intensity (problem 3) and improvement of credibility (problem 2) of PWC-based 
decision support methods. 

2. Problem statement 

Let us start by formulating the common problem of priority calculation based on a set of PWC (as 
posed in AHP and other related methods [1,2]).  

We have a set of objects (or alternatives) ሼ𝐴; 𝑖 ൌ 1. . 𝑛ሽ, which are compared among themselves 
by one or several experts. A multiplicative pair-wise comparison matrix (PCM) looks as follows: 

𝐴 ൌ ൛𝑎; 𝑖, 𝑗 ൌ 1. . 𝑛; ∀𝑖, 𝑗: 𝑎 ൌ 1/𝑎ൟ or 𝐴 ൌ 
𝑎ଵଵ … 𝑎ଵ
… … …

𝑎ଵ … 𝑎

൩. 

We need to find the set of normalized relative alternative weights 𝑊 ൌ ሼ𝑤; 𝑖 ൌ 1. . 𝑛;  ∑ 𝑤

ୀଵ ൌ

1ሽ, which would allow us to rate the alternatives. 
Methods of priority elicitation from a PCM are quite numerous. They include eigenvector method 

[1,2], best/worst method [7,8], geometric mean (GM) [9], combinatorial method of spanning tree 
enumeration [10], logarithmic least squares [11]. All these methods have a lot in common, but produce 
different results. In this paper we are going to address some modifications of available priority 
calculation methods, based on graph theory. 

3. Problem solution ideas 

In the context of this paper, it is important to note, that alongside PCM, graphs represent a handy 
instrument for representation of PWC. That is, any object can be represented by a graph node (vertex), 
while a PWC between any two objects can be represented by the respective edge of a graph, and a 
complete PCM of dimensionality 𝑛 can be represented by a complete graph with 𝑛 nodes. 

When it comes to PWC methods, credibility improvement and computational complexity reduction 
can be achieved through several conceptual ways or approaches. The approaches are as follows. 
1. Comparisons of alternatives can be performed and ordered according to specific patterns 

(represented by respective graphs) [12,13]. 
2. Comparisons can be performed and ordered according to the ranking of alternatives [7,8,14]. 
3. Comparisons can be performed according to both specific patterns (incidence graphs) and given 

alternative ranking [15].  
In subsequent sections we will address these conceptual approaches and patterns in greater detail. 
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4. Modified combinatorial method of spanning tree enumeration 

In order to be able to rate a set of 𝑛 objects, it is enough to perform at least 𝑛 െ 1 independent PWC 
(build a connected PWC graph, spanning all the objects, called a spanning tree). For example, we can 
compare all objects with the 1st one, the last one, the best one, the worst one, the neighboring one in the 
ranking etc. At the same time, in order to obtain a complete set of PWC, an expert has to compare all 
objects with each other, and, thus, perform 𝑛ሺ𝑛 െ 1ሻ/2 PWC. Combinatorial method is based on 
enumeration of all basic sets of 𝑛 െ 1 independent PWC. Each of these basic sets can be represented 
by the respective spanning tree graph (Fig. 1). 

 

 
Figure 1: Spanning tree example for PWC of 5 alternatives 

 

At the same time, every basic PWC set allows us to reconstruct an ideally consistent PCM 
(ICPCM). Any row or column of this ICPCM (or any other set of  ሺ𝑛 െ 1ሻ independent PWC) is, in 
fact, a set of alternative weights. Priorities which we need to find in the above problem statement, are 
calculated as GM across all ICPCM (spanning trees) (1). 

 

𝑤
௧ ൌ ሺ∏ 𝑤

ሻ்
ୀଵ

ଵ ்⁄
; 𝑗 ൌ 1. . 𝑛 (1) 

 
According to Cayley’s theorem on trees [16], the total number of trees, which can be built on 𝑛 

objects, amounts to 𝑇 ൌ 𝑛ିଶ. So, for example, the maximum number of trees we need to analyze in 
order to calculate the relative weights of 6 objects is 6ିଶ ൌ 1296 ; 7 objects – 7ିଶ ൌ 16807; 8 
objects – 8଼ିଶ ൌ 262144 etc. These numbers illustrate considerable computational complexity of the 
method. The ordinary combinatorial method, based on formula (1) turns out to be mathematically 
equivalent to row GM [9] and LLSM [11]. However, we are using a modified method. Instead of 
ordinary GM formula (1) it uses weighted GM (2). 

 

𝑤
௧ ൌ ∏ ሺ∏ ሺ𝑤

ሺೖሻ்ೖ
ೖୀଵ ሻ

ೃೖೖ
∑ ೃೠೡೠ,,ೡ ሻ

,ୀଵ ; 𝑗 ൌ 1. . 𝑛    (2) 

 
In formula (2) 𝑚 is the number of experts, and 𝑅 is the rating of the respective ICPCM, reflecting 

completeness, detail, consistency, and compatibility of expert data (as explained in [10, 12]). So, beside 

“transitive” weights 𝑤
ሺೖሻ, we need to calculate the respective ICPCM ratings. As a result, for larger 

numbers of objects, the computational complexity of the modified method (2) becomes really 
tremendous. 

So, how can we reduce the computational complexity of the method without compromising the 
quality (credibility) of the result? We suggest sorting the spanning trees according to their diameter. A 
diameter of a graph is the longest shortest distance between two nodes.  

The smallest possible spanning tree diameter value is 2. It is the diameter of a star-type spanning 
tree, where one of the alternatives is compared to all other alternatives from the set (Fig. 2a). The 
respective PWC form one row or column of a PCM.  

The largest possible spanning tree diameter value is 𝑛 െ 1. It is the diameter of a path-type spanning 
tree, where each alternative is compared to the neighboring ones (Fig. 2b). The respective PWC are 
located above the principal diagonal of the PCM. 
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a b 
Figure 2: Examples of a star‐type and path‐type trees for 5 alternatives 

 
If we assume that the maximum error made by an expert during PWC max

,
𝑎𝑏𝑠൫𝑎

௧௨  െ

 𝑎
௦௧௧ௗ ൯/ 𝑎

௧௨ ൌ 𝛿, then the maximum error accumulated on a path-type tree equals 
approximately ሺ𝑛 െ 1ሻ𝛿, on a star-type tree 2𝛿  [12]. If we have a spanning tree of diameter 𝑘, then  

𝑎
௦௧௧ௗ ൌ 𝑎

௧௨ ሺଵേఋሻೖభ

ሺଵ∓ఋሻೖమ
ൌ 𝑎

௧௨ ቀ1 േ
ఋ

ሺଵ∓ఋሻೖమ
ቁ     (3) 

In (3) 𝑘ଵ  𝑘ଶ ൌ 𝑘. Under small 𝛿 the accumulated error equals approximately 𝑘𝛿. So, based on 
these considerations, it makes sense to start with enumerating smaller-diameter spanning trees, because 
they accumulate smaller expert errors. Experiments from [12] show that weighted GM across smaller-
diameter spanning trees yields approximately the same results as weighted GM across all trees. 

Enumeration of smaller-diameter trees only significantly reduces the computational complexity of 
combinatorial method. For example, of 1296 trees, built on 6 alternatives, there are only 6 trees of 
diameter 2 and 210 trees of diameter 3. This example is illustrated by Fig. 3. 

 

 
Figure 3: Alternative weight calculated as GM across all spanning trees. 1 – ordinary GM; unsorted 
trees; 2 – weighted GM; unsorted trees; 3 – ordinary GM; sorted trees; 4 – weighted GM; sorted trees. 
Straight line – true non‐perturbed value. 

 
In a conventional combinatorial method of spanning tree enumeration (EAST) the order of 

enumeration of spanning trees does not make a difference. At the same time, in order to sort the trees 
in the order of increasing diameter, we need to enumerate them in a specific order. First, we need to 
enumerate the trees of diameter 2 (star-type graphs), then of diameter 3, and so on, until we reach path-
type graphs of diameter 𝑛 െ 1. 
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For this purpose, we can utilize Prüfer sequences. Prüfer [17] invented a bijective mapping of a set 
of indices of an array (𝑛 െ 2)-dimensional hypercubic array into a set of spanning trees. 

It turns out that the diameter of a spanning tree equals the number of different indices in the 
respective Prüfer sequence plus 1. For instance, sequence (1,1,1) corresponds to a star-type graph with 
5 nodes with node number 1 in the middle. Diameter of this graph equals 2, while the respective 
sequence features only the 1 node number (1). Sequence (2,3,4) corresponds to a path-type graph of 5 
nodes: (1-2-3-4-5). This sequence features 3 different node numbers (2,3, and 4), and the diameter of 
the respective graph is 4. The respective spanning trees are shown on Fig. 4. 

 

a b 
Figure 4: Spanning trees of 5 nodes, corresponding to Prüfer sequences (1,1,1) and (2,3,4). 

 
Moreover, the degree of each node in the spanning tree equals the number of times this node is 

featured in the respective sequence plus 1. For instance, for the sequence (1,1,1) we get a spanning tree, 
where the degree of the 1st node equals 4, while degrees of all other nodes equal 1. 

These considerations significantly simplify the process of spanning tree sorting by diameter.  

5. Completion  of  incomplete  PCM  based  on  small‐diameter  quasi(‐regular) 
graphs 

The union of all spanning trees is the complete undirected incidence graph on 𝑛 vertices. It also 
corresponds to a complete PCM of dimensionality 𝑛. Under large number of compared alternatives it 
makes sense to try to reduce the number of comparisons the expert has to perform.  

Empirical research [13] shows that instead of complete incidence graph, we can take smaller-
diameter quasi-regular graphs as patterns for preference structure. A regular graph with regularity value 
𝑘 is a graph where all the nodes have the same degree 𝑘, that is the same number of adjacent nodes 𝑘. 
In a quasi-regular graph where exactly one node has the degree of 𝑘  1, while the degree of all other 
nodes equals 𝑘.  

Smaller diameter minimizes accumulated expert errors, while (quasi-)regularity condition ensures 
the stability of preference structure. Moreover, it turns out that on larger dimensionalities the 

completion ratio 𝐶 ൌ
௧௨ ௐ ௨

௫௨ ௐ ௨
ൌ

௧௨ ௨  ௗ௦

௫௨ ௨  ௗ௦
  also decreases. It means that 

reduction of the PWC number an expert has to make in order to obtain credible priorities, becomes 
more significant on larger number of alternatives. 

For example, Petersen graph (Fig. 5a) with completion ratio 𝐶 ൌ 0.333 turns out to be the only 3-
regular graph (𝑘 ൌ 3) with diameter 𝑑 ൌ 2 for 𝑛 ൌ 10. And graph, shown on Fig. 5b, is the only quasi-
regular graph with 𝑘 ൌ 3 of diameter 𝑑 ൌ 2 for 𝑛 ൌ 5. 

The research [13] indicates, that incomplete PCMs, filled according to minimum-diameter quasi-
regular graphs, are more stable to perturbations (simulating expert errors) than PCMs, built according 
to other filling patterns (in terms of Euclidian and absolute distance).  

Example on Fig. 6 shows the deviation of priorities calculated using LLSM method after strong 
perturbation of an initial PCM of 16 objects. 3-regular graph of diameter 3 yields the smallest deviation 
in terms of both Euclidian and absolute distance (red circle on the chart). 
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a  b 
Figure 5: (Quasi‐)regular graph examples 

 

 
Figure 6: Deviations of priorities calculated using LLSM method after strong initial PCM perturbation 
for n = 16; k = 3; d = 3 

6. Mixed  approaches  based  on  both  PWC  patterns  and  initial  alternative 
ranking 

Credibility and consistency of expert estimation results depend on calibration of estimates. In order 
to obtain every single PWC, the expert has to answer two questions: ordinal one (which of the two 
objects dominates over the other?) and cardinal one (how much better the object is? what is the degree 
of dominance?). So, preliminary calibration of estimates through ranking allows the expert to get at 
least some understanding of the range of differences and, if necessary, choose some object as a unit 
value. This can be the largest object, the smallest object, the “median”, or a random object from the 
given set. 

If all objects are compared to the smallest and/or the largest one, these comparisons form star-type 
spanning trees. A well-known best/worst PWC method [7,8], as well as best/second best (TOP2) 
method [15], are based on the union of the two star-type graphs (if analyzed from graph perspective). 
If the two “pivotal” alternatives are the best and the worst one, then the graph interpretation of the PWC 
pattern might look as shown on Fig. 7. The size of the circles on the figure reflects the ranks of the 
respective objects. 
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Figure 7: Union of two star‐type spanning trees: an example for the case of 7 alternatives (best‐worst 
method example) 
 

Some recent research [15] (conducted so far on dimensionalities from 𝑛 ൌ 5. .10) speaks in 
favor of best-worst graphs (taking the ranking into consideration; worst in terms of Euclidean distance, 
best in terms of Kendall’s 𝜏; red circle on the figure) and union of two random spanning trees (not 
taking ranking into consideration; best in terms of Euclidean distance, worst in terms of Kendall’s 𝜏; 
rosy circle on the figure). TOP2 graphs (taking the ranking into consideration; blue triangle on the 
figure) seem to lie in between (Fig. 8). 

 

 
Figure  8:  Deviations  of  priorities  calculated  using  LLSM  method  under  strong  perturbations  on 
different incomplete PWC patterns for n=6 alternatives 
 

Another approach to PWC methods, also taking alternative ranking into account is, suggested in 
[14]. It is based on the assumption that distortions in evaluation can be minimized if objects are 
presented to respondents from largest to smallest [18]. The largest PWC is the comparison of the 1st and 
the last object in the ranking (whose ranks differ by 𝑛 െ 1), while the smallest PWC is the comparison 
between the neighboring objects in the ranking (whose ranks differ by 1). The experiment described in 
[14] shows that results of expert session are more credible in the eyes of experts themselves, if the first 
comparison is made between the best object and the worst one (distance in the ranking between these 
two objects, ranked 1st and last, equals 𝑛 െ 1). After that the expert should compare the next-most-
distant objects in the ranking (1st and (𝑛 െ 1)-th, and 2nd and 𝑛-th; distance in the ranking between these 
objects, equals 𝑛 െ 2). The process continues until all neighboring objects in the ranking are compared. 
As a result, PWC form (𝑛 െ 1) turns or queues. First queues of PWC are more significant, so if we need 
to reduce the number of PWC (for example, on large 𝑛), then it is preferable to omit the last PWC 
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queues rather than the first ones. At the same time, we should make sure that the overall preference 
structure should form a connected graph, spanning all nodes (alternatives).  

 
 
Figure 9: Minimum complete PWC set if comparisons are arranged in queues according to ranking (7 
alternatives) 

 
For example, if we are estimating 7 alternatives (Fig. 9), then the 1st PWC queue will consist of 

a single PWC between the 1st and the 7th alternatives in the ranking; the 2nd queue will include 
comparisons between the 1st and 6th as well as 2nd and 7th alternatives; the 3rd queue – PWC between 1st 
and 5th, 2nd and 6th, 3rd and 7th; the 4th queue – PWC between 1st and 4th, 2nd and 5th, 3rd and 6th, 4th and 
7th; etc. However, we should note that the set of PWC becomes connected at the start of the 4th queue, 
when the graph spans the 4th alternative (Fig. 9). So, technically, if we follow this particular order of 

PWC, it is sufficient to perform only 7 PWC instead of 
ሺିଵሻ

ଶ
ൌ 21 PWC. Moreover, if we omit the 

comparison between 2nd and 6th alternatives during the 3rd queue (as the 6th alternative has already been 
compared with the 1st alternative during the 2nd queue), then we will get a spanning tree (Fig. 10).  

 
Figure 10: A spanning tree, obtained if comparisons are arranged in queues according to ranking, and 
redundant comparisons are omitted (7 alternatives) 

 
In the general case of 𝑛 alternatives such a spanning tree will form a bi-partite graph, in which one 

part will be concentrated around the first (best) alternative, and another – around the last (worst) one. 
The first alternative will be connected (compared) to alternatives with numbers from ሺሾ𝑛/2ሿ  1ሻ to 𝑛. 
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The last alternative will be connected (compared) to alternatives with numbers from 1 to ሾ𝑛/2ሿ. These 
will be the basic ሺ𝑛 െ 1ሻ comparisons.  

These considerations provide the starting point for development of an algorithm of reduction of the 
number of PWC [15] needed to ensure maximum credibility and consistency of the PWC session results. 

Moreover, they stand in line with the respective research [19], showing that sufficient redundancy 
of PWC set is achieved on smaller number of comparisons (lying between the minimum of 𝑛 െ 1 PWC 

and the maximum of 
ሺିଵሻ

ଶ
 PWC. In fact, at some point, addition of new comparisons reduces the 

consistency level of the whole PWC set. The author of [19] also proposes to perform rough ranking of 
alternatives before inputting PWC between them.  

Some might argue that ranking of alternatives makes the expert perform additional ordinal 
comparisons. However, ordinal questions are posed to the expert in any case. That is, he has to answer 

from 𝑛 െ 1 to 
ሺିଵሻ

ଶ
 ordinal questions (such as “which alternative is the best one?”; “which one is the 

best among remaining ones?”; “which alternative of the two is better than the other?”) within any PWC 
method. In fact, some earlier research by the authors of this paper ([20], [21]), was dedicated to 
development of methods for calculation of weight vectors based on rankings only. 

So, again, reduction of the number of PWC both reduces computational complexity of aggregation 
process and improves the consistency of comparison results. 

Finding optimal PWC patterns for the case when PWC are arranged in queues is going to be the 
subject of a separate future research. 

7. Conclusions 

Graph representation of PWC structures in decision-making problems is an efficient tool. It allows 
to reduce computational complexity of decision-making problems and the number of PWC experts need 
to perform in order to obtain credible results.  

Graphs with smaller diameter tend to accumulate smaller expert estimation errors, while regular 
graphs help an expert session organizer to maintain stability of preference structures and patterns on a 
set of objects. 

Patterns of spanning tree enumeration and incomplete PCM filling can depend on respective 
incidence graph structure and initial rough ranking of alternatives. 

Future research on the subject will be dedicated to finding the best PWC patterns (in terms of 
different cardinal and ordinal indicators), both taking and not taking the initial ranking of alternatives 
into account.  

Particularly, it makes sense to study the behavior of various consistency indices (C.R. and others), 
depending on the number of PWC, performed according to specific incomplete PCM filling-in patterns. 

 

References 

[1] T. Saaty, The Analytic Hierarchy Process. McGraw-Hill, New York, 1980. 
[2] T. Saaty, Decision Making with Dependence and Feedback: The analytic Network Process. RWS 

Publicaitons, Pittsburgh, 1996. 
[3] V. Tsyganok, S., Kadenko, O. Andiichuk, Using different pair-wise comparison scales for 

developing industrial strategies, International Journal of Management and Decision Making, 
14(3) (2015), 224-250, doi:10.1504/IJMDM.2015.070760. 

[4] M. Oliveira Ramos, E. M. da Silva, F. Rodrigues Lima-Júnior, A fuzzy AHP approach to select 
suppliers in the Brazilian food supply chain, Production, vol.30, e20200013 (2020). doi: 
10.1590/0103-6513.20200013. 

[5] F. De Felice (Ed.), Applications and Theory of Analytic Hierarchy Process. Decision Making for 
Strategic Decisions, IntechOpen, 2016. 

[6] C.L. Hwang and K. Yoon, Multiple attribute decision making: methods and applications: a state-
of-the-art survey. Berlin, New York: Springer-Verlag, 1981. 



55 
 

[7] J. Rezaei, Best-worst multi-criteria decision-making method. Omega, 53, (2015), 49-57, doi: 
10.1016/j.omega.2014.11.009. 

[8] J. Rezaei, Best-worst multi-criteria decision-making method: Some properties and a linear model,  
Omega, 64, (2016), 126–130, doi: 10.1016/j.omega.2015.12.001. 

[9] M. Lundy, S. Siraj, S. Greco, The Mathematical Equivalence of the “Spanning Tree” and Row 
Geometric Mean Preference Vectors and its Implications for Preference Analysis, European 
Journal of Operational Research 257(1), (2017), 197-208. doi: 10.1016/j.ejor.2016.07.042. 

[10] V. Tsyganok, S. Kadenko, O. Andriichuk, P. Roik, Combinatorial Method for Aggregation of 
Incomplete Group Judgments, in: Proceedings of 2018 IEEE 1st International Conference on 
System Analysis & Intelligent Computing (SAIC), 2018, pp. 25–30. 
doi:10.1109/SAIC.2018.8516768. 

[11] S. Bozóki, V. Tsyganok, The (logarithmic) least squares optimality of the arithmetic (geo-metric) 
mean of weight vectors calculated from all spanning trees for incomplete additive (multiplicative) 
pairwise comparison matrices. International Journal of General Systems 48(4), (2019), 362-381. 
doi: 10.1080/03081079.2019.1585432 

[12] S. Kadenko, V. Tsyganok, S. Szádoczki, S. Bozóki, An update on combinatorial method for 
aggregation of expert judgments in AHP. Production, 31, (2021) doi: 10.1590/0103-
6513.20210045. 

[13] Z. Szádoczki, S. Bozóki, H. Tekile, Filling in pattern designs for incomplete pairwise comparison 
matrices:(quasi-) regular graphs with minimal diameter. Omega, 107, (2022), doi: 
10.1016/j.omega.2021.102557. 

[14] O. Andriichuk, V. Tsyganok, S. Kadenko, Y. Porplenko, Experimental Research of Impact of 
Order of Pairwise Alternative Comparisons upon Credibility of Expert Session Results, in: 
Proceedings of the 2020 IEEE 2nd International Conference on System Analysis & Intelligent 
Computing (SAIC), 2020, pp. 1-5, doi: 10.1109/SAIC51296.2020.9239126. 

[15] P. Juhász, S. Bozóki, Z. Szádoczki, S. Kadenko, V. Tsyganok, Nem teljesen kitöltött páros 
összehasonlítás mátrixok kitöltési mintázatainak vizsgálata, in: XXXIV. Magyar 
Operációkutatási Konferencia 2021.08.31.-2021.09.02, (2021), URL: 
https://www.gazdasagmodellezes.hu/images 
/stories/konferenciak/GMT2021/MOK_absztraktok.pdf.  

[16] Arthur Cayley, A Theorem on Trees. Quarterly Journal of Mathematics, 23 (1889): 376-378. 
[17] H. Prüfer, Neuer Beweis eines Satzes über Permutationen. Arch. Math. Phys., 27, (1918) 742–

744. 
[18] Stanley Smith Stevens, Eugene Galanter, Ratio Scales and Category Scales for a Dozen 

Perceptual Continua, Journal of Experimental Psychology, Vol. 54, No 6, 1957: 377-411. 
[19] W.C. Wedley, Fewer Comparisons – Efficiency via Sufficient Redundancy, in: Proceedings of 

the 10th International Symposium on the Analytic Hierarchy/Network Process, Multi-criteria 
Decision Making, Pitsburg, Pensilvania, USA, July 30 – August 2, 2009, (2009). URL: 
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.553.2890&rep=rep1&type=pdf. 

[20] S. Kadenko, Defining the relative weights of alternative estimation criteria based on clear and 
fuzzy rankings. Journal of Automation and Information Sciences, 45(2), 41-49 (2013), DOI: 
10.1615/JAutomatInfScien.v45.i2.50. 

[21] S. Kadenko, Determination of parameters of criteria of “tree” type hierarchy on the basis of 
ordinal estimates. Journal of Automation and Information Sciences, 40(8), 7-15 (2008), DOI: 
10.1615/JAutomatInfScien.v40.i8.20. 

 


