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Abstract
This paper demonstrates our vision for knowledge graphs that assist machines to reason about the cause
of signals observed by sensors. We show how the approach allows for constructing smarter surveillance
systems that reason about the most likely cause (e.g., an attacker breaking a window) of a signal rather
than acting directly on the received signal without consideration for how it was produced.
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1. Introduction

Standards such as the Semantic Sensor Network (SSN/SOSA) ontology [1] allow capturing the
semantics of sensor observations, and emerging standards for smart buildings [2, 3] and smart
cities allow capturing the semantics of the environments in which sensors operate. However,
reasoning about the underlying cause of sensor observations requires not only knowledge of
the sensors and their environment, but also an understanding of the signals they detect and the
possible causes of these signals. For example, inferring that the sound of breaking glass may be
due to a broken window requires knowledge of the fact that glass windows produce a distinct
sound when broken and that this sound propagates as sound waves through the air to a sensor
such as a human ear or microphone. This paper proposes a signal knowledge graph (SignalKG)
to support machines to reason about the underlying cause of sensor observations. Sensors and
their environment are represented using existing standards, and then linked to SignalKG. To
reason about the cause of sensor observations, we automatically generate a Bayesian network
based on information in the knowledge graph, and use this to infer the posterior probability of
causes given the sensor data.
Figure 1 presents an ontology describing the high level concepts. A category of entities

(e.g., humans) perform actions (e.g., walking) that act on a type of object or place (e.g., in
hallways), which in turn create a type of signal (e.g., the sound of footsteps). A sensor observes
a particular type of signal, which usually reduces in strength with distance and can be distorted
by surrounding objects (e.g., a wall between a sound source and the receiver attenuates the
sound signal). The sensor may implement a classifier to detect the presence of the signal (e.g.,
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Figure 1: High level overview of SignalKG ontology

an acoustic detector may make use of a binary machine learning classifier to detect if the sound
of footsteps is present or not). A formal RDF/OWL specification of the SignalKG ontology is
available online1 as well as an interactive demonstration2 of how SignalKG can be applied and
used to reason about the underlying causes of sensor observations.

2. Related Work

Past research has utilised ontologies for the purpose of threat and situation awareness using
description logic [4] and rule based reasoning [5]. However, these approaches assume that
threats can be classified into classes according to deterministic rules, whereas in reality threats
may be probabilistic in nature and there may be multiple possible explanations for a given set of
observations. To overcome this limitation, reasoning methods have been proposed that combine
deterministic rules with a Bayesian network for reasoning probabilistically [6]. However, the
structure of the Bayesian network and associated probabilities need to be manually specified. In
contrast, we seek to express this knowledge in a reusable and extensible form. There have been
attempts to extend OWL to support representing/reasoning about uncertainty [7]. However,
general approaches do not directly specify concepts for reasoning about sensor signals.

3. Demonstration

Figure 2 demonstrates how concepts in the SignalKG ontology can be applied to construct
a knowledge graph of audio signals. Attackers and employees are entities that are capable
of producing an action, such as breaking a window or dropping a tray of glasses in a dining
room. Actions create signals, in this case, the sound of breaking glass or the sound of dropped
glass. The building asset/room type on/in which an action can occur is represented using the
RealEstateCore ontology [2]. To group similar signals together, we use the Simple Knowledge
Organization System (SKOS) [8] ‘broader’ property to represent a signal hierarchy, for example,
the sound of breaking glass is similar to the sound of dropped glass and thus are grouped
under the same category. The knowledge graph also includes information about how signals
propagate, for example, that sound intensity reduces with distance (according to an inverse
square law) and is attenuated by walls. To model the case in which signals are classified on

1SignalKG ontology: https://signalkg.visualmodel.org/skg
2Interactive demonstration available at: https://signalkg.visualmodel.org

https://signalkg.visualmodel.org/skg
https://signalkg.visualmodel.org


Figure 2: Knowledge graph of audio signals constructed using SignalKG ontology showing link to
building rooms/assets and sensors

the sensing device, we allow for describing different classification models, such as YAMNet, an
audio classifier that recognises 521 classes of sounds (e.g., glass).
Sensor observations can be linked to the signal knowledge graph via the property (signal)

that the sensor observes. Our interactive demonstration includes a simulator to generate sample
sensor observations (represented using the SSN/SOSA ontology) for hypothetical scenarios that
could occur. The goal is to infer what took place given only the sensor observations, knowledge
of the building and sensor placement, and our understanding of possible underlying causes of
observed signals (specified using SignalKG).
To support reasoning probabilistically about causes of sensor observations, the knowledge

graph also includes probabilities, such as the prior probability that an entity will be present,
and the probability that an entity (if present) will perform an action. As our goal is to infer a
cause given observations, it lends itself to Bayesian reasoning. Rather than manually specifying
a Bayesian network for a particular scenario, we automatically generate one based on the
information in the knowledge graph. Encoding all the information needed to reason about
signals in the knowledge graph itself helps facilite reuse and extension.
Nodes in the Bayesian network are generated for each entity, action at a location, signal

emitted/received, and sensor. While our simple example results in a 1:1 mapping (shown in
Figure 3), in more complex scenarios there may be vastly more nodes due to all the possible
permutations of entity, action, location, signal and sensor. If multiple types of signals are present
(audio, vision, social, etc.) then these all appear as part of the same generated Bayesian network,
e.g., an attacker breaking a window will create both audio (sound of breaking glass) and vision
(suspicious behaviour in a video feed) based signals. Prior probabilities for entities and actions
need to be specified in the knowledge graph. The probability that a signal emitted by an action



Figure 3: Bayesian network before (left) and after (right) conditioning on sensor observations. Green
bars indicate the probability of each node value. (Key: a=action, s=signal emitted due to action,
r=received signal strength at location of sensor, d=detected signal after classification). Visualisation
created with jsbayes-viz [9].

will be detected by a sensor is calculated based on the distance from the location of the action
to the location of the sensor, how the signal intensity reduces with distance (e.g., the knowledge
graph may specify an inverse square law for sound signals), any barriers between the source
and the sensor that may attenuate/block the signal (e.g., the knowledge graph may specify
sound is attenuated by walls), and the sensitivity of the classifier used by the sensor to detect
presence of a signal.
Once we have generated a Bayesian network, we can condition it on sensor observations

to infer the posterior probability of the underlying cause. For the demonstration, we estimate
the posterior probability via likelihood weight sampling, implemented by [9], drawing 20,000
samples (the number of samples to draw is a trade-off between accuracy and computation time).
In the example, prior to conditioning on observations, there is a 50% chance of an attacker being
present. After conditioning on the observation that the microphone has detected the sound of
glass, the posterior probability of an attacker increases to 97%.

4. Next Steps

Even for the simple example of detecting building intrusions, the space of possible causes is
large (e.g., an attacker could impersonate an employee then ask someone to let them in, or
suspicious sounds could be due to a movie playing in the background). Furthermore, signals are
not independent (as assumed by our preliminary prototype), but rather occur in sequences (e.g.,
the sound of footsteps, followed by a weapon detected in video footage, followed by a scream)
that could help more reliably distinguish between possible causes. Also, more realistic models



of signal propagation are needed, which may require continuous probability distributions rather
than a conditional probability table over a discrete set of values as in our example Bayesian
network. To support efficient reasoning about these more complex scenarios, we plan to explore
generation of probabilistic programs in place of the discrete Bayesian networks used in this
paper.
A practical barrier to uptake of our approach is the need to specify prior probabilities for

each action that an entity can perform. Ordinary behaviour could potentially be learned from
data. However, modelling prior probabilities of actions intruders perform is more difficult, as
attacks are rare events (limited data to learn from) and an adversary will adjust their actions
to avoid detection. In future work, we plan to include the goals of the intruder as part of the
knowledge graph, then use a game theoretic approach to determine probable actions they will
take rather than manually specifying prior probabilities for each action.
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