
Natural Language Data Interfaces: From Keyword Search to
ChatGPT, are we there yet?
George Katsogiannis-Meimarakis1, Christos Tsapelas1 and Georgia Koutrika1

1Athena Research Center

Abstract
Enabling users to query data in a relational database using natural language has long been considered the holy grail of the
database community. Towards this direction, there has been an increasing research focus on Natural Language Data Interfaces
that allow users to pose queries in natural language and translate these queries to the underlying database query language.
Several approaches have emerged especially due to the recent advances in deep neural networks. Despite this blooming, not
only these systems are very complicated and difficult to understand, but they have yet to deliver their promise of enabling
users to use natural language to access data easily. Hence, they have failed to see widespread adoption. A question naturally
arises: is natural language access to data going to be the elusive holy grail of databases? We hope not. With the aim of
fostering research on these open issues, in this position paper, we discuss (currently unmet) requirements for effective natural
language data exploration and highlight promising research directions. Finally, we describe how to rethink the text-to-SQL
problem and how this should be realized as an integral capability of a DBMS for the realization of a system that fully supports
natural language queries over data.

Keywords
natural language interfaces, data exploration

1. Introduction
“If we are to satisfy the needs of casual users of databases,
we must break the barriers that presently prevent these
users from freely employing their native language" (E. F.
Codd, 1974) [1]. Enabling users to query data using natu-
ral language has long been the “holy grail” of the database
community. Research on Natural Language Data Inter-
faces (NLIDBs) started almost as early as the first DBMS
emerged, in the 70’s [2]. Early systems enabled keyword
searches. They relied on data indexes to find relations
that contained the query keywords and on the database
schema to join them and return the answer to a query
(e.g., [3, 4]). Parsing-based approaches parsed the input
question to understand its grammatical structure and
them map it to the structure of the desired SQL query
(e.g., [5, 6]). Recently, there has been a growing interest
in neural machine translation approaches for learning nat-
ural language data interfaces [7, 8, 9] (see [10] for a recent
survey). Advances in NLP, such as the introduction of
Transformers [11], has given a boost in the area, while
the latest developments such as ChatGPT [12] seem to
promise that human-like conversation is more plausible.
But are we really close to “talking to our databases” [13]?

Unfortunately, existing efforts, including the latest

Proceedings of the 6th International Workshop on Big Data Visual
Exploration and Analytics co-located with EDBT/ICDT 2023 Joint Con-
ference (March 28-31, 2023), Ioannina, GR
$ katso@athenarc.gr (G. Katsogiannis-Meimarakis);
ctsapelas@athenarc.gr (C. Tsapelas); georgia@athenarc.gr
(G. Koutrika)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

deep learning based systems, have not seen widespread
adoption and have yet to deliver their promise of en-
abling users use natural language to search data. In this
position paper, we delve into the limitations of existing
approaches and we discuss lessons learnt. We argue that
despite the recent bloom of approaches, these focus on
certain aspects of the problem (e.g., improving the trans-
lation accuracy over a specific dataset [14]) and largely
miss the big picture. We identify important requirements
for natural language data interfaces and highlight open
challenges and promising research directions.

2. The Inherent Challenges of NL
Data Interfaces

For relational data, translating queries from natural lan-
guage to SQL is known as the text-to-SQL problem. The
text-to-SQL problem is notoriously hard with challenges
arising both from the NL and SQL sides.

A natural language question (NLQ) may be ambiguous,
allowing more than one interpretation. Furthermore, a
word may have a different meaning in different contexts.
For example, “top” in “top scorer” may mean the one with
the highest (total) number of goals, while in “top movies”,
it may mean the ones with the greatest rating. On the
other hand, completely different words or sentences can
have the same meaning. For instance, “How many people
live in Amsterdam?” and “What is the population of Ams-
terdam?” translate to the same SQL query. Dealing with
different NL utterances (paraphrasing) is a challenge, as
each one may need different handling.

mailto:katso@athenarc.gr
mailto:ctsapelas@athenarc.gr
mailto:georgia@athenarc.gr
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


On the other hand, SQL has strict syntax, which leads
to limited expressivity compared to natural language. Fur-
thermore, while a sentence in natural language may con-
tain some mistakes, and still be understood by a human,
a SQL query needs to be syntactically and semantically
correct in order to be executable over the underlying data.
In fact, the above limitations create enormous challenges
for translating NL to SQL queries. SQL’s strict syntax
may lead to cumbersome translations. A relatively simple
NL query may map to a complex SQL query. For example,
“Return the movie with the best rating” maps to a nested
SQL. While the original NL query is simple, building the
complex SQL query may be a tough call for the system.

All these challenges make the text-to-SQL problem so
hard. Not only it is difficult to understand a NL query but
it is also difficult to build the correct SQL query. Even
similar questions may lead to a different outcome over dif-
ferent databases: one may be translated over one database
and the other may not, due to issues such as ambiguity,
paraphrasing, and different schemas.

3. Existing Approaches
The “Database way”. One category of approaches tackle
the text-to-SQL problem as a mapping problem [3, 4]:
how to map query elements to database elements (tables,
columns and values) and then find the desired intercon-
nections of these data elements that capture the user
intent. In addition, parsing-based approaches parse the
input question to understand its grammatical structure,
which is then mapped to the desired SQL query [5, 6].

The “Machine Learning way”. The other approach
is to tackle the text-to-SQL problem as a language trans-
lation problem, and train a neural network on a large
amount of {NL query/SQL} pairs [10]. Originally, these
systems ignored the underlying database, and they did
not ensure that the generated SQL is syntactically and
semantically correct, i.e., executable over this database.
To address this problem, recent approaches employ two
additional techniques. First, schema linking aims at the
discovery of possible mentions of database elements in
the NLQ. These discovered schema links, along with the
rest of the inputs, are fed into the neural network that
is responsible for the translation. Second, output refine-
ment can be applied on a trained model to avoid produc-
ing incorrect SQL queries [15].

Limitations and Lessons Learnt. The “Database
way” can handle different types of SQL queries and can
work on any database. However, existing approaches
struggle with more complex and diverse NL queries and
cannot easily cope with NL challenges, such as synonyms,
paraphrasing and typos [16].

The “Machine Learning way” promises to be more
generalizable both in terms of the different types of NL

queries the methods can understand as well as the differ-
ent databases they can work on. There are also important
limitations. In practice, all methods focus on limited-
scope problems and their accuracy severely degrades
with more complex and diverse NL and SQL queries [17].
Furthermore, they depend on training data and cannot
cope with unseen databases and queries. For example,
Spider [18], a large-scale text-to-SQL dataset that is very
popular for training and evaluating text-to-SQL systems,
contains queries over 200 relational databases from 138
different domains. However, these are toy databases with
simple schemas and small sizes that fail to reflect the
characteristics and difficulties of real-world DBs.

Furthermore, models used so far are typically quite
complex and large, questioning their practical use in a
complex system, like a database engine 1. Moreover, most
ML approaches used support poor and size-limiting input
representations that cannot possibly leverage the wealth
of database information comprising hundreds of tables
and attributes, data values, and queries.

These limitations become highly relevant when apply-
ing a text-to-SQL system to an actual database [14] used
in a business, research or any other real-world use case.
Such databases can pose difficulties not encountered in
the datasets used to train and evaluate such systems, for
example, a large number of tables and attributes and table
and column names that use domain-specific terminology.

4. Going Forward: Requirements
and Opportunities

The challenges of the text-to-SQL problem, the aforemen-
tioned observations as well as our own experience with
working with and evaluating several text-to-SQL systems
[10, 16] point to a set of requirements for a NLIDB.

R1. Query expressivity: Using a query language such
as SQL, the user knows exactly what queries are possible.
In a similar vein, the set of NL and SQL queries that a
NLIDB supports should be clearly defined so that a user
is aware of the available query capabilities.

R2. Data independence: A NLIDB should support the
same query expressivity for different databases. In other
words, the same type of NL query should be possible over
any database. For example, if the user could ask “what
is the average X of Y” in one database, then this type of
query should be possible in any other database.

R3. Performance: Allowing the users to express ques-
tions in NL should free them from using SQL but also,
from how their question will be executed efficiently. The
system should transparently find the most efficient way

1The training cost as well as the energy consumption [19] of such
big models are important concerns.



to answer a NL query, minimizing both the translation
overhead and the execution cost of retrieving the results.

R4. Scalability: A NLIDB should be feasible and scal-
able over any database.

Requirement R1 is important because up to now al-
most none of the known text-to-SQL systems provides
a clearly defined query language or specification of its
query capabilities. For the user, it is a trial-and-error pro-
cess to see what queries can be understood and answered
by the system. Is it possible to come up with a query
language specification that systems can refer to in order
to describe their query expressivity?

Towards R1, a query categorization in the spirit of [16]
may be a good starting point. This could enable the cre-
ation of appropriate benchmarks for the comparison of
the query capabilities of different systems. Even devising
an appropriate query categorization and an appropriate
benchmark raises several challenges: what categories to
choose, what queries should be in each category, which
datasets to use. Furthermore, one should take into ac-
count SQL equivalence (different SQL queries that return
the same results), and NL ambiguity (a NL query may
have more than one correct translation over the data).
Unfortunately, existing benchmarks fail to address the
query expressivity question. For instance, Spider has four
very coarse-grained classes of queries.

Requirement R2 complements R1 in saying that the
same query expressivity should be supported over any
database. This comes naturally with query languages
such as SQL. For instance, SPJ queries can be supported
over any data. For a NLIDB, that does not hold. Going
from one database to another, the same type of queries
may not be supported. As we have already pointed out,
this is a major concern for deep learning systems. A
system trained over Spider will not work over a new
domain such as astrophysics or cancer research.

One could build specialized, domain-specific bench-
marks for training and evaluating text-to-SQL systems in
domains, such as scientific databases. Manually crafting
such benchmarks is prohibitive, especially in these kinds
of domains. Data augmentation, i.e. automatic bench-
mark generation, is an open research direction [20]. How-
ever, this is where the power of benchmarks as a means
to demonstrate query expressivity ends. How does one
ensure data independence is a different beast and finding
better training datasets is not the solution to the problem.
Rethinking the system design is needed instead.

Towards this direction, approaches that have been pro-
posed by the DB community have been shown to be more
effective from the data independence perspective, since
they rely on the information that the database provides.
This potentially points to the need of re-thinking our
approach to the text-to-SQL problem. Some parts of the
solution may require DB methods to ensure data inde-

pendence and some other parts may use neural models to
generalize system knowledge, for example on the diver-
sity and complexity of NL queries. How would a system
that combines such capabilities look like?

Requirement R3 poses a serious challenge. While the
state-of-the-art systems are still dealing with “getting
the answer right”, they are mostly overlooking the “get-
ting the answer fast”. Improving translation speed by
building efficient methods is necessary. But this may
not be enough. Text-to-SQL systems originating from
the DB community not only tried to generate correct
SQL queries but also optimal in terms of execution speed.
Hence, many of them contained logic for generating code
that would return the desired results fast. This may be
necessary for a NLIDB. The database community could
come up with benchmarks that focus on efficiency (not
just effectiveness) and allow evaluating systems based
on execution time and resource consumption.

R4 highlights the need for realistic solutions. Deep
learning text-to-SQL systems typically rely on very com-
plex models, which have been trained and evaluated on
toy databases (contained in existing benchmarks). In sev-
eral cases, it may not be possible to have the required
resources to train such enormous models. Furthermore,
since these models require that the database schema
is given as input, they do not scale well to very large
databases, with hundreds of attributes and tables (such
as astrophysics and biological data). Instead of focusing
on increasing the model complexity aiming at translation
accuracy, we need to design solutions that also take into
account system efficiency, complexity, and scale.

To further move the needle, we may need to rethink
our approach to the problem. The text-to-SQL problem
has been seen as a mapping or a language translation
problem. This is an oversimplification, and in fact the
text-to-SQL problem comprises (at least) three (connected)
problems: a representation problem (what is asked), a
planning problem (how to answer it) and an optimiza-
tion problem (how to execute it efficiently). By decom-
posing the problem into its sub-problems, we can focus
on each one and find the best solution, either a DB or ML
technique or combination of both. We can investigate
knowledge representation schemes that can scale well to
very large databases. For planning and optimization, we
can focus on system efficiency, complexity, and scale.

We also believe that natural language query capabilities
should be implemented closer to the DBMS. All the data
(and information about the data, such as statistics and
metadata) as well as data operations are part of the DBMS.
Querying data using natural language requires all the
knowledge that a DBMS has on the data as well as its
processing capabilities (and will considerably enhance
all of them in the process).

As the system processes NL queries, it should learn
and improve its query capabilities as well. At the same



time, it can leverage this knowledge for learning how
to translate SQL queries to NL. To have a fully natural
language access to a database, we also need to consider
the SQL-to-NL problem, i.e., how the system can gen-
erate NL descriptions of SQL queries that it executes.
This is useful so that the system can explain the results
the user receives or when the NL query leads to several
interpretations.

5. Conclusions
In this position paper, we revisit the “holy grail” of
databases: natural language interfaces. We evaluate exist-
ing works, we highlight their limitations, and we discuss
lessons learnt so far. We identify important requirements
for a NLIDB and highlight open challenges and promising
research directions. To move the needle, we revisit the
text-to-SQL problem, and we argue that natural language
access should be realized closer to a DBMS rather than as
an external system that provides a NL interface to data.
Our intention with this paper is to stir the waters and
give a flavor of an exciting research territory. The data
interfaces of the future will be more human-like.

Acknowledgments
This work has been partially funded by the European
Union’s Horizon 2020 research and innovation program
(grant agreement No 863410).

References
[1] E. F. Codd, Seven steps to rendezvous with the ca-

sual user, in: J. W. Klimbie, K. L. Koffeman (Eds.),
Data Base Management, Proceeding of the IFIP
Working Conference Data Base Management, 1974,
1974, pp. 179–200.

[2] I. Androutsopoulos, G. D. Ritchie, P. Thanisch, Nat-
ural language interfaces to databases - an introduc-
tion, Natural Language Engineering 1 (1995) 29–81.
URL: https://doi.org/10.1017/S135132490000005X.
doi:10.1017/S135132490000005X.

[3] V. Hristidis, L. Gravano, Y. Papakonstantinou, Ef-
ficient IR-style keyword search over relational
databases, in: VLDB, 2003, pp. 850–861.

[4] Y. Luo, X. Lin, W. Wang, X. Zhou, Spark: Top-k
keyword query in relational databases, in: ACM
SIGMOD, 2007, pp. 115–126.

[5] F. Li, H. V. Jagadish, Constructing an interactive
natural language interface for relational databases,
PVLDB 8 (2014) 73–84.

[6] N. Yaghmazadeh, Y. Wang, I. Dillig, T. Dillig, Sqlizer:

Query synthesis from natural language, PACMPL
(2017) 63:1–63:26.

[7] V. Zhong, C. Xiong, R. Socher, Seq2sql: Generating
structured queries from natural language using re-
inforcement learning, 2017. arXiv:1709.00103.

[8] B. Wang, R. Shin, X. Liu, O. Polozov, M. Richard-
son, Rat-sql: Relation-aware schema encod-
ing and linking for text-to-sql parsers, 2020.
arXiv:1911.04942.

[9] J. Guo, Z. Zhan, Y. Gao, Y. Xiao, J.-G. Lou, T. Liu,
D. Zhang, Towards complex text-to-sql in cross-
domain database with intermediate representation,
2019. arXiv:1905.08205.

[10] G. Katsogiannis-Meimarakis, G. Koutrika, A sur-
vey on deep learning approaches for text-to-sql,
The VLDB Journal (2023) (????). doi:https://doi.
org/10.1007/s00778-022-00776-8.

[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin, At-
tention is all you need, 2017. arXiv:1706.03762.

[12] chatgpt, 2023. URL: https://openai.com/blog/
chatgpt/.

[13] A. Simitsis, Y. E. Ioannidis, Dbmss should talk back
too, in: Fourth Biennial Conference on Innova-
tive Data Systems Research, CIDR 2009, Asilomar,
CA, USA, January 4-7, 2009, Online Proceedings,
www.cidrdb.org, 2009. URL: http://www-db.cs.wisc.
edu/cidr/cidr2009/Paper_119.pdf.

[14] M. Hazoom, V. Malik, B. Bogin, Text-to-SQL in
the wild: A naturally-occurring dataset based on
stack exchange data, in: 1st Workshop on Natural
Language Processing for Programming (NLP4Prog
2021), 2021, pp. 77–87.

[15] C. Wang, K. Tatwawadi, M. Brockschmidt, P.-S.
Huang, Y. Mao, O. Polozov, R. Singh, Robust text-
to-sql generation with execution-guided decoding,
2018. arXiv:1807.03100.

[16] O. Gkini, T. Belmpas, Y. Ioannidis, G. Koutrika, An
in-depth benchmarking of text-to-sql systems, in:
SIGMOD Conference, ACM, 2021.

[17] H. Kim, B.-H. So, W.-S. Han, H. Lee, Natural lan-
guage to sql: Where are we today?, Proc. VLDB
Endow. 13 (2020) 1737–1750.

[18] T. Yu, R. Zhang, K. Yang, M. Yasunaga, D. Wang,
Z. Li, J. Ma, I. Li, Q. Yao, S. Roman, Z. Zhang,
D. Radev, Spider: A large-scale human-labeled
dataset for complex and cross-domain se-
mantic parsing and text-to-sql task, 2019.
arXiv:1809.08887.

[19] O. Sharir, B. Peleg, Y. Shoham, The cost of train-
ing NLP models: A concise overview, CoRR
abs/2004.08900 (2020). URL: https://arxiv.org/abs/
2004.08900. arXiv:2004.08900.

[20] N. Weir, P. Utama, A. Galakatos, A. Crotty,
A. Ilkhechi, S. Ramaswamy, R. Bhushan, N. Geisler,

https://doi.org/10.1017/S135132490000005X
http://dx.doi.org/10.1017/S135132490000005X
http://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1911.04942
http://arxiv.org/abs/1905.08205
http://dx.doi.org/https://doi.org/10.1007/s00778-022-00776-8
http://dx.doi.org/https://doi.org/10.1007/s00778-022-00776-8
http://arxiv.org/abs/1706.03762
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
http://www-db.cs.wisc.edu/cidr/cidr2009/Paper_119.pdf
http://www-db.cs.wisc.edu/cidr/cidr2009/Paper_119.pdf
http://arxiv.org/abs/1807.03100
http://arxiv.org/abs/1809.08887
https://arxiv.org/abs/2004.08900
https://arxiv.org/abs/2004.08900
http://arxiv.org/abs/2004.08900


B. Hättasch, S. Eger, U. Çetintemel, C. Binnig, Db-
pal: A fully pluggable NL2SQL training pipeline,
in: Proceedings of the 2020 International Confer-
ence on Management of Data, SIGMOD Conference,
ACM, 2020, pp. 2347–2361.


	1 Introduction
	2 The Inherent Challenges of NL Data Interfaces
	3 Existing Approaches
	4 Going Forward: Requirements and Opportunities
	5 Conclusions

