CEUR-WS.org/Vol-3386/paper8.pdf

Improving Load Balancing of Long-lived Streaming
RPCs for gRPC-enabled Inter-service Communication

Christopher Starck®¥, Javad Ghofrani®*'

!Institute of computer engineering, University of Luebeck, Luebeck, Germany

Abstract

Many companies adopted gRPC since 2015 for their microservices architecture due to its efficient
communication method, particularly regarding streaming data. However, streaming requires long-
lived connections that load-balancing solutions fail to address. These problems include unexpectedly
overloading services, which may result in a chain of server failures. This paper describes the load-
balancing problems with long-lived streaming RPCs and proposes a flow control-inspired approach that
shifts the control of incoming requests from the load balancers to the application servers. Results of our
experiments show that utilizing this method leads to more server resiliency in the case of long-lived
streaming RPCs.

Keywords

microservice architecture, inter-service communication, gRPC-streaming, load balancing

1. Introduction

gRPC is an open-source Remote Procedure Call (RPC) framework introduced by Google in
2015 that provides a high-performance alternative to REST [1]. Companies reported improved
developer productivity with gRPC, as it allows for easier integration with existing legacy
systems' and provides automatic code generation for various programming languages [2]. It
utilizes HTTP/2 [3] for binary communication, which is more efficient than the text-based
protocol used by REST. The built-in flow control and error-handling features make gRPC more
reliable and a viable choice for inter-service communication in microservice architectures [4].

gRPC provides streaming RPCs between servers and clients, enabling them to keep the con-
nection and continue with bidirectional communication once they opened it. This functionality
makes the current load balancing mechanisms [5] insufficient since the load balancer will be
involved only in the connection establishment step. After starting the connection, the load
balancer will have no control over requests and loads on the server. This way, the clients can
suddenly increase the load on the server and cause the server to fail.

15th Central European Workshop on Services and their Composition

*Corresponding author.

"These authors contributed equally.

& christopher.starck@googlemail.com (C. Starck); javad.ghofrani@gmail.com (J. Ghofrani)

& https://iti.uni-luebeck.de/ (J. Ghofrani)

@ 0000-0001-7298-2080 (C. Starck); 0000-0002-9249-7434 (J. Ghofrani)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
[=1 CEUR Workshop Proceedings (CEUR-WS.org)

'https://www.cncf.io/case-studies/netflix/

S. Bohm and D. Liibke (Eds.): 15™ ZEUS Workshop, ZEUS 2023, Hannover, Germany,
16-17 February 2023, published at http://ceur-ws.org

Starck and Ghofrani: Improving Load Balancing of Long-lived Streaming RPCs for
gRPC-enabled Inter-service Communication

150 1~ FAILURE
7 o A\ |
! s / “ | ovemon
/ R] /! A /
// g 100 . = Y
v - 3 /
3 (HIGH LOAD) / Haniow
S (/ g 75 / /
= | 8 Experimentiswrt / Experiment 2Start | HMED 10AD
S /,\ ,$/V—J4—[Clients start sending more] ; 50 { ;;‘,-‘
/) : /
S // LOW LOAD
A —— Workload =
// Connections 0
0005 0010 00115 0020 0025 00330 00335 00:00 00:30 .- 01:30
(a) Sudden workload increase due to streaming RPCs. (b) Servers when one of them crashes

Figure 1: Example of Sudden workload change in clients which leads to cascading failure of the servers

This paper highlights the load-balancing challenge of streaming RPCs in gRPC. We devise a
flow control-inspired solution to handle this challenge. Handling such cases is important since
crashing the streaming servers can lead to cascading server failure, loss of sensitive data, and
decreased service quality and customer satisfaction.

This paper is structured as follows: We explain the problem of long-lived streaming RPCs
with the load balancing mechanism in Section 2. In Section 3, we review the existing literature
on gRPC. In Section 4, we propose our approach inspired by flow control mechanisms, and
finally, we summarize our findings and recommendations for future research in Section 5.

2. Load Balancing Problems with Long-lived Streaming RPCs

There is no clear definition for when a streaming RPC can be considered long-lived. Depending
on the use case, long-lived RPCs may last a few seconds in real-time scenarios or for several
days in business scenarios. Streaming RPCs involve the exchange of zero or more messages
over a single connection. TCP enables these types of RPCs through full-duplex mode, where
messages can be sent simultaneously in both directions. Whereas client and server streaming are
half-duplex, i.e. only one entity can send messages at a time. Additionally, connections are only
half-closed, which allows requests to be sent over the same connections multiple subsequent
times [2]. This kind of reusing of connections impairs the load balancing mechanisms which
dispatch the client request to the servers.

Once a client sends a streaming RPC request to a server, the load balancing mechanism
checks the server’s health status and dispatches the request to the server with less working
load. After accepting a streaming RPC request, the client can keep the connection open and
reuse it anytime. The server overloads and crashes if many clients resume their open-held
connections and start streaming. This way, the load balancing mechanism will be bypassed
and cannot handle the load on the server. This can happen if a sudden increase in a server’s
workload causes that server to fail. All clients connected to that server will receive an error and
try to send a request to another available server. The servers that end up receiving incoming
requests have an increased workload. In the worst case, these servers may also fail because
of the sudden increase in workload. This server could also find itself overloading due to an

46

Starck and Ghofrani: Improving Load Balancing of Long-lived Streaming RPCs for
gRPC-enabled Inter-service Communication

unexpected increase in connections. This particular problem can be categorized as a chain of
server failures [6]. Figure 1 illustrates this scenario.

3. Related Work

While gRPC is a well-used technology in the industry, to the best of our knowledge, existing
research in this area is limited to a few research studies on Lee and Liu [7], Chamas et al. [8], and
Shah et al. [9]. Indrasiri and Kuruppu [2] also published a book on gRPC that introduces building
cloud-native applications with Go and Java and discusses gRPC as inter-service communication
technology.

Lee and Liu [7] present a general approach for migrating APIs from REST to gRPC. Their
motivation is to improve communication performance by leveraging the features of gRPC.
They developed a manual refactoring workflow with six steps and identified two directions for
improvement. The first direction is automation, which could streamline the migration process.
The second direction is the inclusion of error handling, authentication, and load balancing,
which could improve the robustness of the migrated API. While their approach provides a
helpful starting point for organizations looking to migrate to gRPC, it does not address the
challenge of load-balancing long-lived streaming RPCs that we identified in our work.

Chamas et al. [8] study the energy consumption of various sorting algorithms with varying
input sizes and types in the context of computation offloading mobile applications. They
compare four communication protocols for remote execution: SOAP, REST, sockets, and gRPC.
They reported that the local execution is generally more economical for small inputs, with a few
exceptions for object input types. Their study provides valuable insights into the performance of
different communication protocols in computation offloading, including the poor performance
of gRPC.

Shah et al. [9] provide an overview of load-balancing algorithms in cloud computing. They
noted that the load on servers increases as more applications move to or run on the cloud.
Increasing the load leads to the problem of over-utilized and under-utilized servers, which
necessitates load balancing. They include several static and dynamic load-balancing algorithms
to address the resource allocation problem in data centers.

4. Flow control Instead of Load Balancing

Our approach is based on the idea of flow control. We utilize the sliding window method to
manage a server’s workload dynamically. For this purpose, the server holds a simplified internal
model of the workload where the sliding window counts ongoing requests over the last £,
seconds. We use this information in our experiments to discretize the workload into LOW
LOAD, MEDIUM LOAD, HIGH LOAD, OVERLOAD and SYSTEM FAILURE.

We implemented our approach using bidirectional streaming RPCs exclusively. This mode of
communication allows the server to request messages from the client. We impose a constraint
on the client where it must wait before sending a message after the initial message. We achieve
this by introducing a special field to each message from server to client. This field holds an
integer value that specifies the number of messages the client is allowed to send. Whenever

47

Starck and Ghofrani: Improving Load Balancing of Long-lived Streaming RPCs for
gRPC-enabled Inter-service Communication

a client receives a response message with a non-zero value, it can send another message or
complete the call. If the field is zero, the client does not send a message and continues to wait.

These semantics allow the server to suspend and resume individual connections to prevent
itself from overloading. The server suspends connections in an overloading state and resumes
suspended connections otherwise.

4.1. Experiments

In our experiments, a server shuts itself down if its internal workload model is SYSTEM FAILURE.
This way, we can simulate real-world conditions via small-scale experiments. We performed
our experiment on Ubuntu 22.04 (64 bit) running on a system equipped with Intel(R) Xeon(R)
Gold 6254 CPU (3.10GHz), 8 Cores, and 16 GB of RAM. Furthermore, we used Docker Engine
Version (v20.10.21) with buildkit enabled and Docker Compose Version (v2.12.2).

We utilize docker swarm networking with a round-robin load balancing policy for service
discovery. We intentionally use a basic load balancing setup to illustrate how our approach
performs. With this setup, we can imperfectly split the connections between our servers. This
imperfection is a helpful approximation for real-world scenarios. The clients were configured
to send a specific amount of messages per second. Finally, clients implement a simple retry
policy which repeats failed requests up to 3 times before giving up.

Number of Clients Number of Messages
Number of Servers Duration of Requests

Messages per Second = (1)

We run several experiments with an increasing number of messages. The experiments are
designed to push the workload beyond the failure threshold. First, we test that our simulation
functions correctly with fewer messages. Second, we increase the number of messages to the
limit of what our servers should be able to handle. This tests the ability of our approach to
handle periods of increased workloads. Finally, we increase the number of messages well above
the intended limits to see how our approach scales. By controlling the number of messages,
we approximate a real-world scenario of thousands of clients within our resource-constrained
testing hardware. We published our experiment code in a public GitHub repository [10] and
included steps to reproduce it.

Parameter Name Configuration
Number of Servers 2

Number of Clients 50

Number of Requests 5

Number of Messages 20,40,60,80,100
Duration of Requests 20 seconds
Failure Threshold 150 Messages per second

Table 1
Configuration for the experiments.

48

Starck and Ghofrani: Improving Load Balancing of Long-lived Streaming RPCs for
gRPC-enabled Inter-service Communication

Flow Control Server Response to different workloads

1
FAILURE

150+¢- 250
4 — 200 ‘
% — 150 OVERLOAD
@ 100
(]
= 100+ B
G HIGH LOAD
g 75 / 3
| e\ 4! N
E | \?\J \: WED LOAD
= [X
R AN
o f \
o | \
(%]
LOW LOAD
g R,
S \
0
00:00 00:30 01:00 01:30 02:00
Time in MM:SS

Figure 2: Flow Control server Response for various workloads. The lines represent different levels of
expected workloads. Here, workload refers to incoming messages per second.

4.2. Results

Workloads above their threshold for system failure are handled robustly, far from an overloading
state. The flow control mechanism can explain the server’s response. When the server starts to
overload, it momentarily suspends incoming requests. These requests still count towards the
threshold, but subsequent requests are prevented until the workload subsides. Figure 2 shows
resilient behavior to the increased workloads. The average number of messages per request
decreases as the first clients complete their requests. This begins to happen when the global
workload decreases. Experiments with higher initial workloads show a steeper decline in the
average number of messages towards the end because each client sends a larger volume of
messages.

No failed requests suggest that shifting the control from the load balancer to the application
server is an effective way to handle sudden increases in incoming traffic.

We notice, however, that the requests take longer to be processed under high load, which is to
be expected. In Table 2, we can see that the Round Trip Time (RTT) increases for higher work-
loads. The trade-off for a reliable but slower application may be worthwhile in environments

where these use cases are essential.

Workload | Average RTT
50 9.52ms

100 11.98ms

150 18.03ms

200 24.77ms

250 32.88ms

Table 2
Average Round Trip Time (RTT) for different workloads. Each experiment was repeated at least 40 times.

49

Starck and Ghofrani: Improving Load Balancing of Long-lived Streaming RPCs for
gRPC-enabled Inter-service Communication

4.3. Discussion

In Figure 2, we can see the normal response for the lowest workload in orange and the flow-
controlled response for all other workloads. We find that the flow-controlled response behaves
differently in preventing the sudden increase in workload. Additionally, we note that, on average,
it stays below the overload threshold because the server suspends connections successfully,
which further limits the workload.

The number of messages is an incomplete model of a server’s workload. It is inaccurate, but
it does suffice in testing our load balancing mechanism on a small scale.

We showed that an incomplete model on a resource-constrained single host machine handles
workloads beyond its configured limits. Our experiment setup uses a basic configuration of the
popular orchestration framework docker compose.

The ideas of our proposed solution can be generally applied to any gRPC application because
it only requires a change in protobuf service definitions. Furthermore, it does not presume any
specific load balancing setups and even works between a server and a client without any load
balancing entity.

5. Conclusion

In this paper, we raised the issues of load balancing in long-lived streaming RPCs and explained
the inability of conventional load balancing mechanisms to handle it. To solve this issue, we
proposed an approach based on shifting the control over incoming requests from load balancer to
the application server. This method prevents the server from overloading, a desirable feature for
inter-service communication in microservice-based architecture. The management of incoming
requests proves to be an effective measure in preventing server overload and cascading server
failure, a chain of events where servers failing lead to others failing due to a sudden increase in
re-transmitted messages from clients.

The workload model could include more parameters to better model real-world scenarios.
With an extended workload model, more sophisticated flow control mechanisms should be
explored. A non-linear controller could lead to further improvements where the server would
try to stay close to a desired state. The performance impact on the overhead the server incurs
remains to be studied.

Applying L7 Flow Control to a real-world application could provide valuable information
about its effects on availability and scalability. In real-world scenarios, there are often many
services and many different types of RPCs in use. Modifying the protocol buffers for each
service and RPC may not be a practical solution.

Another improvement is to develop a framework that is transparent to its users. However,
this requires extensive development and expertise in multiple programming languages to work
seamlessly across different frameworks in gRPC. There is the possibility of introducing flow
control mechanisms on a lower layer. TCP natively supports flow control [11], and gRPC also
supports it at the framework level.

Although our applied flow control mechanism shows promising results, future research is
required. Future research could focus on finding other ways to implement the ideas of L7 Flow
Control.

50

Starck and Ghofrani: Improving Load Balancing of Long-lived Streaming RPCs for
gRPC-enabled Inter-service Communication

References

[1] R. T. Fielding, Architectural styles and the design of network-based software architectures,
University of California, Irvine, 2000.

[2] K. Indrasiri, D. Kuruppu, gRPC: Up and Running - Building Cloud Native Applications
with Go and Java for Docker and Kubernetes, O’Reilly Media, Inc”, Sebastopol, 2020.

[3] D. Stenberg, Http2 explained, 2014.

[4] A. Bucchiarone, N. Dragoni, S. Dustdar, P. Lago, M. Mazzara, V. Rivera, A. Sadovykh,
Microservices, Science and Engineering. Springer (2020).

[5] R.Kaur, P. Luthra, Load balancing in cloud computing, in: Proceedings of international
conference on recent trends in information, telecommunication and computing, ITC,
Citeseer, 2012.

[6] M. T. Nygard, Release It! Design and Deploy Production-Ready Software, Pragmatic
Bookshelf, Raleigh, NC, 2007.

[7] Y. Lee, Y. Liu, Using refactoring to migrate rest applications to grpc, ACM SE ’22,
Association for Computing Machinery, New York, NY, USA, 2022, p. 219-223. doi:10.
1145/3476883.3520220.

[8] C.L.Chamas,D. Cordeiro, M. M. Eler, Comparing rest, soap, socket and grpc in computation
offloading of mobile applications: An energy cost analysis, in: 2017 IEEE 9th Latin-
American Conference on Communications (LATINCOM), 2017, pp. 1-6. doi:10.1109/
LATINCOM. 2017.8240185.

[9] J. Shah, K. Kotecha, S. Pandya, D. Choksi, N. Joshi, Load balancing in cloud computing:
Methodological survey on different types of algorithm, in: 2017 International Conference
on Trends in Electronics and Informatics (ICEI), 2017, pp. 100-107. doi:10.1109/ICOEI.
2017.8300865.

[10] C. Starck, J. Ghofrani, Improving Load Balancing of Long-lived Streaming RPCs for
gRPC-enabled Inter-service Communication, 2023. URL: https://github.com/BalticBytes/
grpc-load-balancing-long-lived-streaming-rpcs. doi:10.5281/zenodo. 7641639.

[11] J. F. Kurose, K. W. Ross, Computer networking: a top-down approach, 6th ed ed., Pearson,
2013.

o1

