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Abstract

In this work we propose an application of XLNet to address the task hosted at PAN@CLEF2023 related to
Profiling Cryptocurrency Influencers with Few-shot Learning. For our proposed approach we made use
of XLNet fine-tuned on an augmented version of the training set provided for the competition. Given
the few-shot learning perspective of the task we found useful to employ a data augmentation strategy
similar to one proposed in a previous edition of a PAN task. The augmentation is performed augmenting
each sample in the training dataset with its corresponding backtranslated version to a target language.
The target languages we used for our two submissions were German and Italian. After the fine-tuning
of the XLNet we predict the labels for the unlabeled test set. After fine-tuning the XLNet model we
evaluated it on the original non-augmented training set. We evaluated all the F1 with regards to each
label, and then we reported the Macro F1 across all the labels provided. Our results prove that on the
original training set our approach can obtain a maximum Macro F1 of 0.6937 and a maximum accuracy
of 0.6893.
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1. Introduction

The author profiling challenge proposed at PAN@CLEF2023 [1] was about Cryptocurrency
Influencers with Few-shot Learning on Twitter [2]. Identifying cryptocurrency influencers on
social media was the assignment from a low-resource perspective. The task organizers pro-
posed three multi-label classification subtasks. They were, namely: 1) Low-resource influencer
profiling, 2) Low-resource influencer interest identification, 3) Low-resource influencer intent
identification. Regarding the first subtask the organizers provided an English dataset with 32
users per label with a maximum of 10 English tweets each. The five labels available were: (1)
null, (2) nano, (3) micro, (4) macro, (5) mega depending on the type of influencer the author was.
For the second subtask were provided 64 users per label with 1 English tweets each. The five
labels available in this case were: (1) technical information, (2) price update, (3) trading matters,
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(4) gaming, (5) other. Finally, for the third subtask, 64 users per label with 1 English tweets each
were available and classes available for predictions were: (1) subjective opinion, (2) financial
information, (3) advertising, (4) announcement. In this paper we discuss the framework we
used to participate in the first subtask (i.e., low-resource influencer profiling).

The rest of this paper is organized as follows. In Section 2 we report some related works on
text classification methods, along with a brief discussion on some of the architecture proposed
in the previous editions of PAN. In Section 3 we introduce our proposed approach. In Section 4
we detail the experimental setup and evaluation, concluding the section discussing the results
obtained. In Section 5 we discuss future works concluding the paper.

2. Related Work

The power-law dynamics of cryptocurrencies and user activity on social media are used by
the authors of [3] to construct a variety of sequence-to-sequence hyperbolic models that are
appropriate for bubble detection identification problems. From the perspective of NLP, the
study mentioned in [4] is intriguing. In order to better understand the relationships between
cryptocurrency values and social media, the authors employ a combination of statistical models
and NLP techniques to look at what happened in social media starting in June 2019 with a focus
on the rise of the Ethereum and Bitcoin prices.

The proposed task at PAN@CLEF2023 is presented in [5]. Furthermore, to develope our
proposed approach we looked at the top performing teams that participated in the previous
shared tasks organized by PAN. We noticed the results of the winning team at the 2021 edition,
where the winning model consisted of a shallow CNN presented and discussed in [6, 7]. We also
looked at the winning model at PAN@CLEF2022 where the authors won the contest thanks to
a soft voting ensemble technique that combines BERTweet models with various loss functions
and a BERT feature-based CNN model. The aim of the author profiling task in a previous edition
[8] was to identify writers who were likely to propagate false information based on their most
recent 100 tweets. The winning teams were [9] and [10]. On the given test set, their models
accuracy was 0.77. The winning strategies were based on n-grams, an SVM, and an ensemble of
other machine learning models. Other ensemble models have been proposed for other shared
tasks at PAN in the following years [11, 12].

We also examined a number of contemporary models for text categorization problems. It is
important to note that Explainable Artificial Intelligence (XAI) techniques are increasingly being
used in place of black box-based strategies. Several of these techniques based on graphs are
applied in actual applications like text classification [13], traffic prediction [14], computer vision
[15] and social networking [16]. Authors in [17] compare SVM, Naive Bayes, Logistic Regression,
and Recurrent Neural Networks (RNN) as well as other popular machine learning methods.
Experimental results demonstrate that SVM and Naive Bayes outperform other approaches
on the dataset employed. In addition to the RNN, they do not report the evaluation of CNN
or deep learning-based models. In another relevant comparative study [18], on three separate
datasets, scholars assess seven machine learning methods. Random Forest, SVM, Gaussian
Naive Bayes, AdaBoost, KNN, Multi-Layer Perceptron, and Gradient Boosting Algorithm are
among the models that were utilized. The Gradient Boosting Algorithm surpasses the other



examined models in terms of accuracy and F1 score. There are not any additional deep model
experiments in this work, though.

In [19] the task of automatically detecting fake news spreaders of COVID-19 news is addressed
by the authors by extending the CoAID dataset[20]. The authors offer a stacked Transformer-
based neural network that combines a deep learning model with the ability of Transformer to
compute language embeddings.

In [21], the authors profile fake news spreaders using psycholinguistic and linguistic charac-
teristics as input to CNN. The outcomes of their experiments demonstrate how the suggested
model categorizes users as fake news spreaders. The dataset used for the authors’ comparison
was created expressly for their goal. However, only BERT was tested as transformer, and little is
known about the performance of deep models. Their model has also been model evaluated on
the PAN2020 dataset in [22] reporting results. On the English and Spanish datasets, the tested
model achieves a binary accuracy of 0.52 and 0.51, respectively. In the same work [22], the
authors suggest a novel model that outperforms the two winning models at PAN@CLEF2020
on both languages by utilizing personality data and visual features.

In the work conducted in [23], for the purpose of sentiment classification, scholars suggest
using a CNN. The authors demonstrate that using consecutive convolutional layers is efficient
for categorizing lengthy texts through tests with three well-known datasets.

Finally, the survey in [24] gives a succinct rundown of various text classification algorithms.
This overview discusses several ways for extracting text features, dimensionality reduction,
existing algorithms and methods, and evaluation strategies.

Given the performances shown in another international multi-label text classification chal-
lenge [25] and, as discussed in [26, 27], presuming that natural language processing con-
ventional methods can truly be outperformed by deep Al models, we decided to employ a
Transformer based architecture (namely, XLNet [28]). Considering that the proposed task
hosted at PAN@CLEF2023 consists on few-shot learning we also evaluated the augmented
technique discussed in [29]. In this work the authors propose a data augmentation technique
based on backtraslation to augment samples in the dataset.

3. The Proposed Approach

The framework we propose is evaluated through a three-stage empirical experiment. First,
baseline of author profiling models are established using the provided dataset without our
augmentation modules. The second stage involves generating augmented data using backtrans-
lation from English to a target language. The backtranslated sample is then concatenated to the
original one. In the final stage, the augmented data are used to train XLNet [28] and to compare
the performances between different target languages. In our setting, each sample is a user’s set
of tweets, and we hypothesise that semantically enriching the user’s tweets using our proposed
modules can improve performance. By augmenting each sample with a backtranslation, we
aim to increase the diversity and informativeness of the data and improve the representation
of the input, ultimately leading to better classification performance of different NLP models.
Our results show that the expansion of samples with multiple languages using backtranslation
significantly impact on performances in author profiling tasks [30, 31]. Thanks to the backtrans-



lation module our framework is able to outperform the results obtained without expanding
the samples. No preprocessing is applied to the source text in the training datasets. To select
the two target languages (i.e., German and Italian) we considered the studies in [29, 32]. In the
first submission we augmented the training set backtranslating from German and in the second
submission, we backtranslated from Italian as done in [29] where as a last stage classifier the
authors did not use a Transformer but a shallow CNN instead.

The training of our model is performed on the augmented versions of the datasets. For the
first submission we fine-tuned the XLNet for 30 epochs on the dataset augmented using the
backtranslation tecnique with the German language. For the second one we used the Italian
as a target language. In both cases we backtranslated the samples using the Google Translate
API'. After the training phase, we used the fine-tuned XLNet to predict on the unlabeled test
set provided by the task organizers.

4. Experimental Evaluation

4.1. Experimental Setup

Our training and inferencing models, developed in TensorFlow and using Simple Transformers®

library, are publicly available as a Jupyter Notebook on GitHub®. For the training and for the
inferencing phases we made use of XLNet. To enable learning bidirectional contexts, XLNet
was created by optimizing the expected likelihood over all possibilities of the factorization
order. On a variety of tasks, such as question answering, sentiment analysis, document ranking,
and natural language inference, XLNet outperforms BERT, frequently by a wide margin. In
our work, we used the zero-shot cross-lingual transfer-trained XLNet [33] given the promising
results discussed in [25] for a similar multi-label text classification task. In both submissions we
used a batch size of 1. We fine-tuned XLNet for 30 epochs with early stopping for the tuned
version that we used for the final predictions. No improvements are obtained in fine-tuning for
more epochs.

4.2. The Dataset

A set of Twitter authors made up the dataset along with a variable number of corresponding
tweets. For each author in the training set the labels are also provided. The five labels available
were: (1) null, (2) nano, (3) micro, (4) macro, (5) mega. The dataset consists of 32 users with a
maximum of 10 English tweets each. Further details on the subtask are available at the official
task website®.

4.3. Results

For the author profiling task we discuss here, the Macro F1 is the official metric at PAN@CLEF2023.
This metric, along with the Micro one, is the same used in the rest of this section.

'https://pypi.org/project/googletrans/
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Table 1

Results, per each label, achieved by our framework a the end of the fine-tuning using the two augmented
versions of the original training set. The evaluation is performed on the non-augmented version of the
training set.

F1 results per class on the non-augmented train set
Macro  Nano No Mega  Micro
German  0.4000 0.4390 0.7059 0.6914 0.6078
Italian 0.6122  0.7407 0.6667 0.7750 0.6517

Table 2
Results achieved by our framework in terms of Macro metrics. In this case the results are obtained using
the original version of the training dataset for the evaluation.

Results on the original training set

Macro F1 Acc
German 0.5688 0.5937
Italian 0.6937 0.6893

In Table 1 we report the results using the F1 provided by the official evaluator available
on GitHub® for all the classes available and using the original non-augmented version of the
training set. Instead, in Table 2, we report the results using the Macro F1 and accuracy on the
original non-augmented version of the training set.

Although the Macro F1 and the accuracy prove that XLNet fine-tuned on the Italian back-
translated version of the dataset outperforms the German one, as can be seen from Table 1 for
the "no-influencer" class the F1 is higher in the case of the German language. However a further
investigation on the effect of the backtranslation on the original samples could eventually
lead to an explanation of these differences among the classes. Finally, on the Macro results an
impressive difference exists between the two languages. The fine-tuned version of the XLNet
using the augmented training set with Italian is able to outperform the German one by a large
margin of more than 10% with respect to Macro F1 and around 9% in term of accuracy. According
to the final ranking®, our framework is able to obtain a Macro F1 of 0.3834 on the provided test
set.

5. Conclusion and Future Works

In this paper we have presented our submitted model at the author profiling task hosted at
PAN@CLEF 2023. It consists of a backtranslation layer followed by an expansion module to
expand every sample in the dataset. These augmented versions of the samples are then provided
to XLNet both for the training and for the inference phase.

We intend to assess performance using different backtranslation techniques and other lan-
guages in future works. Even performing an error analysis on authors who were incorrectly
classified can result in better scores on the suggested classification task. Increasing the model’s
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complexity, perhaps by utilizing extra layers of Transformers, is another way to boost accuracy
in author profiling. Given the size of the dataset that was provided, additional data augmentation
techniques could possibly be used. Before the training and testing phases of our model, some
research into the content of each tweet could influence the construction of the model in the
use of some strategies to remove noise (i.e., not relevant features) from the input samples. We
found that enriching samples with their respective backtranslations can lead to performance
improvements.

As future works, it would be interesting to investigate this aspect also on other datasets
related used for author profiling tasks. Furthermore, it could also be of interest to evaluate the
impact of other languages used in the backtranslation module, although, as emerged from this
study, the inclusion of a larger number of languages does not necessarily lead to an increase in
the performance of the classification models.
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A. Online Resources

The source code of our model is available via

+ GitHub
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