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Abstract  
In this paper the intelligent methods for solving the problem of short- and middle-term 

forecasting of electricity sales to ultimate customers are considered. A hybrid 

GMDH-neo-fuzzy network, GMDH and ARIMA were studied. Neo-fuzzy neurons are 

chosen as nodes of a hybrid DL network. The optimal parameters of the hybrid DL network 

and GMDH were found. The synthesis of the optimal structure of hybrid GMDH-neo-fuzzy 

network for short- and middle-term forecasting was performed. Experimental studies of 

hybrid GMDH-neo-fuzzy network, GMDH and ARIMA for short- and middle-term 

forecasting have been conducted. The accuracy of the obtained forecasts was compared. The 

expediency of applying the researched methods of artificial intelligence for the considered 

intervals is substantiated. 
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1. Introduction 

Problems of forecasting non-stationary time series and market indexes at stock exchanges pay 

great attention of managers of enterprises and various scientific researchers. For its solution were 
developed and applied for a long time powerful statistical methods, first of all ARIMA [1, 2]. In 

recent years, various intelligent methods, and technologies, such as fuzzy logic systems and neural 

networks, have also been proposed and widely used for forecasting in economics and technology. 

The Group Method of Data Handling (GMDH), proposed and developed by acad. Alexey 
Ivakhnenko [3, 4], is an effective tool for forecasting and modeling non-stationary time series. This 

self-organization method allows the algorithm to build the optimal model structure for forecasting as 

it goes along, so it happens automatically. Besides GMDH has one more very important property: it 
may work with short samples. Method GMDH and fuzzy GMDH were successfully applied for 

forecasting in economy and financial sphere for long time. 

Popular neural networks are used for forecasting in the financial sector, so MLP [5], fuzzy neural 

networks [6, 7], neo-fuzzy networks [8] and deep learning (DL) networks [9] can be alternative 
approaches. A new class of neural networks - hybrid DL-networks based on the GMDH method [10] 

initiated the emergence of a new trend in DL-networks. Their feature is the synthesis of the optimal 

network structure in the learning process, in addition to the learning of the neuron weights. This 
happens due to applied self-organization. The learning method allows you to adjust the weights in 

these networks layer by layer, rather than simultaneously. This solves the problem of gradient 

explosion or decay phenomenon. For networks with many layers, this fact is very important. 
Initially, neurons with two inputs were used as nodes of a Wang-Mendel hybrid network in this 

field [10]. After the development of the DL neo-fuzzy network, Yamakawa neo-fuzzy neurons were 

used as nodes [8, 11]. Their important difference is that you don't need to train fuzzy sets, only neuron 

weights. Compared to Wang-Mendel neurons, this reduces the computational cost and minimizes the 
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overall training time. Based on the studied two classes of hybrid DL networks, their effectiveness for 
forecasting in the financial sphere was compared. 

In the previous papers these methods were applied and investigated in the problem of forecasting 

in financial sphere for market indices Dow Jones industrial average and NASDAQ. That is why it is 

interesting to investigate the effectiveness of ARIMA, GMDH and hybrid DL networks in forecasting 
in other areas, such as technology and production, specifically in short- and middle-term forecasting 

tasks. The goal of this paper is to investigate the accuracy of intelligent methods – hybrid DL 

networks, GMDH and ARIMA at the problem of forecasting Electricity Sales to Ultimate Customers, 
Residential (USA), June 7, 2023 – at the different forecasting intervals (short-term and middle-term), 

compare their efficiency and to determine which computational intelligence methods are the most 

perspective for forecasting in the economy and technology. 

2. A review of the evolving hybrid GMDH-neo-fuzzy network 

The architecture of the evolving hybrid DL-network is shown in Fig. 1. The input of the system 

accepts an (𝑛 × 1)-dimensional vector of signals that are considered input. Then the first hidden layer 

receives this signal. At this level there are 𝑛1 = 𝑐𝑛
2 nodes, each of which has strictly two inputs. 

Outputs 𝑁[1] of the first hidden layer form the output signals to be further transmitted to the 

selection block located after the first hidden layer. 

 

Figure 1: Evolving GMDH-network 

It selects among the output signals 𝑦̂𝑙
[1] 𝑛1 ∗ (where 𝑛1 ∗= 𝐹 is so-called freedom of choice) most 

precise signals by some chosen criterion (mostly by the mean squared error 𝜎
𝑦𝑙
[1]
2 ). Among these 𝑛1 ∗ 

best outputs of the first hidden layer 𝑦̂𝑙
[1] ∗ 𝑛2 pairwise combinations 𝑦̂𝑙

[1] ∗, 𝑦̂𝑝
[1] ∗ are formed. These 

signals are fed to the second hidden layer, that is formed by neurons 𝑁[2]. After training these neurons 

output signals of this layer 𝑦̂𝑙
[2]

 are transferred to the selection block 𝑆𝐵[2] which choses 𝐹 best 

neurons by accuracy (e.g. by the value of 𝜎
𝑦𝑙
[2]
2 ) if the best signal of the second layer is better than the 

best signal of the first hidden layer 𝑦̂1
[1] ∗. Other hidden layers work in a similar way. The evolution of 

the system continues until the best signal of the selection block 𝑆𝐵[𝑠+1] is worse than the best signal 

received on the previous s-h layer. After that, you need to return to the previous layer to select the 

best node neuron 𝑁[𝑠], which will have some output signal 𝑦̂[𝑠]. The sequential movement from this 
neuron (node) back takes place along its connections and passes through all previous layers, which 

makes it possible to build the resulting structure of the GMDH-neo- fuzzy network. 

As a result, due to the GMDH algorithm, it is possible to obtain a well-trained network with an 

optimal structure that was synthesized automatically. High-dimensionality problems, as well as 
vanishing or exploding gradients, are avoided because the learning is sequential layer-by-layer. 

2.1. The role of the Neo-fuzzy neuron in the hybrid GMDH system 

In Fig. 2 shows the architecture of the node selected as the quality for the proposed GMDH 

system. This is a neo-fuzzy neuron (NFN) proposed by Takeshi Yamakawa et al. in [9]. It is a 
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non-linear system that has one output and several inputs. In the proposed GMDH system, 
neo-fuzzy-neurons with only two inputs are used, which implements the following mapping: 

𝑦̂ = ∑𝑓𝑖(𝑥𝑖)

2

𝑖=1

 (1) 

where 𝑦̂ is the output of the system, 𝑥𝑖 is the input signal 𝑖 (𝑖 = 1,2, … , 𝑛). The nonlinear synapses 

𝑁𝑆𝑖  are the building blocks of a neo-fuzzy neuron. Their task is to convert the input signal in the form 

of 

𝑓𝑖(𝑥𝑖) =∑𝑤𝑗𝑖𝜇𝑗𝑖(𝑥𝑖)

ℎ

𝑗=1

 (2) 

 

Figure 2: Architecture of neo-fuzzy neuron with two inputs 

and fuzzy inference is realized in the form: if 𝑥𝑖 is 𝑥𝑗𝑖 then the output is 𝑤𝑗𝑖 ,where 𝑤𝑗𝑖  is the synaptic 

weight in the consequent, 𝑥𝑗𝑖 is a fuzzy set whose membership function is 𝜇𝑗𝑖  [11]. 

2.2. Neo-fuzzy neuron training algorithm 

The standard local quadratic error function is used as the goal function (i.e., the learning criterion): 

𝐸(𝑘) =
1

2
(𝑦(𝑘) − 𝑦̂(𝑘))

2
=
1

2
𝑒(𝑘)2 =

1

2
(𝑦(𝑘) −∑∑𝑤𝑗𝑖𝜇𝑗𝑖(𝑥𝑖(𝑘))

ℎ

𝑗=1

2

𝑖=1

)

2

 (3) 

Using a conventional stochastic gradient descent algorithm, it can be minimized. 
In the case of a predefined dataset, the training process can be performed in a single epoch in batch 

mode. For this purpose, the conventional least squares method is used [11] 

𝑤[1](𝑁) = (∑𝜇[1](𝑘)𝜇[1]𝑇(𝑘)

𝑁

𝑘=1

)

+

∑𝜇[1](𝑘)𝑦(𝑘) = 𝑃[1](𝑁)∑𝜇[1](𝑘)𝑦(𝑘)

𝑁

𝑘=1

𝑁

𝑘=1

 (4) 

where (•)+ denotes the pseudo-inverse of the Moore-Penrose (y(k) is assumed to be the real value of 

the external reference signal). 
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With the sequential receipt of training observations, i.e., in the online mode, the recurrent form of 
the ANN can be represented as 

{
 
 
 

 
 
 

𝑤𝑙
𝑖𝑗(𝑘) = 𝑤𝑙

𝑖𝑗(𝑘 − 1) +

𝛲𝑖𝑗(𝑘 − 1)(𝑦(𝑘) − (𝑤𝑙
𝑖𝑗(𝑘 − 1))

𝑇

𝜑𝑖𝑗(𝑥(𝑘)))𝜑𝑖𝑗(𝑥(𝑘))

1 + (𝜑𝑖𝑗(𝑥(𝑘)))
𝑇

𝛲𝑖𝑗(𝑘 − 1)𝜑𝑖𝑗(𝑥(𝑘))
,

𝛲𝑖𝑗(𝑘) = 𝛲𝑖𝑗(𝑘 − 1) −
𝛲𝑖𝑗(𝑘 − 1)𝜑𝑖𝑗(𝑥(𝑘)) (𝜑𝑖𝑗(𝑥(𝑘)))

𝑇

𝛲𝑖𝑗(𝑘 − 1)

1 + (𝜑𝑖𝑗(𝑥(𝑘)))
𝑇
𝛲𝑖𝑗(𝑘 − 1)𝜑𝑖𝑗(𝑥(𝑘))

.

 (5) 

3. Data set 

As the data set for forecasting were taken monthly Electricity Sales to Ultimate Customers, 

Residential (USA) since 01-2002 till 01-2023 taken. The whole sample consisted of 251 instances. 
The sample was divided into training and test subsamples. The dynamics of monthly energy power 

supply to Ultimate Customers, Residential (USA) is shown in the Fig. 3. 

 

Figure 3: Dynamics of the index monthly energy supply 

 
Figure 4: Correlogram 

Analyzing the presented curve, one may conclude that there is strong correlation between 

preceding and conceding values and the process is periodical with period 6 months. Autocorrelation 

function (ACF) was determined for this process of power supply which is shown in the Fig. 5. 
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The check for stationarity of this process was performed using Dickey-Fuller test.  
P-value: 0.5117527467140699 > 0.05. As it follows from this test the initial time series is not 

stationary. Using differencing this time series was transformed to the stationary one that’s confirmed 

by Dickey-Fuller test with P-value: 1.3594288749888985e-14 < 0.05. 

 
Figure 5: ACF of time series power supply 

4. Experimental investigations 

In the investigations was explored the forecasting accuracy of hybrid DL neo-fuzzy networks at 

various forecasting intervals: short-term forecasting with intervals 1, 3 5 and 7 days and middle term 

forecasting with intervals 10 and 20 days. At the first step the variable experimental parameters of 

hybrid network were chosen which are presented in the Table 1. 

Table 1 
Experimental parameters 

Parameter Value 

Membership functions Gaussian 
Number of inputs 3; 4; 5 
Number of linguistic variables 3; 4; 5 
Ratio (percentage of the training sample) 0,6 (60%); 0,7 (70%); 0,8 (80%) 
Criterion MSE; MAPE 
Forecast interval 1; 3; 5; 7; 20; 30 

The optimization of these parameters was performed, in result the following optimal values were 

determined inputs: 3; linguistic variables: 3; ratio: 0,7. 
After that the structure optimization of hybrid DL neo-fuzzy network was constructed using 

GMDH method. The process of structure generation is presented in the Table 2.  

In result the optimal structure of three layers was determined: at the first layer 3 inputs, second 
layer – two neurons, third layer – one output neuron. 

Further the training of the best hybrid network was carried out using method SGD (stochastic 

gradient descent with variable step. Flow chart of forecasting results for interval 1day in presented in 
the Fig. 6. The values of MSE and MAPE for this experiment are shown in the Table 3. 

In the Fig. 6. flow chart of MAPE values for the best model of hybrid network is shown. 

Further the similar experiments of hybrid network were performed with forecasting interval 3, 5, 

10 and 20 days. After optimization the parameters and structure of hybrid network it was trained 
using training subsample. The forecasting accuracy at the test sample for interval 3 days is presented 
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at the Table 4. In the succeeding experiments forecasting accuracy of Hybrid neo-fuzzy network was 
investigated with forecasting intervals 5, 10 and 20 days. 

Table 2 
Structure generation (inputs: 3; variables: 3; ratio: 0,7) 

NFN SB 1 SB 2 SB 3 

(0, 1) 0.138   
(0, 2) 0.23   
(1, 2) 0.116   

((0, 1), (0, 2))  0.062  
((0, 1), (1, 2))  0.06  
((0, 2), (1, 2))  0.067  

(((0, 1), (0, 2)), ((0, 1), (1, 2)))   0.078 
(((0, 1), (0, 2)), ((0, 2), (1, 2)))   0.081 
(((0, 1), (1, 2)), ((0, 2), (1, 2)))   0.068 

Table 3 
Forecasting accuracy of hybrid neo-fuzzy network at forecasting interval 1 day 

Criterion MSE MAPE 

Min: 23088.985 0.137 
Avg: 564640071.554 13.99 
Max: 3671767454.527 36.888 

 

Figure 6: The most accurate forecast (inputs: 3; variables: 3; ratio: 0,7) 

In the Table 5 accuracy of forecasting of the hybrid NFN optimal structure is presented with 

forecasting interval 10 days and in the table 6 with forecasting interval 20 days. 

Table 4 
Forecasting accuracy of hybrid network at forecasting interval 3 days 

Criterion MSE MAPE 

Min: 381106.04 0.592 
Avg: 548163425.114 15.067 
Max: 2486030587.063 38.021 
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Table 5 
Forecasting accuracy of hybrid network at forecasting interval 10 days 

Criterion MSE MAPE 

Min: 19477.142 0.132 
Avg: 538246827.982 14.074 
Max: 2748009578.558 33.78 

For estimating forecasting accuracy of hybrid DL network, it was compared with alternative 
methods: ARIMA and GMDH. The forecasting accuracy of GMDH for interval 1 day is shown in the 

Table 7 and for 5 days in the Table 8. The flowchart of forecasting results for the interval 5 days is 
shown in the Fig. 7 and for 20 days in the Fig. 8. 

Table 6 
Forecasting accuracy of hybrid network at forecasting interval 20 days 

Criterion MSE MAPE 

Min: 337367.726 0.472 
Avg: 449715331.739 13.236 
Max: 2692214636.887 33.064 

Table 7 
Forecasting accuracy of GMDH at interval 1 day 

Criterion MSE MAPE 

Min: 32949.209 0.121 
Avg: 52857867.97 4.767 
Max: 276493216.406 10.805 

Table 8 
Forecasting accuracy of GMDH at interval 5 day 

Criterion MSE MAPE 

Min: 1159357.608 1.096 
Avg: 398583396.613 12.615 
Max: 1617737584.052 25.174 

 

Figure 7: MAPE for the most accurate forecast by GMDH (inputs: 4; variables: 4; ratio: 0,8) for 5 days 

In the next experiments forecasting efficiency of method ARIMA was investigated and analyzed. 

After the preliminary investigations the optimal parameters for ARIMA were found which were used 

in the following experiments. The forecasting accuracy of ARIMA for interval 1 day is presented in 
the Table 9 and for interval 5 days in the Table 10. The flowchart of real and forecasting results for 

ARIMA with interval 20 days is shown in the Fig. 9. 
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The comparative experiments were performed in which the accuracy of forecasting by hybrid DL 
network, GMDH and ARIMA at the different forecasting intervals was estimated and compared. The 

corresponding results are presented in the Tables 11, 12 and Fig. 10, 11. 

Table 9 
Forecasting accuracy of ARIMA at interval 1 day 

Criterion MSE MAPE 

Min: 2.291 0.001 
Avg: 132427261.825 6.769 
Max: 1197915373.458 20.712 

 

Figure 8: The most accurate forecast by GMDH (function: linear; inputs: 5; ratio: 0,6) 20 days 

 
Figure 9: The most accurate forecast for ARIMA for interval 20 days 

Table 20 
Forecasting accuracy of ARIMA at interval 5 day 

Criterion MSE MAPE 

Min: 71329.525 0.238 
Avg: 637786112.725 17.025 
Max: 3294047244.213 49.151 
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Table 21 
Average MSE values of the best models for different intervals 

Interval GMDH-Neo-fuzzy ARIMA GMDH 

1 170490988.697 132430397.71 52857867.97 
3 315557184.523 497392547.163 309777397.448 
5 284852296.188 530711958.519 398583396.613 

10 342855400.208 730109790.172 461671534.933 
20 321175540.062 707721137.741 467578939.296 

Analyzing the presented results in the Fig. 10 and 11 one may conclude that GMDH method 

appears to be the best at short term forecasting 1, 3 days which complies the theory.  

 

Figure 10: Average MSE values of the best models for different intervals 

 

Figure 11: Average MAPE values of the best models for different intervals 

Hybrid deep learning neo-fuzzy networks are the best at middle-term forecasting 5, 7, 10, 20 days. 

ARIMA appeared to be the worst by accuracy as compared with intelligent methods – hybrid DL 

networks and GMDH. 

5. Conclusion 

In this paper the investigations of artificial intelligence methods: hybrid Deep learning networks 
and GMDH and ARIMA were carried out in the problem of forecasting Electricity Sales to Ultimate 

Customers, Residential (USA) since 01-2002 till 01-2023. 
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Table 12 
Average MAPE values of the best models for different intervals 

Interval GMDH-Neo-fuzzy ARIMA GMDH 

1 8.571 6.768 4.767 
3 9.723 13.581 11.518 
5 9.914 15.609 12.615 

10 10.359 18.132 14.202 
20 11.064 19.024 15.95 

During the experiments the optimal structure and optimal parameters: number of inputs, number of 

linguistic values, ratio training/test samples of hybrid neo-fuzzy networks were determined. 

After optimization of hybrid neo-fuzzy networks and parameters of GMDH method the 

experiments on forecasting Electricity Sales to Ultimate Customers, were performed at different 
intervals: 1, 3, 5, 7 (short term forecast) and 10, 20 days (middle term forecast). 

The accuracy of forecasting by Hybrid DL networks was compared with alternative methods – 

GMDH and ARIMA.  
The analysis of obtained results have shown that GMDH method is the best at short term 

forecasting 1, 3 days while hybrid deep learning neo-fuzzy networks are the best at middle-term 

forecasting 7, 10, 20 days. Method ARIMA appeared to be the worst by accuracy as compared with 
intelligent method – hybrid DL networks and GMDH. 
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