
A Framework for Ontology Evaluation

Muhammad Fahad, Muhammad Abdul Qadir

Center for distributed and Semantic Computing

Mohammad Ali Jinnah University, Islamabad, Pakistan,

mhd.fahad@gmail.com, aqadir@jinnah.edu.pk

Abstract. Mapping and merging of multiple ontologies to produce consistent,
coherent and correct merged global ontology is an essential process to enable
heterogeneous multi-vendors semantic-based systems to communicate with
each other. To generate such a global ontology automatically, the individual
ontologies must be free of (all types of) errors. We have observed that the
present error classification does not include all the errors. This paper extends
the existing error classification (Inconsistency, Incompleteness and
Redundancy) and provides a discussion about the consequences of these errors.
We highlight the problems that we faced while developing our DKP-OM,
ontology merging system and explain how these errors became obstacles in
efficient ontology merging process. It integrates the ontological errors and
design anomalies for content evaluation of ontologies under one framework.
This framework helps ontologists to build semantically correct ontology free
from errors that enables effective and automatic ontology mapping and merging
with lesser user intervention.

Keywords: Ontological Errors Taxonomy, Ontology Verification, Ontology
Design Anomalies, Ontology Mapping and Merging, Semantic Web.

1 Introduction

To furnish the semantics for emerging semantic web, Ontologies should represent
formal specification about the domain concepts and the relationships among them [1].
They have played a fundamental role for describing semantics of data not only in the
emerging semantic web but also in traditional knowledge engineering, and act as a
backbone in knowledge base systems and semantic web applications [10]. Like any
other dependable component of a system, Ontology has to go through a repetitive
process of refinement and evaluation during its development lifecycle before its
integration in the semantic applications. Ontology content evaluation is one of the
critical phases of Ontology Engineering because if ontology itself is contaminated
with errors then the applications dependent on it, may have to face some critical and
catastrophic problems and ontology may not serve its purpose [7].

Several approaches for evaluation of taxonomic knowledge on ontologies are
contributed in the research literature. Ontologies can be evaluated by considering
design principles [9,10,11], requirements and logical correctness of axioms, relations,

instances, etc. Other approaches would be to evaluate ontologies in terms of their use
in an application [18] and predictions from their results, comparison with a golden
standard or source of data [13]. Considering design principles, Gomez formed error
taxonomy for assistance in the ontology evaluation. Ontology engineers use that error
taxonomy to build well-formed classification of concepts that enable better reasoning
support for fulfillment of sound semantic web vision and to evaluate their ontologies
in perspective of these errors. Besides taxonomic errors, there are some design
anomalies which raise the issues of maintainability of ontologies [2].

This paper presents the ontological errors based on design principles for
evaluation of ontologies. It provides the overview of ontological errors and design
anomalies that reduces reasoning power and creates ambiguity while inferring from
concepts. It shows our contribution in taxonomic errors that we experience while
development of ontology merging system, DKP-OM [6]. Finally it integrates the
design anomalies and taxonomic errors under one framework that helps practitioners,
developers and ontologists to build well formed ontologies free from errors that serve
their purposes, and develop tools for ontology evaluation for fulfilment of sound
semantic web vision.

Rest of the paper is organized as follows: section 2 presents classification of
ontological errors and design anomalies; section 3 contributes our identified
ontological errors and extends the classes of errors formed by Gomez. Section 4
presents the related work of our domain. Section 5 concludes the paper.

2 Taxonomic Errors and Design Anomalies

Gomez-Perez [10,11] identified three main classes of taxonomic errors that might
occur when modeling the conceptualization into taxonomies. The subsections
elaborate each class of error made by Gomez.

2.1 Inconsistency Errors

There are mainly three types of errors that cause inconsistency and ambiguity in the
ontology. These are Circulatory errors, Partition errors and Semantic inconsistency
errors.
Circulatory errors: They occur when a class is defined as a subclass or superclass of
itself at any level of hierarchy in the ontology. They can occur with distance 0, 1 or n,
depending upon the number of relations involved when traversing the concept down
the hierarchy of concepts until we get the same from where we started traversal. For
example, circulatory error of distance 0 occurs when ontologist models OddNumber
concept as subclass of NaturalNumber and NaturalNumber as subclass of
OddNumber. As OWL ontologies provide constructs to form property hierarchies, so
we have observed that circulatory errors in property hierarchies can occur.

Partition errors: There are mainly several ways of classification depending upon the
type of decomposition of superclass into subclasses. When all the features of
subclasses are independently described and subclasses do not overlap with each other
then it leads to disjoint decomposition. When ontologists follow the completeness

constraint between the subclasses and the superclass, then it leads to a complete or
exhaustive decomposition. The other can depend on both the disjoint and exhaustive
decomposition. Three types of errors are:
Common instances and classes in disjoint decomposition and partitions: These
errors occur when ontologists create the instances that belong to various disjoint
subclasses or a common class as a subclass of disjoints classes. An example of former
error is when ontologist decomposes the Course concept into disjoint subclasses
GradCourse and UndergradCourse, and furthermore he classifies CS6304 course as
an instance of both disjoint classes. An example of later error is when ontologist
decomposes the NaturalNumber concepts into disjoint subclasses Odd and Even,
furthermore he classifies Prime number class as a subclass of both Odd and Even
subclasses.
External instances in exhaustive decomposition and partitions: These errors occur
when ontologists made an exhaustive decomposition or partition of a class into many
subclasses but not all the instances of the base class belong to the subclasses, i.e., one
or more instances of base class do not belong to any of the subclasses. For example
ontologist decomposes Accommodation into Hotel, House and Shelter subclasses.
This error occurs if he defines an instance TrainStation as an instance of the class
Accommodation.

Semantic Inconsistency Errors: These errors occur when ontologists make an
incorrect class hierarchy by classifying a concept as a subclass of a concept to which
that concept does not really belong. For example he classifies the concept SeaPlane as
a subclass of the concept AirPlane. Or the same might did when classifying instances.
We find three main reasons that result incorrect semantic classification and classify
the semantic inconsistency errors into three subclasses, explained in extension in
taxonomic errors section.

2.2 Incompleteness Errors

Sometimes ontologists made the classification of concepts but overlook some of the
important information about them. Such incompleteness often creates ambiguity and
lacks reasoning mechanisms. The following subsections give the overview of
incompleteness errors.

Incomplete Concept Classification: This error occurs when ontologists overlook
some of the concepts present in the domain while classification of particular concept.
For example ontologists classify concept Location into CulturalLocation,
MountainLocation, and overlook other location types such as BeachLocation,
HistoricLocation, etc.

Partition Errors: Gomez identified that sometimes ontologist omits important
axioms or information about the classification of concept, reducing reasoning power
and inferring mechanisms. He has identified two types of errors that cause incomplete
partition errors to occur, that are:
Disjoint Knowledge Omission: This error occurs when ontologists classify the
concept into many subclasses and partitions, but omits disjoint knowledge axiom
between them. For example ontologist models the BeachLocation, HistoricLocation

and MountainLocation as subclasses of Location concept, but omits to model the
disjoint knowledge axiom between subclasses. We developed the ontology of
Access_Policy, where disjoint knowledge omission between User and Administrator
causes catastrophic results [19], and provided the algorithm for identification of
disjoint knowledge omission [16].

Due to significant importance of disjoint axiom between classes, OWL 1.1 allows
to specify disjoint axioms between properties as well. So we also emphasis that
ontologists should check and specify disjoint knowledge between properties, and
avoid creating common instances between them.

Exhaustive knowledge Omission: This error occurs when ontologists do not follow
the completeness constraint while decomposition of concept into subclasses and
partitions. For example ontologist models the BeachLocation, HistoricLocation and
MountainLocation as disjoint subclasses of Location concept, but does not specify
that whether or not this classification forms an exhaustive decomposition.

2.3 Redundancy Errors

Redundancy occurs when particular information is inferred more than once from the
relations, classes and instances found in ontology. The following are the types of
redundancies that might be made when developing taxonomies.

Redundancies of SubclassOf, Subproperty-Of and InstanceOf relations:
Redundancies of SubclassOf error occur when ontologists specify classes that have
more than one SubclassOf relation directly or indirectly. Directly means that a
SubclassOf relation exist between the same source and target classes. Indirectly
means that a SubclassOf relations exist between a class and its indirect superclass of
any level. For example ontologists specify BeachLocation as a subclass of Location
and Place, and furthermore Location is defined as a SubclassOf Place. Here indirect
SubclassOf relation exists between BeachLocation and Place creating redundancy.
Likewise Redundancy of SubpropertyOf can exist while building property hierarchies.
Redundancies of InstanceOf relation occur when ontologists specify instance Swat as
an InstanceOf Location and Place classes, and it is already defined that Location is a
subclass of Place. The explicit InstancesOf relation between Swat and Place creates
redundancy as Swat is indirect instance of Place as Place is a superclass of Location.

Identical formal definition of classes, properties and instances: Identical formal
definition of classes, properties or instances may occur when ontologist defines
different (or same) names of two classes, properties or instances respectively, but
provides the same formal definition.

2.4 Design Anomalies in Ontologies

Besides taxonomic errors, Baumeister and Seipel [2] identified some design
anomalies that prohibit simplicity and maintainability of taxonomic structures with in
ontology. These do not cause inaccurate reasoning about concepts, but point to
problematic and badly designed areas in ontology. Identification and removal of these

anomalies should be necessary for improving the usability, and providing better
maintainability of ontology.
Property Clumps: Datatype properties and Object properties that are associated with
classes provide us powerful mechanisms for reasoning and inferring about concepts.
Sometimes ontologists badly design ontology using repeatedly a group of properties
in different class definitions. This repeated group of properties is called property
clump and should be replaced by an abstract concept composing those properties in
all the class definitions where this clump is used.
Chain of Inheritance: Ontology defines taxonomy of concepts and allows
classifying concepts as subClassOf other concepts up to any level. When such
hierarchy of inheritance is long enough and all classes have no appropriate
descriptions in the hierarchy accept inherited child then that ontology suffers from
chain of inheritance. For maintainability and simplicity, this chain of inheritance
should be break-up into subhierarchies.
Lazy Concepts: Lazy concept is a leaf concept (or a property) in the taxonomy that
never appears in the application and does not have any instances. Such concepts
should be replaced with specialized or generalized concepts that occupy such
instances and would be used in the application domain.
Lonely Disjoints: Sometimes ontologists need to modify the taxonomy of concepts
and move concepts within the class hierarchy. Consider a scenario, where many
disjoint siblings were created and later on a single sibling is moved to another place
somewhere in the hierarchy, and ontologist forgets to delete the disjoint axiom
between them. Such disjoint axioms should be removed from lonely disjoint concepts
to enable better maintainability and reasoning support.

3 Extensions in Taxonomic Errors

We have identified several ontological errors [7,15,16,19,20] while evaluating
taxonomic knowledge on ontologies and knowledge based systems, and extended the
main three classes of Taxonomy evaluation, i.e., Inconsistency, Incompleteness and
Redundancy. Some of these are experienced while developing DKP-OM: Disjoint
Knowledge Preserver based Ontology Merger [6], a solution we provide for effective
ontology merging. The subsections present our identified ontological errors.

3.1 Semantic Inconsistency Errors

There are mainly three reasons due to which incorrect semantic classification
originates [7]. According to these reasons, we categorize Semantic inconsistency
errors into three subclasses. These subclasses can be used as a check list for class
hierarchy evaluation and help in building well-formed class hierarchy to provide
better interpretation of concepts.
Weaker domain specified by subclass error: When classes that represent the larger
domain are kept subclasses of concept that possess smaller domain then such an error
might occur. For example ontologist classifies UniversityMember, AcademicStaff,
AdminStaff and LabStaff concepts as a subclass of a concept Staff superclass. Here the

semantic inconsistency occurs as he classified more generalized concept
UniversityMember as subclass of the concept Staff. A subclass should always
specializes (subsumed by) the superclass concept’s properties by specifying stronger
domain and make the super concept’s domain narrower.
Domain breach specified by subclass error: Subconcepts should possess all the
features of the parent concept and should not violate any feature of their parent
concept in their own domain. Superclass domain breach occurs when concepts treated
as subclasses add more features that are not present in superclass but the additional
features are violating some features of their superclasses. For example consider a
Pizza class hierarchy where ontologist classifies concept VegetarianPizza as a
subclass concept of Pizza. Furthermore he classifies ChinesePizza and ItalianPizza
concepts as the subclasses of the concept VegetarianPizza. Semantic Inconsistency
arises as the definition of ChinesePizza allows having any toppings made from boiled
vegetables and any kind of meat.

Disjoint domain specified by subclass error: When ontologists specify disjoint
domain concepts as subclasses of a concept that occupies a different domain. For
example he classifies concepts Drink and Burger as subclasses of EatableThing
concept. None of the features of Drink match with superclass concept EatableThing
i.e. they belong to disjoint domains.

These semantic inconsistency errors can be applied same to the instances of
superclass and subclasses to whether their conformance with each other.

3.2 Extension in Incompleteness Errors

For powerful reasoning and enhanced inference, OWL ontology provides some tags
that can be associated with properties of classes [17]. OWL functional and inverse-
functional tags associated with properties indicate how many times a domain concept
can be associated with range concept via a property. Sometimes ontologists do not
give significance to these property tags and do not declare datatype or object
properties as functional or inverse-functional. As a result machine can not reason
about a property effectively leading to serious complications [20].
Functional Property Omission (FPO) for single valued property: According to
Ontology Definition Metamodel [17], when there is only one value for a given subject
then that property needs to be declared as functional. The tag Functional can be
associated with both the object properties and datatype properties. For example
hasBlood_Group as an object property between Person and Blood_Group is an
example of functional object property. Every subject Person belongs to only one type
of BloodGroup, so hasBlood_Group property should be tagged as functional so that
person should be associated with one blood group. Likewise functional datatype
properties allow only one range R for each domain instance D. Ignoring Functional
tag allows property to have more than one values leading to inconsistency. One of the
main reason for such inconsistency is that ontologist has ignored that OWL ontology
by default supports multi-values for datatype property and object property.
Inverse-Functional Property Omission (IFPO) for a unique valued property:
According to Ontology Definition Metamodel [17], inverse-functional property of the

object determines the subject uniquely, i.e. it acts like a unique key in databases. This
means that if we state P as an owl InverseFunctionalProperty, then this restricts that
for a single instance there can only be a value x, i.e. there cannot exist two different
instances y and z such that both pairs (y, x) and (z, x) are valid instances of P. In
OWL Full, datatype property can be tagged as inverse-functional property because
datatype property is a subclass of object property. But in OWL DL datatype property
can not be tagged as inverse-functional property because object properties and
datatype properties are disjoint. An example of inverse object property is
National_SecurityNo that belong to the Person as it uniquely identifies the Person.
Ignoring inverse-functional tag with the property National_SecurityNo creates
inconsistency within the ontology due to incomplete specification of concept. We
consider such lack of information as an error, because such ignorance leads machine
not to infer and reason about concepts uniquely.

Sufficient knowledge Omission Error (SKO): Ontology comprises concepts and
properties that can be arranged in hierarchies. These concepts in hierarchies should
posses some features so that inference engine can distinguish them appropriately.
According to principles of Description Logic, there should be Necessary description
and Sufficient description associated with each concept [14]. Necessary description
rules define the basic criteria by which new concept is formed by subclass of relation,
and Sufficient description defines the concept in terms of another concepts like its self
description by using intersection, union, complement or restriction axioms in OWL
[15]. Sometimes during ontology designing, ontologists define the concepts but don’t
provide their Sufficient descriptions. As a result, machine can’t reason about them
properly and cannot use them effectively to achieve the goals of semantic web.

Finding incompleteness in ontologies automatically is a difficult task. One of the
possible ways to detect such incompleteness errors is to evaluate ontology on test data
[4] (valid and invalid both) that can be generated according to tester’s domain
knowledge [22], experience with similar concepts and information about soft spots of
ontology.

3.3 Extension in Redundancy Errors

While detecting disjoint knowledge omission in ontology and generating warnings on
its omission [15], we detect redundancy of disjoint relation in ontologies. The
following subsection provides detail on it.
Redundancy of Disjoint Relation (RDR) Error: Redundancy of Disjoint Relation
occurs when the concept is explicitly defined as disjoint with other concepts more
than once (Noshairwan, 2007a). By Description Logic rules [14], if a concept is
disjoint with any concept then it is also disjoint with its sub concepts. The one
possible way of occurrence of RDR is that the concept is explicitly defined as disjoint
with parent concept and also with its child concept. For an example, concept Male is
defined as disjoint with Female and also with sub concepts of Female. This type of
redundancy can occur due to direct disjointness (directly disjoint) and indirect
disjointness (concept is disjoint with other because its parent is disjoint with it).

4 Related Work

There are many other approaches for ontology evaluation but still there is a big gap
which needs to be filled for sound semantic web ontologies. The standard ontology
evaluation approach by Maedche and Staab [13] is to compare ontology with gold
standard ontology for evaluating lexical and vocabulary level of ontology. Besides
comparison with gold standard, Brewster et al. [4] gave the corpus or data driven
ontology evaluation approach. Comparison of ontology with the corpus or data of the
domain knowledge provides a measure of the fit between them; and highlights the
terms that are present/absent in ontology and corpus. Context level evaluation
approach takes into account the larger collection of ontologies as a reference for
evaluation of particular ontology [22]. The library of ontologies or the context for
evaluation provided by the knowledge engineer acts as reference to follow. Other
approaches of ontology evaluation would be to observe the results of application or
task where this ontology is being used. Prozel and Malanka [18] proposed the task-
based approach for ontology evaluation but could not be so much effective, as
ontology acts only a backbone and several other issues of task itself can generate bad
results. Burton-Jones [5] defined a semiotic metrics based on different criteria for
ontology assessment for syntactic and lexical/vocabulary evaluation. Likewise Fox el
al. [8] made a set of parameters but these are more useful for manual assessment of
quality of ontology. These ontology evaluation approaches are useful in different
applications, scenarios and environments [3] and the choice of a suitable methodology
should be adopted according to the ontology usage.

5 Conclusion

Ontology driven architecture has revolutionized the inference system by allowing
interoperability between heterogeneous multi-vendors systems. We have identified
that accurate ontologies free from errors enable more interoperability, improve the
accuracy of ontology mapping and merging and lessen human intervention during this
process. We have discussed existing ontological errors, and identified newer types of
errors present in ontologies. We have concluded that without identification and
removal of these errors the most desirable goal of ontology mapping and merging
could not be achieved. We have integrated the overall work about ontology evaluation
based on design principles and anomalies under one framework. This framework acts
as control mechanism that helps ontologist to build accurate ontologies that serve best
for the desired applications, provide better reasoning support, lessen user intervention
in efficient ontology merging and combined use of independently developed online
ontologies can be made possible.

References

1. Antoniou, G., and Harmelen, F.V. 2004. A Semantic Web Primer. MIT Press Cambridge,
ISBN 0-262-01210-3

2. Baumeister, J., and Seipel, D.S. 2005. Owls–Design Anomalies in Ontologies”, 18th Intl.
Florida Artificial Intelligence Research Society Conference (FLAIRS), pp 251-220

3. Brank J. et al. 2005. A Survey of Ontology Evaluation Techniques. Published in multi-
conference IS 2005, Ljubljana, Slovenia SIKDD.

4. Brewster, C. et al. 2004. Data driven ontology evaluation. Proceedings of Intl. Conf. on
Language Resources and Evaluation, Lisbon.

5. Burton-Jones, A., et al. 2004. A semiotic metrics suite for assessing the quality of ontologies.
Data and Knowledge Engineering.

6. Fahad, M., Qadir, M. A., Noshairwan, M., W., Iftikhar, N. 2007a. DKP-OM: A Semantic
Based Ontology Merger. In Proc. 3rd International conference on Semantic Technologies,
I-Semantics 5-7 September 2007, Journal of Universal Computer Science (J.UCS).

7. Fahad, M., Qadir, M.A., Noshairwan, W. 2007b. Semantic Inconsistency Errors in
Ontologies. Proc. of GRC 07, Silicon Valley USA. IEEE CS. pp 283-286

8. Fox, M. S., et al. 1998. An organization ontology for enterprise modelling. In: M. Prietula et
al., Simulating organizations, MIT Press.

9. Gomez-Perez, A. 1994. Some ideas and examples to evaluate ontologies. KSL, Stanford
University.

10. Gomez-Perez, A., Lopez, M.F, and Garcia, O.C. 2001. Ontological Engineering: With
Examples from the Areas of Knowledge Management, E-Commerce and the Semantic
Web. Springer ISBN:1-85253-55j-3

11. Gomez-Perez, A., et al. 1999. Evaluation of Taxonomic Knowledge on Ontologies and
Knowledge-Based Systems. Intl. Workshop on Knowledge Acquisition, Modeling and
Management.

12. Jelmini, C., and M-Maillet S. 2004. OWL-based reasoning with retractable inference”, In
RIAO Conference Proceedings 2004.

13. Maedche, A., Staab, S. 2002. Measuring similarity betwe- en ontologies. Proc. CIKM 2002.
LNAI vol. 2473.

14. Nardi, D. et al. 2000. The Description Logic Handbook: Theory, Implementation, and
Applications. Noshairwan, W., Qadir, M.A., Fahad, M. 2007a.

15. Sufficient Knowledge Omission error and Redundant Disjoint Relation in Ontology.
InProc. 5th Atlantic Web Intelligence Conference June 25-27, 2007 - Fontainebleau, France

16. Noshairwan, W., and Qadir M.A. 2007b. Algorithms to Warn Against Incompleteness
Errors in Ontology Evaluation. 1st AISPC Jan 2007.

17. Ontology Definition Metamodel 2005. Second Revised Submission to OMG/RDF
18. Porzel, R., Malaka, R., 2004. A task-based approach for ontology evaluation. ECAI 2004

Workshop Ont. Learning and Population.
19. Qadir, M.A., Noshairwan, W. 2007a. Warnings for Disjoint Knowledge Omission in

Ontologies. Second International Conference on internet and Web Applications and
Services (ICIW07). IEEE, p. 45

20. Qadir, M.A., Fahad, M., Shah, S.A.H., 2007b. Incompleteness Errors in Ontologies. Proc.
of Intl GRC 07, USA. IEEE Computer Society. pp 279-282

21. Qadir, M.A., Fahad, M., Noshairwan, W. 2007c. On Conceptualization Mismatches in
Ontologies. Proc. of GRC 07, USA. IEEE CS. pp 275-279

22. Supekar, K. 2005. A peer-review approach for ontology evaluation. Proc. 8th Intl. Protégé
Conference, Madrid, Spain, July 18–21, 2005.

	Partition errors: There are mainly several ways of classification depending upon the type of decomposition of superclass into subclasses. When all the features of subclasses are independently described and subclasses do not overlap with each other then it leads to disjoint decomposition. When ontologists follow the completeness constraint between the subclasses and the superclass, then it leads to a complete or exhaustive decomposition. The other can depend on both the disjoint and exhaustive decomposition. Three types of errors are:
	Semantic Inconsistency Errors: These errors occur when ontologists make an incorrect class hierarchy by classifying a concept as a subclass of a concept to which that concept does not really belong. For example he classifies the concept SeaPlane as a subclass of the concept AirPlane. Or the same might did when classifying instances. We find three main reasons that result incorrect semantic classification and classify the semantic inconsistency errors into three subclasses, explained in extension in taxonomic errors section.
	2.2 Incompleteness Errors
	Incomplete Concept Classification: This error occurs when ontologists overlook some of the concepts present in the domain while classification of particular concept. For example ontologists classify concept Location into CulturalLocation, MountainLocation, and overlook other location types such as BeachLocation, HistoricLocation, etc.
	Partition Errors: Gomez identified that sometimes ontologist omits important axioms or information about the classification of concept, reducing reasoning power and inferring mechanisms. He has identified two types of errors that cause incomplete partition errors to occur, that are:
	Exhaustive knowledge Omission: This error occurs when ontologists do not follow the completeness constraint while decomposition of concept into subclasses and partitions. For example ontologist models the BeachLocation, HistoricLocation and MountainLocation as disjoint subclasses of Location concept, but does not specify that whether or not this classification forms an exhaustive decomposition.
	Redundancies of SubclassOf, Subproperty-Of and InstanceOf relations: Redundancies of SubclassOf error occur when ontologists specify classes that have more than one SubclassOf relation directly or indirectly. Directly means that a SubclassOf relation exist between the same source and target classes. Indirectly means that a SubclassOf relations exist between a class and its indirect superclass of any level. For example ontologists specify BeachLocation as a subclass of Location and Place, and furthermore Location is defined as a SubclassOf Place. Here indirect SubclassOf relation exists between BeachLocation and Place creating redundancy. Likewise Redundancy of SubpropertyOf can exist while building property hierarchies. Redundancies of InstanceOf relation occur when ontologists specify instance Swat as an InstanceOf Location and Place classes, and it is already defined that Location is a subclass of Place. The explicit InstancesOf relation between Swat and Place creates redundancy as Swat is indirect instance of Place as Place is a superclass of Location.
	Identical formal definition of classes, properties and instances: Identical formal definition of classes, properties or instances may occur when ontologist defines different (or same) names of two classes, properties or instances respectively, but provides the same formal definition.
	Disjoint domain specified by subclass error: When ontologists specify disjoint domain concepts as subclasses of a concept that occupies a different domain. For example he classifies concepts Drink and Burger as subclasses of EatableThing concept. None of the features of Drink match with superclass concept EatableThing i.e. they belong to disjoint domains.
	Sufficient knowledge Omission Error (SKO): Ontology comprises concepts and properties that can be arranged in hierarchies. These concepts in hierarchies should posses some features so that inference engine can distinguish them appropriately. According to principles of Description Logic, there should be Necessary description and Sufficient description associated with each concept [14]. Necessary description rules define the basic criteria by which new concept is formed by subclass of relation, and Sufficient description defines the concept in terms of another concepts like its self description by using intersection, union, complement or restriction axioms in OWL [15]. Sometimes during ontology designing, ontologists define the concepts but don’t provide their Sufficient descriptions. As a result, machine can’t reason about them properly and cannot use them effectively to achieve the goals of semantic web.

