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Abstract

In this research we introduce the problem of the
binary matrix partitioning in a biological con-
text. Our idea is to use SNP matrix to con-
struct a set of phylogenetic networks to retrieve
underlying biological meanings and dependen-
cies. We emphasize stochastic methods for ma-
trix clustering and briefly describe the search
algorithm. It will allow us to perform fast dis-
tributed search on huge biological data for cal-
culating person’s similarity.

1 Introduction and Motivation
A lot of recent publications in bioinformatics empha-
size SNPs (Single Nucleotide Polymorphism) which de-
scribe one bit of difference in DNA between members of
a species [17].
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Almost all common SNPs have only two variations
(alleles) so they can be described as only one binary bit
each. More than 6.2 million human SNPs are presented
now in public databases (e.g. in [2]) describing differ-
ent aspects of genome. They can be used to identify a
single person or to find similarities between two or more
persons [12].

Based on SNPs of a group of people one can con-
struct a phylogenetic network [7]. It represents evolu-
tion relations among biological entities and is a general-
ization of the well known phylogenetic tree. There are
different variations of phylogenetic networks, e.g. per-
fect and galled tree [20, 5]. Based on type of a net-
work there are different constraints on underlying bit se-
quences [15]. Besides biology phylogenetics networks
can be used in other fields, for example, in natural lan-
guage analysis [16].

Recently introduced the personal web service by [1]
allows to find more than 500.000 SNPs in an individ-
ual genome (obtained with special device) and analyzes
them independently. Also this service supports Family
Inheritance tool to analyze meaning of SNPs in aspect
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of a person’s family, but does not provide operations on
whole database (e.g. to find unknown relatives).

Our idea is to provide framework to store and analyze
a lot of SNPs for the large number of individuals. So
everyone will be able to:

1. share his own genome,

2. find relatives,

3. find similar persons.

As long as number of individuals and number of SNPs
can be huge (each more than 106), familiar methods do
not work in acceptable time.

In this research we focus on clustering this binary
data to ensure fast search. We use a combination of
stochastic approximate methods of cluster optimization
with other combinatorial methods [10]. Such kinds of
algorithms are characterized by easy understanding, not
requiring gradient information, dealing with a large num-
ber of parameters and insignificance of possible discon-
tinuities in the fitness function [4].

We construct phylogenetic networks for each cluster
and then use it for understanding underlying biological
dependencies. Different types of networks and different
constraints on data give us wide tradeoff between com-
plexity and accuracy.

We do not consider legal aspects (such as discrimi-
nation and human rights) because it is not a subject of
this research. From the practice of existent social net-
works sharing personal data and searching among them
are possible and do not conflict with a law.

2 Problem statement
2.1 Binary matrix

Each person has a bit sequence where every bit repre-
sents one SNP (almost all common SNPs have only two
alleles). Some SNPs (or group of them) can be addition-
ally described (e.g. ”hair color”, ”eye color”, ”height”
etc.) for convenient usage.

hair eyes ×
John 0 1 0 1 1 1 0
Mary 1 0 0 1 1 0 1
Bill 0 1 1 0 0 0 1
Ann 0 1 0 1 1 1 1

If we have N individuals and M different SNPs, these
data form matrix D with N rows and M columns.



D =

M︷ ︸︸ ︷ 0 1 0 1 1 1 0
1 0 0 1 1 0 1
0 1 1 0 0 0 1
0 1 0 1 1 1 1

}
N

Besides SNPs such type of matrix can present a lot of
other data, e.g. market baskets, graph connections etc.

2.2 Search

Search should answer to query:

”Find all individuals that are equal to the given one in
the given SNP positions with the given error”

It is reasonable to get a list of these individuals ordered
by an error. More formal, query input consist of:

• individual number p : 1 ≤ p ≤ N ,

• set of SNP indices a = [a1, ..., aT ], 1 ≤ ai ≤M ,

• integer error k ≥ 0.

The difference between two persons p and r on SNPs
a can be defined as Hamming distance between corre-
sponding bit subsequences:

diffa(p, r) = H(Dp,a, Dr,a) =
T∑

i=1

(Dp,ai ⊕Dr,ai),

For instance, the difference between Mary and Ann
on SNPs (1, 3, 5, 6, 7) will be the following:

diff[1,3,5,6,7]( 2 , 4 ) = H(10101, 00111) = 2.

D =


0 1 0 1 1 1 0
1 0 0 1 1 0 1
0 1 1 0 0 0 1
0 1 0 1 1 1 1


Finally, query answer is an ordered by diff list:

A(p, a, k) = {r ∈ [1..N ] : diffa(p, r) ≤ k} .

A native implementation of this search will calculate
diffa(p, r) for every r. It works in O(NT ) time and is
not acceptable for large N and T . Also, if T << M then
we do not need to keep all N×M matrix in memory and
can request only small necessary parts of it. To address
these issues we introduce matrix partitioning.

2.3 Matrix partitioning

The main objective of this research is to divide a matrix
D into a number of submatrices (C1, ..., Cs) in such a
way to guarantee a fast execution of search query.

Each submatrix (let’s name it ”cluster”) Ci can be de-
scribed with two vectors: indices of rows and indices of
columns in the original matrix D. For instance:

D =


0 1 0 1 1 1 0
1 0 0 1 1 0 1
0 1 1 0 0 0 1
0 1 0 1 1 1 1


C1 : rows = (1, 3), columns = (1, 3, 4),

C2 : rows = (2, 4), columns = (1, 3, 4, 7),

C3 : rows = (1, 2, 3, 4), columns = (2, 5, 6),

C4 : rows = (1, 3), columns = (7).

How to use this clustering to speed up search a query
execution we will discuss in section 4.

2.4 Terminology

We often use synonyms ”part”, ”cluster” or ”class” for
”submatrix”. And the process of dividing matrix into
parts can be named as ”partitioning”, ”clustering” or
even ”classification”. A ”person” sometimes can be an
”individual” or even just a ”biological entity”.

3 Background
3.1 Clustering and random search

The problem of clustering is partitioning of a data space
X into some classes. It means that points in the same
class share some common trait and this trait forms this
class. Such property, for example, can be a closeness
of the point to some ”center”. Formally, the problem
is to find an assignment function: x ∈ X → c ∈ C
where C is a set of clusters [4]. This assignment function
can be deterministic (certain class for each point) or non-
deterministic (set of probabilities of being in number of
classes).

Also there are penalty functions which increase if x
moves far from the center of a corresponding class.

Thus, clustering problem can be described as estima-
tion such parameters that minimize an average risk func-
tional or finding the class centers in which a total disper-
sion is minimal.

The adaptive optimization algorithm is characterized
by accumulating the information during the search of an
extremum and using it to increase probability of conver-
gence to an optimum [10].

3.2 Phylogenetic networks

The powerful structure to investigate phylogenetic re-
lations (evolutionary relatedness) are phylogenetic net-
works based on bit sequences. Unfortunately, as shown
in [7], there is confusion in different meanings of this
term.

Classically phylogenetic network is a directed acyclic
graph containing one root node, a set of internal nodes
and exact n leaves. Every node has associated bit se-
quence of equal lengths. Every internal node can have
either one or two incoming edges. One edge biologi-
cally means ”single polymorphism” and can change sin-
gle bit of sequence from 0 to 1 and each position changes
only once in whole network. Two incoming edges mean



”single-crossover recombination” and form a new se-
quence as a composition of two ancestors, such a node
calls recombination node. A phylogenetic network with-
out recombination nodes turns out perfect phylogenetic
tree.

A complete definition can be found in [6].

Figure 1: Example of phylogenetic network

Fig. 1 shows phylogenetic network of the following
matrix (bit sequences):

a 0 0 0 1 0
b 1 0 0 1 0
c 0 0 1 0 0
d 1 0 1 0 0
e 0 1 1 0 0
f 0 1 1 0 1
g 0 0 1 0 1

where the root node has sequence 00000 and there are
two recombination nodes with sequences 10100 and
01101.

Also, there are different concepts of phylogenetic net-
works and this provides a wide variety of data structures
and algorithms. In [7] Huson presents the following hi-
erarchy:

• splits networks: median networks, split decomposi-
tion neighbor-net, consensus (super) networks;

• phylogenetic trees;

• reticulate networks: hybridization networks (spe-
cial case: ”galled trees”), recombination networks,
ancestor recombination graphs;

• other types of phylogenetic networks: augmented
trees, any graph representing evolutionary data.

Network construction algorithms are also widely de-
scribed in literature and vary in supported types of the
network, complexity, proved bounds (e.g. of number of
recombinations) etc. [14].

4 Feasible solution
The initial problem is proposed to be divided into several
subproblems.

4.1 Partitioning

For this purpose we plan to use clustering by an adap-
tive algorithm of random search [10]. As a result of it
we should receive a set of classes for local optimizing
and searching inside. Inside of each cluster we will con-
struct a phylogenetic network and maintain it for using
in search operations.

In this case we have following key choices:
1. type of risk function for clusterization,
2. type of phylogenetic networks.

A risk function will also strongly depend on constraints
of sequences to fit phylogenetic networks. Also still net-
work constructing complexity can be more than O(nm)
and we need high parallelism for fast search, we cannot
allow huge clusters.

4.2 Search algorithms

It should be divided into two parts:

1. search of appropriate set of clusters,
2. local search inside of this set.

It has become complicated because partitioning
makes parts (clusters) not only with different individuals
(rows), but also with different SNPs too (columns). So
the whole search query for one person can occur in more
than one cluster and highly distributed search should be
used.

As interesting achievement of this approach we can
notice a secure query execution because of data distribu-
tion between a lot of clusters. So this system can form
something like anonymous peer-to-peer network where
nobody knows significant information about others, but
still can execute search queries.

5 Related work
Binary matrix clustering is a widely studied field, but
most papers emphasize grouping only 1s by some rule,
considering binary matrix as a plain where 1 means the
point and 0 means the gap [8]. There is another approach
to approximate the initial matrix with smaller ones, for
example, Tao Li in [11] describes next following model:

D = AXBT + E,

where X is a centroid, A and B are somewhat smaller
than D matrices and E is an error matrix.

Our claim is to use all initial data and partition whole
matrix into clusters. We will try to absorb existed ideas
and modify them for proposed problem.

Data clustering in general case is reviewed by Anil K.
Jain in [8]. Interesting special case with stochastic local
clustering are described in [18].

In [10] Kusherbaeva and Sushkov describe a modi-
facation of an optimization method which we will use
for partitioning. Nowadays it is usual to support and op-
timize systems with uncertainties of measurements, es-
pecially with self-training algorithms. These problems
are solved by stochastic methods quite good, e.g. in
[19, 9, 13].

Phylogenetic networks based on bit sequences have
rapidly growing research, e.g. in [15, 7, 14, 20, 6, 16].



In 2007 year there were a lot of publications in this field
[3]. We will use proposed algorithms for constructing
networks from each part of the matrix.

6 Conclusions
Nowadays there are a lot of individual genome informa-
tion available for each person, and this information pro-
cessing will make a significant role in future.

We stated the problem of the binary matrix partition-
ing in a key of biological search and have a plan to inves-
tigate the usage of adaptive algorithms of random search
for clustering binary data. Using the set of phylogenetic
networks we want to support a fast search operation for
personal similarity evaluation. There are a lot of different
types of networks, so we need to choose appropriate one
and analyze its search abilities and possibilities to divide
the initial matrix in such a way to satisfy constraints on
sequences.

7 Further work
In this research we focus more on clustering, while dis-
tributed search algorithm will be described shortly and
only in significant parts. More details and optimization
are remained for future. Also, we can try to support more
complex queries than presented in this paper.

Measurement errors that are frequent in biology were
not mentioned either. Security and anonymization of this
system can also be investigated in future.
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