
Integrating a Wiki in an Ontology Driven Web Site:
Approach, Architecture and Application

in the Archaeological Domain

Andrea Bonomi, Alessandro Mosca, Matteo Palmonari, Giuseppe Vizzari

Department of Computer Science, Systems and Communication (DISCo)
University of Milan - Bicocca

{andrea.bonomi, ale.m, matteo.palmonari,
giuseppe.vizzari}@disco.unimib.it

Abstract. This paper describes an approach to the design and implementation of
ontology driven dynamic web sites combining ontologies and wiki technologies.
The core of the architectural solution proposed is completely based on ontologies
rather than on more traditional forms of persistent data storage facilities, such as
relational databases. This approach provides a flexible support to the design and
implementation of web portals in which navigation schemes are not entirely pre-
determined but are instead influenced by actual relationships among the contents
of the ontology, that are used to generate web pages as well as hyperlinks. A wiki
technology is integrated with this approach in order to create pages not directly
derived by elements of the ontology, but also to enrich the textual contents with
suitable formatting, images and hyperlinks. The application of this approach to
the realization of a web portal is also described; the portal is devoted to enable
a number of scientific communities to share archaeological knowledge about the
Silk Road domain.

1 Introduction

The introduction of technologies enabling the development of data driven web sites rep-
resented an extremely important step in the process that lead the initial version of the
Web to its current state of pervasive diffusion and impressive growth rate. Data driven
web sites are able to generate web contents and pages according to the information
persistently stored in a suitable module, such as a relational Data Base Management
System. This represents the last tier of an architecture encompassing a middle tier that
is able to interpret suitable templates for web pages that are instantiated according to ac-
tual data stored in the data tier, and that are eventually passed to the first tier responsible
of the visualization of the page (i.e. the client tier, a common web browser). Tradition-
ally these templates have been realized by integrating modules developed in common
programming languages with a web application (e.g. Common Gateway Interface or
Java Servlet technologies), or embedding “programming languages–like” control struc-
tures and abstractions in traditional web pages through scripting languages (e.g. PHP,
ASP, JSP). Some of the most relevant abstractions related to a data driven web site, and
determining its organization and function are thus implemented and expressed in terms



of a database logical schema and specific programming language control structures em-
bedded in page templates.

Even if this approach surely represents a huge improvement with respect to static
web sites, that are essentially repositories of HTML documents and embedded multi-
media contents, a set of different research efforts have been carried out in an attempt
to supply higher level abstractions to support the design and implementation of web
based advanced information systems and applications. Some of these approaches, for
instance [1, 2], are based on traditional data conceptual models for site contents and
extend the scope of the modelling activity to aspects of relevance in the web context,
such as navigation and presentation. In this vein, this paper presents an approach that
provides instead the adoption of an ontological rather that data tier, building on experi-
ences and results of research in the Semantic Web [3] area to provide new abstractions
and instruments for the structuring and management of information supporting dynamic
web pages composition. In particular, the basic idea is to exploit an explicit and formal
conceptualization of concepts related to the web site domain, as well as specific aspects
related to web sites in general, to structure data and information required to generate
contents, to specify the navigation among them and to generate an effective presenta-
tion. The ontological approach provides a uniform and expressive framework for the
representation and management of these different aspects. In particular, the ontology
can encompass documents, and one particular type of document can be represented by
a wikipage. This allows endow this ontology driven approach to the definition, design
and realization of web sites with a more traditional and established form of definition
of contents of web pages.

The following section will elaborate the research context in which this work is set,
briefly introducing relevant related works, while Section 3 introduces the architecture
and the various functionalities offered by NaVEditOW [4], the framework on which
this approach is based. A case study in which the approach has been applied for the
development of a portal organizing archaeological information and documents will then
be introduced. Conclusions and future developments will end the paper.

2 Ontology Driven Web Sites and Wikis

In his proposal for a global hypertext [5], Tim Berners-Lee proposed a “gateway pro-
gram” to generate hypertext view of existing data source. He has imagined a simply
generic gateway with a limited, perhaps read-only, access on a database that allow to
display it as a hypertext and navigate through the data.

Within a short period, the Internet and World Wide Web have become ubiquitous
and today Internet is full of data-driven Web sites: yellow pages, e-Commerce sites,
digital libraries are only the most common examples. But also, forum, blog, wiki, video
and photo sharing website, hotel booking, online auction website, online community,
Web-based email client and Web mapping service are all data-driven Web sites.

A data-driven Web site is much easier to maintain than a static Web site: most con-
tent changes require no change to the pages. Instead, changes are made to the data
source and this source could be enterprise or organization database. Sharing a common
data source, the Web application can be easily integrated within information system.



 Relational 
database

Pages templates

Client
Web Browser

Application Code

Web Server

Presentation tier

Data tier

Application tier

Fig. 1. On the top schema, the architecture of a traditional data-driven Web site.

So, for example, in a manufacture company when a new product is added to the enter-
prise database, it could be automatically displayed on the corporate Web site products
catalog.

One of the most common architecture used in developing of dynamic data driven
web sites, is shown in Figure 1. In particular, the persistent data storage is generally
delegated to a relational database management system. The web server generally hosts
dynamic pages including server side scripts necessary to query the data tier and collect
the information required to compose pages related to the contents of the database. These
dynamic pages represent a sort of template for the web pages that must be generated
according to the stored data, specifying different aspects ranging from the queries that
must be submitted to the database to retrieve them, to the kind of links that must be
created to support the navigation inside the data.

An evolution of this approach is the adoption of the the MVC (Model View Con-
troller) [6] architectural pattern. In a web based MVC application, the model is the
domain-specific representation of the application information, the view layer is respon-
sible to renders the model into user interface element (HTML pages) and the Controller
processes and responds to the users actions and can invoke data changes.

Generally, the data is stored in a relational database and the model is represented by
a database schema. In our opinion, it is difficult to represent all the relations that could
be present in a complex domain (such the archaeology domain) with a database schema.
In many cases, is difficult to translate some aspects of a conceptual schema (such the
generalization) into the relational model. Some kind of extra-relational constraint are
not representable within the database schema and requests database store procedure or
external application code. There are also problems to manage the database schema, for
example, the is no way to check the schema consistency.

The proposed approach provides the adoption of an ontology [7], rather than a rela-
tional database, as data layer (a schema of such architecture is shown in Figure 1) and
to use a Wiki engine in order to simplified content authoring and management func-



Client Web 
Browser

NavEditOW

Web Server

Presentation tier

Ontological tier
Application tier

Visualization 
annotation

Pages templates

Domain ontology

Documents, 
including wiki 

pagesRadeox
Wiki Engine

Fig. 2. The overall architecture of the proposed system, integrating a wiki engine for rendering
specific documents stored in the ontological tier.

tionality. In particular, we employed NaVEditOW [4], a system for navigating, editing
and querying ontologies through the web, as a means to access and manage the on-
tology, and we integrate the Wiki technology through the adoption of Radeox [8], that
is an Open Source Wiki engine written in the Java language. An interesting feature of
this engine is that it could be easy extended with custom macros that can support, for
instance, the inclusion in a wiki page of a table of all instances of a given class. The
overall resulting architecture is shown in Figure 2.

The main motivations of this architectural modification are related to a more com-
prehensive exploitation of the explicit relationships among the concepts described in
the ontology, and a simpler integration of this kind of architecture with instruments and
systems developed in the Semantic Web context.

Other approaches of ontology-driven Web site architectures can be found in the
literature: in [9], it is described an application, OntoWeaver, that uses an ontology to
provide a comprehensive support for the design and management of data-driven Web
sites. The described approach uses site ontologies to enable a declarative representation
of all the aspects of a Web sites: in particular, a domain ontology is used as an abstract
of the back-end data sources and a user ontology models information about the Web
site users. In [10] it is described a similar approach in which data from various sources
are converted into RDF-annotated format (based on a domain ontology), composed
together and used to generate a browsable Web site.

A large number of approaches for combining Semantic Web and Wiki technologies
are currently under development; some relevant examples are Makna [11], IkeWiki [12],
Rhizome [13]) and Semantic MediaWiki [14]. The above cited approaches and the re-



lated systems are all examples of Wikis expanded to encapsulate and exploit a well–
defined semantics to enhance their functionalities. It is not the aim of this section to
introduce a structured and comprehensive discussion of these approaches and systems
(an interesting discussion on this line of work can be found in [15]), but it is important
to note that the described approach follows a totally different line of work: we are more
focused on supporting a collaborative effort towards the definition of domain ontolo-
gies and their exploitation in web based systems than in supporting the enhancement
of wikis through the usage of semantic web technologies. The NavEditOW system and
this effort can be intended as an attempt to bring part of the spirit of wiki technologies
and the social aspects of the Web 2.0 in the semantic web context. The remainder of the
paper will introduce the NavEditOW system and its application to the realization of a
web portal supporting a community of archaeologists working on Cultural Heritage of
Central Asia.

3 NavEditOW

In this section we present a system for web based navigation, querying and updating
of ontological KBs. The presented software allows exploring the concepts and their
relational dependencies as well as the instances by means of hyper-links; moreover, it
provides a front-end to query the repository with the SPARQL1 query language.

NavEditOW is an environment for navigating, querying and A-Box2 editing of
OWL3 (Web Ontology Language) ontologies through a web-based interface.

With respect to ontology navigation, since individuals play a fundamental source of
knowledge for people accessing an ontology, A-Box navigation should be supported.
From this perspective, it is important to support not only navigation of concept hier-
archies defined by isA relations, but also other forms of ordering on the individuals
domain. As a first example, locations can be linked through a partOf relation and it
should be possible to group locations under the location of which they are all subparts
(e.g. browsing all countries of which Europe is composed of starting from Europe); as a
second example consider a number of historical periods ordered according to a relations
such as followedBy: it should be possible to exploit this relation to sort such individuals
from the first to the last one.

With respect to editing, although T-box4 maintenance require a certain knowledge
about ontological formalisms, A-Box editing should be supported taking into account:
(i) cardinality and range restrictions defined in the T-Box need to be respected; (ii)
ranges of properties and individuals stored in the ontologies can be also exploited to
drive and suggest instance update. Moreover, contextual editing, that is, the editing of
the A-box while browsing the ontology, should be supported.

1 SPARQL (SPARQL Protocol and RDF Query Language) is an RDF query language standard-
ized by RDF Data Access Working Group of the World Wide Web Consortium. For more
information, see http://www.w3.org/TR/rdf-sparql-query/

2 The A-Box is the “assertion component” of a knowledge base.
3 http://www.w3.org/TR/owl-features/
4 The T-Box is the “terminological component” of a knowledge base.



Although end-users may not be familiar with query languages, the possibility to
perform expressive queries should be supported. From the one hand a language as much
as similar to well-known query languages for relational databases language should be
preferred. On the other hand, interfaces enabling non expert users querying the ontology
should be developed (e.g. query forms).

In the following paragraphs, we presents more details about each of these tree basic
functionalities and the application architecture.

3.1 Navigation

With the ontology navigation interface the users can view ontology individuals and
their properties and browse properties via hyperlinks. Browsing the ontology is essen-
tial for the user in order to explore the available information and it also helps non-expert
users to refine their search requirements, when they start with no specific requirement in
mind [16]. The hierarchical organization of the different concepts and individuals of the
ontology is graphically represented as a dynamic tree. The aim of the navigation tree
is to explore the ontology, view classes and instances, discover the relation between
them. The tree does not represent only the a hierarchy of classes connected with isA
binary relations (like the navigation tree of Protégé), but represents also also tree-like
connections of individuals for domain dependent classes of properties (e.g. partOf, is-
LocatedIn, and so on). From a formal point of view, ontological relations supporting
tree-like visualization (tree-like properties) are those represented as properties not sym-
metric and whose inverse is functional (therefore identifying directed acyclic graphs).
These properties link directly an individual with its “father” and are particularly rele-
vant with respect to mereological relations (e.g. partOf, composedOf ), and to relations
defining hierarchical spatial and temporal structures (e.g. representing the unfolding of
historical periods). Another kind of relations exploited for the visualization are relations
defining total orders on individuals (e.g. isFollowedBy).

The root of the navigation tree is the OWL class Thing, and the rest of the tree is
organized as follows: under the root node, there are the top-level classes (i.e. direct
subclasses of Thing); each class can be expanded to show its subclass hierarchy and
its individual members; individual-to-individual tree connections are defined according
to a number of selected tree-like properties (e.g. partOf ); finally if total order relations
are selected, they are exploited to order individuals within a given level of the tree.
In order to distinguish between classes and individuals, the former are represented in
petrol blue while the latter are shown in shocking pink. An example of a navigation tree
is presented in the Figure 3. In this example Geographical Region is a class and Cental
Asia, Uzbekistan, etc... are its instances. This individuals, in turn, are connected each
other by the partOf directly property.

3.2 Editing

The application allows the users to create, edit and remove individuals of the ontol-
ogy, their properties and, in particular, their labels. In fact, To ensure multi-languages
support, it’s possible to define several labels in different languages for every individual.



Fig. 3. A screenshot of the NavEditOW system in the archaeological case study.

The properties of each classes are defined in the T-Box. Two types of properties are
distinguished: object property is a binary relation between two individuals and datatype
property is a binary relation between an individual and a literal (a primitive type, like
string or number). Cardinality and range restrictions for properties are used to support
users while editing. For example, in an archeological ontology, the class TypologyO-
fArchaeologicalObject has the property builtOf. This property has no cardinality re-
striction (so it can have zero, one ore more values) but Material is specified as range
(co-domain). For instance, Sword is an instance of TypologyOfArchaeologicalObject
and has the property builtOf Metal, where Metal is an instance of Material.

There are a datatype and an object editor in the framework: the datatype editor
allows editing a literal values, displayed as a text input box, object allows defining
the property values presenting the user a tree for selecting the values; the individuals
displayed in the tree are only those that are valid for the property range.

Literal values can be not only plains strings but also Wiki text. This allows the
users to insert long formatted text with link in the generated pages. For example, we
can have the ’Uzbekistan’ individual in our ontology. ’Uzbekistan’, as an instance of
Country, has some properties such population, capital city, part-of, currency, history,
foreign relations, etc. Same (e.g. population) are plain literals (numbers, dates, strings),
others are references to other ontology instances (e.g. the filer of the property ’capital
city’ is Tashkent which is an instance of the class City). History of foreign relations
are Wiki Text, so they can be formatted, contains images an hyperlinks. Wiki Text can



also contains ’macro’ that allows to include in the text information from the ontology
or results of SPARQL queries.

NavEditOW adopts an editing policy. Knowledge engineers interacting with domain
experts, are supposed to create the ontology and edit the Tbox with standard design-time
editing tools such as Protégé [17]. They are supposed to test its quality with reasoners
such as Racer [18] or Fact++ [19] in order to check if the Tbox (i) is consistent and (ii)
it captures the intended meaning (by concept hierarchy inference). End-users can edit
the Abox; they can insert new instances, asserting that they are member of a concept
of the ontology, and assert relation statements; this means, that they can edit the textual
descriptions contained in the ontology. The assumption behind this editing policy is
that end users are not familiar with formal semantics. First, learning to use concept
constructor and ontology axioms is difficult for end users, if one goes beyond simple
Tbox updates, such as the insertion of a new concept as subconcept of a concept in
the ontology. Second, every axiom has logical implications that are difficult to control,
especially for people non expert in formal semantics.

3.3 Querying

The first implemented query interface is the SPARQL query form in which users can
write query in the SPARQL language, display results in paginated tabular form and nav-
igate through results via hyperlinks. This interfaces is very flexible because the users
can write arbitrary queries but is not suitable for end users. Another kind of query inter-
faces is based on a predefined set of queries. Every predefined queries is composed of a
description in natural language, a SPARQL query with eventually free parameters and a
list of parameters. Every parameters have a label, a type and eventually a restriction on
the valid values (e.g. a parameter can be filled only with instances of a specific class).
For this interface, users can select a query by its description, fill the query parameters
and execute it. The results are presented as the results of the other query form. The
queries can be inserted in the Wiki Text through a macro, for example the following
macro shows in the resulting page all the provinces of the Uzbekistan:

{sparql | SELECT ?x
WHERE { ?x silkrode:partOf silkrode:Uzbekistan .
?x rdf:type silkrode:Province }}

3.4 Application architecture

From an architectural point of view, the functionalities (ontology editing, navigation
and querying) of the user interfaces are based on the Application API, as shown in
Figure 5. The main purpose of this API is to support the manipulation and querying
of the ontology through the standard SPARQL query language and through a set of
specific adapters, shielding the user from the underlying semantic framework. A plug-in
interface, in fact, makes the application independent from the adopted specific semantic
framework (as long as SPARQL is supported). A different adapter for every semantic



Fig. 4. Example of datatype properties editing with Wiki Text (on the left) and object properties
editing (on the right).

framework is needed because SPARQL is only a query language and does not offers
any data manipulation statements (e.g. INSERT, UPDATE, DELETE).

The adapter API supports the manipulation and query of the RDF graphs in two
different ways: frame-centric and statement-centric. The former view is similar to the
object-oriented paradigm: every resource is viewed as an object and properties as at-
tribute. This view is used for ontology navigation and resource manipulation. Statement-
centric is a lower level view in which the graph is represented as a set of triples. Each
triple contains three components: subject, predicate and object.

Currently two semantic framework adapters have been implemented: the first one is
a wrapper for the Jena Semantic Web Toolkit, the other for the Sesame Framework. The
former is an open-source Semantic Web Toolkit5 aimed at supporting the development
of applications that use the Semantic Web information models an languages [20]. We
have initially adopted this framework since it matched our requirements, it is widely
used within the Semantic Web research community and well documented. This first
adapter implementation works well with small ontologies, but fails with larger ones
since Jena is not suitable to manage an huge amount of data (a performance evaluation
of several frameworks suitable for large OWL ontologies is presented in [21]). For this
reason, we choose to develop a new adapter for the Sesame Framework6 [22]. Sesame
provides a number of functionalities for handling (querying and manipulating) RDF
graphs. It also supports various types of storage facilities and inference mechanisms.

5 http://jena.sourceforge.net/
6 http://www.openrdf.org



SPARQL

Persistent Storage

Application API

Semantic Query 
Interface

Semantic Navigation
Interface

Web Interface

Se
m

an
tic

fra
m

ew
or

k
la

ye
r

Pr
es

en
ta

tio
n

la
ye

r

Bu
sin

es
s

lo
gi

c
la

ye
r

A-Box
Editor

Semanti Framwework Adapter

JenaSesame
External

Reasoning 
Service

Remote
SPARQL

Client Radeox Wiki Engine

Fig. 5. The NavEditOW architecture

The default implementation supports inferencing and querying on RDF Schema but
lacks a specific support for OWL.

4 The SilkRoDE Case Study

SilkRoDE (Silk Roads in the Digital Era) is a project that aims to collect, structure
and diffuse all knowledge concerning the Cultural Heritage of Central Asia, including
not only archaeological material, sites and historical monuments but also data from
fields such as geography, sociology and ethnography. It is an open and evolutive project,
which functions as an intelligent network linking all interested institutions, research
groups and scholars, that worked and working in Central Asia.

As a first step, SilkRoDE aims to create a Wiki, used on a daily basis by all special-
ists of Central Asia, interested members of the general public and those involved in Cul-
tural Management. The creation of this Wiki will be possible thanks to a collaboration
between specialists from the Humanities and from Computer Sciences in a very close
multidisciplinary context. One of the keys to the success of the SilkRoDE project is the
decision of all participating scholars, institutions and research groups to work together
as Equal Partners. This does not mean that all resources are simply pooled together
but that each resource is clearly associated to the authors and funding agencies that en-
abled its creation. SilkRoDE thus aims to be a Network rather than a new institution.
In this perspective, the NavEditOW system represents the general platform adopted by
the Project to organize and manage the various different contents of SilkRoDE Wiki.
The main aim is to share information and knowledge, and all partners should thus be
enabled to employ the system to publish, connect personal data and information, and
to identify other groups or Institutions working or interested in same themes. This need
for a collaborative and collective participation in data and information collection phases
lead us to choose a Wiki–based approach to develop the SilkRoDE portal.



The introduced approach and the NavEditOW system were adopted to represent
and organize basic information about institution, research groups and scholars having
active researches in Central Asia, as well as information about relevant bibliography
and important cultural and archaeological sites. The platform will be integrated with
webGIS: the possible connection between specific entities of the SilkRoDE ontology
and georeferred entities stored in a GIS will support the visualization of spatial position
and distribution of various entities in dynamically generated maps.

The ontological approach provided the required expressiveness and flexibility even
in these starting phases of the project, in particular in order to support rich forms of nav-
igation among stored contents. In particular, this approach provided the possibility of
representing and managing relationships like “is-a” and “part-of” without flattening the
related entities in a single table or splitting them in different tables, as would have been
necessary adopting a traditional relational database. For instance institutions, research
groups and individual scholars are all actors of the SilkRoDE ontology, in other words,
they are individuals belonging to classes that are related to the Actor class by an “is-a”
relation. It is now possible to define a generic relationship binding an archaeological
site to an instance of the Actor class or one of its subclasses, without the need to define
different relationships. This flexibility in defining and establishing relationships among
individuals will support further types of analysis aimed, for instance, at identifying pos-
sible connections among actors that are working on similar or related research issues,
or geographic areas, or adopting similar methodologies.

5 Conclusions and Future Developments

The paper has described an ontology driven approach to the modeling, design and im-
plementation of dynamic web sites. In particular, we aimed at simplifying the realiza-
tion of web based systems that exploit and give access to a shared ontology, but these
systems should also look like traditional web sites and support simple forms of navi-
gation. To this aim, we endowed the system with a wiki engine and we included doc-
uments, and in particular wiki pages, in the ontological tier, to support a simple form
of editing of pages that give the site an ordinary structure and appearance, that can be
enhanced by means of the exploitation of the underlying domain ontology.

The motivations of this effort, as well as related work and the research context
were introduced, and the NavEditOW framework was described, in terms of provided
functionalities and architecture. A case study providing the application of the introduced
approach and framework was also presented.

Future works are mainly aimed at extending the range of the represented and man-
aged concepts, with particular reference to the various topics that can be used to char-
acterize relevant scientific publications, in an effort similar to the one described in [23].
Moreover, in the medium term, the project will consider the possibility to realize spe-
cific wrappers able to to export contents complying to the CIDOC Conceptual Ref-
erence Model [24], so as to achieve a high level of interoperability with this relevant
standard for cultural heritage information organization.



With respect to the editing policy, it will be tested the possibility to enable end-
users to insert new concepts and the respective subclass-relations. Moreover the more
extended use of reasoning capabilities will be investigated.

References

1. Atzeni, P., Nostro, P.D.: T-Araneus: Management of Temporal Data-Intensive Web Sites. In
Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm,
K., Ferrari, E., eds.: EDBT. Volume 2992 of Lecture Notes in Computer Science., Springer
(2004) 862–864

2. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a Modeling Lan-
guage for Designing Web Sites. Computer Networks 33(1-6) (2000) 137–157

3. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5)
(2005) 34–43

4. Bonomi, A., Mosca, A., Palmonari, M., Vizzari, G.: NavEditOW - a System for Navigating,
Editing and Querying Ontologies through the Web. In Apolloni, B., Howlett, R.J., Jain,
L.C., eds.: KES (3). Volume 4694 of Lecture Notes in Computer Science., Springer (2007)
686–694

5. Berners-Lee, T.: Information Management: a Proposal (1989)
6. Leff, A., Rayfield, J.T.: Web-Application Development Using the Model/View/Controller

Design Pattern. In: EDOC, IEEE Computer Society (2001) 118–127
7. Gruber, T.R.: Toward Principles for the Design of Ontologies Used for Knowledge Sharing.

International Journal of Human-Computer Studies 43(5-6) (1995) 907–928
8. Jugel, M.L., Schmidt, S.J.: The Radeox Wiki Render Engine. In Riehle, D., Noble, J., eds.:

Int. Sym. Wikis, ACM (2006) 33–36
9. Lei, Y., Motta, E., Domingue, J.: Modelling Data-Intensive Web Sites with Ontoweaver. In

Grundspenkis, J., Kirikova, M., eds.: CAiSE Workshops (1), Faculty of Computer Science
and Information Technology, Riga Technical University, Riga, Latvia (2004) 106–121

10. Jin, Y., Decker, S., Wiederhold, G.: Ontowebber: Model-Driven Ontology-Based Web Site
Management. In Cruz, I.F., Decker, S., Euzenat, J., McGuinness, D.L., eds.: SWWS. (2001)
529–547

11. Dello, K., Simperl, E.P.B., Tolksdorf, R.: Creating and Using Semantic Web Information
with Makna. In Völkel, M., Schaffert, S., eds.: SemWiki. Volume 206 of CEUR Workshop
Proceedings., CEUR-WS.org (2006)

12. Schaffert, S.: IkeWiki: A Semantic Wiki for Collaborative Knowledge Management. In:
WETICE, IEEE Computer Society (2006) 388–396

13. Souzis, A.: Building a Semantic Wiki. IEEE Intelligent Systems 20(5) (2005) 87–91
14. Krötzsch, M., Vrandecic, D., Völkel, M.: Semantic MediaWiki. In Cruz, I.F., Decker, S.,

Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L., eds.: International
Semantic Web Conference. Volume 4273 of Lecture Notes in Computer Science., Springer
(2006) 935–942

15. Krötzsch, M., Schaffert, S., Vrandecic, D.: Reasoning in Semantic Wikis. In Antoniou,
G., Aßmann, U., Baroglio, C., Decker, S., Henze, N., Patranjan, P.L., Tolksdorf, R., eds.:
Reasoning Web. Volume 4636 of Lecture Notes in Computer Science., Springer (2007) 310–
329

16. Ram, S., Shankaranarayanan, G.: Modeling and Navigation of Large Information Spaces: a
Semantics Based Approach. In: 32nd Annual Hawaii International Conference on System
Sciences (HICSS-32), 5-8 January, 1999, Maui, Hawaii, Track 6: Modeling Technologies
and Intelligent Systems., IEEE Computer Society (1999)



17. Gennari, J.H., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubézy, M., Eriksson, H., Noy,
N.F., Tu, S.W.: The Evolution of Protégé: an Environment for Knowledge-Based Systems
Development. Int. J. Hum.-Comput. Stud. 58(1) (2003) 89–123

18. Haarslev, V., Möller, R.: Racer: a Core Inference Engine for the Semantic Web. In Sure, Y.,
Corcho, Ó., eds.: EON. Volume 87 of CEUR Workshop Proceedings., CEUR-WS.org (2003)

19. Tsarkov, D., Horrocks, I.: Fact++ Description Logic Reasoner: System Description. In
Furbach, U., Shankar, N., eds.: IJCAR. Volume 4130 of Lecture Notes in Computer Science.,
Springer (2006) 292–297

20. McBride, B.: Jena: a Semantic Web Toolkit. IEEE Internet Computing 6(6) (2002) 55–59
21. Guo, Y., Pan, Z., Heflin, J.: An Evaluation of Knowledge Base Systems for Large OWL

Datasets. In McIlraith, S.A., Plexousakis, D., van Harmelen, F., eds.: International Semantic
Web Conference. Volume 3298 of Lecture Notes in Computer Science., Springer (2004)
274–288

22. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: an Architecture for Storing and
Querying RDF Data and Schema Information. In Fensel, D., Hendler, J.A., Lieberman, H.,
Wahlster, W., eds.: Spinning the Semantic Web, MIT Press (2003) 197–222

23. Bonomi, A., Mantegari, G., Vizzari, G.: A Framework for Ontological Description of Ar-
chaeological Scientific Publications. In Tumarello, G., Bouquet, P., Signore, O., eds.: Se-
mantic Web Applications and Perspectives 2006, Proceedings of SWAP 2006, the 3rd Italian
Semantic Web Workshop, Pisa, Italy. Volume 201 of CEUR Workshop Proceedings. (2006)

24. Doerr, M.: The CIDOC CRM, an Ontological Approach to Schema Heterogeneity. In
Kalfoglou, Y., Schorlemmer, W.M., Sheth, A.P., Staab, S., Uschold, M., eds.: Semantic Inter-
operability and Integration. Volume 04391 of Dagstuhl Seminar Proceedings., IBFI, Schloss
Dagstuhl, Germany (2005)


