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Abstract

Many recent efforts explore the task of Taxonomy Derivation from Wikipedia Category Network (TDWCN),
which induces rich hypernymy relations between instances and classes from Wikipedia to integrate
hierarchical information into knowledge graphs. However, current methods rely heavily on language-
dependent information including heuristic rules, human annotations and inter-language links, which limit
their applications. In this paper, we propose a language-independent model for TDWCN. Specifically, we
design an adversarial learning approach to distill hypernymy relations from noisy raw Wikipedia, avoiding
any language dependencies. Besides, we incorporate multi-task learning to explore the correlation among
instanceOf, subClassOf, and the relations of instances. In addition, we contribute an English evaluation
dataset ENTSk with about 6000 categories. Experimental results on 4 different languages demonstrate
that our model can be applied generally to any language and achieve better or comparable performance
compared with previous language-dependent models.
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1. Introduction

Taxonomies hierarchically organize hypernymy (consisting of instanceOf and subClassOf) among
instances and classes, which are the core pieces of large-scale knowledge graphs [1], and have
been proven beneficial for various NLP tasks such as question answering [2], document under-
standing [3] and information extraction [4]. Taxonomy derivation is a crucial task to integrate
hierarchical and abstract information into knowledge graphs.

Current approaches for taxonomy derivation can be divided into three lines: (1) manual
construction [5, 6]; (2) extracting separate hypernymy from unstructured text and then organizing
the collection into a complete taxonomy [7, 8]; (3) recognizing hypernymy from Wikipedia
Category Network (WCN). Because WCN in Wikipedia is large-scale, domain-independent,
dynamically generated and with high coverage, Taxonomy Derivation from WCN (TDWCN)
has attracted lots of research [9, 10, 11, 12], which is the focus of this paper.

As shown in Figure 1, WCN is a directed graph linking Wikipedia articles (e.g., Micky Mouse)
with inter-connected categories of different granularities (e.g., Disney comics characters, Disney
characters, Disney comics). The links from articles to categories are articleOf, and those between
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Figure 1: TDWCN filters out the non-hypernymy from WCN and outputs the taxonomy. The red
lines represent non-hypernymy.

categories are subCategoryOf. By treating each article and category as one candidate instance
and class, each articleOf and subCategoryOf as one candidate instanceOf and subClassOf
respectively, we can obtain a large-scale taxonomy with millions of instances and classes without
extra human efforts. However, not all articleOf and subCategoryOf links are correct hypernymy
relations. If we do not filter out the non-hypernymy in WCN, wrong facts might be inferred
(e.g., “(Micky Mouse, instanceOf, The Walt Disney Company)”). Therefore, TDWCN needs to
recognize whether each articleOf and subCategoryOf in WCN is a correct hypernymy relation,
which can be formed as a hypernymy classification task consisting of InstanceOf Classification
and SubClassOf Classification.

Most previous methods for TDWCN [9, 13, 10, 11] rely on heuristic rules mainly designed
for English (e.g., syntactic and lexicon patterns). They can hardly be applied to non-English
languages. Recently, supervised methods are proposed, which rely on labeled corpus from
expensive human annotations [14, 15] or sparse inter-language links in Wikipedia [12]. Both
rule-based and supervised methods rely on language-dependent information including heuristic
rules, human annotations and inter-language links, which is quite time-consuming and labor-
intensive. For example, if we design heuristic rules, annotate a corpus or use inter-language
links to construct a dataset for one certain language, we can not directly apply them to another
language, since the syntactic, lexicon and the patterns for different languages are quite different.
These language dependencies limit their applications.

To address the above issues, we propose a language-independent method through multi-task
adversarial learning to perform TDWCN. Specifically, we pretrain a coarse classifier over the
raw WCN, based on which we split the training data into a reliable set and an unreliable set.
Then, we use adversarial learning to iteratively distill the two training sets and refine the classifier
(i.e., the discriminator) through a min-max game between the discriminator and sampler. Our



model can purify the large-scale raw WCN and is general enough to any language without the
limitation of heuristic rules, human annotations or inter-language links. In addition, considering
that (1) InstanceOf Classification and SubClassOf Classification can mutually enhance each other
because instances and classes are highly correlated; (2) the rich semantics provided by relational
facts among instances through Knowledge Embedding may benefit Hypernymy Classification,
we propose a multi-task learning framework to learn Knowledge Embedding, InstanceOf Classifi-
cation and SubClassOf Classification simultaneously. These three sub-tasks fully integrate the
connections from multiple views of instance-instance, instance-class and class-class information
flow respectively to further improve the performance of TDWCN.

2. Related Work

Taxonomy Derivation. Taxonomies organize classes and instances in the real world in hierarchi-
cal structure, and directly affect the computational ability of knowledge graphs. Therefore, the
derivation of large-scale, high-coverage and high-quality taxonomies is essential.

Current methods for taxonomy derivation can be divided into three categories. One category
focuses on manual construction [5, 6], which is time-intensive and domain-dependent. The
second category, taxonomy derivation from text, usually includes two steps: hypernymy relation
extraction from text and taxonomy induction. The representative works include [7, 16, 17, 18, 19,
20, 21], etc.. Our paper focuses on the third category, taxonomy derivation from WCN. Most
previous works utilize heuristic hand-crafted rules, such as the syntactic structure of category
labels, the topology and lexico-syntactic patterns [9], the lemmas from the first sentences of
articles (WiBi [22]), linking with external resources (MENTA [13]), inter-language links and
link surface forms (MultiWiBi [10]) and so on [23, 24, 1, 11]. Recent supervised methods rely
on human annotations [14, 15] or inter-language links (MultiTax [12]), where the former is
expensive and the latter is sparse. MultiTax, given an English taxonomy as a source taxonomy,
leverages inter-language links to construct the dataset for the target language and then trains
classifiers.

Different from MENTA, MultiWiBi and MultiTax, our method avoids language-dependent in-
formation including heuristic rules and inter-language links. Different from WiBi and MultiWiBi
which also consider the correlation between instances and classes, we use deep representation
learning to vectorize them, which serve as a basis that connects InstanceOf and SubClassOf
classification.

Note that Wikipedia has links from each article to the corresponding Wikidata item and
Wikidata has taxonomic relations among its items. However, these relations focus only on the
articles of Wikipedia and ignore categories. We believe the rich taxonomic relations among
articles and categories in Wikipedia are crucial for large-scale and high-coverage taxonomies and
can complement with the existing taxonomy in Wikidata.

Adversarial Training. For adversarial training, prior works in computer vision add imperceptible
adversarial perturbations to input images, relying on the fact that such small perturbations cannot
change an image’s true label. [25] add noise in the form of small perturbations to the input data,
and the generated adversarial examples let models make wrong predictions. Then, [26] attempt
to analyze adversarial examples and propose adversarial training for image classification tasks.



These works inspire subsequent works for NLP tasks, such as text generation [27], knowledge
graph embedding [28], etc.

Different from previous works, we exploit the ability of adversarial training to distinguish
nuances between input data and refine a pretrained coarse classifier. We split the unlabeled
training data into a reliable set and an unreliable set, and use adversarial training to iteratively
distill the two training sets through a min-max game between a discriminator and a sampler.

3. Notations and Definitions

Definition 1. WCN is a directed graph defined as WCN = (A,C, R, R€): Each a; € Ais
an article in Wikipedia. Each c; € C is a category grouping articles and other categories on
similar topics, which can be represented as a word sequence {wx, ..., W, }. RA = {rilrg =
(ak,c1),ar € A, ¢ € C}, 1 is articleOf between article ay, and category c;. RE = {rjc\rjc =
(ck,cr), cr,cp € CY, 75 is subCategoryOf between two categories cy, c.

Definition 2. Taxonomy is a directed acyclic graph defined as T = (Z, C,RZ, Ré>: (1) Each
ij € T is an instance. Each ¢; € C is a class. (2) RT = {7“;|r; = (ig,¢1), i, € Z,¢ € C},
7”;- is instanceOf between instance i, and class ¢;. RC = {7“]E|7“JE = (¢k,¢),Ck, ¢ € é}, 7’? is
subClassOf between two classes ¢, ¢;.

As shown in Figure 1, articles and categories in WCN can be viewed as candidate instances and
classes respectively; articleOf and subCategoryOf are candidates of instanceOf and subClassOf.
Namely, Z C A, C C C, RT C RAand R¢ C RE. We want to recognize whether each articleOf
is a correct instanceOf and whether each subCategoryOf is a correct subClassOf. Therefore, the
main task Hypernymy Classification can be formalized as follows.

Definition 3. Hypernymy Classification is to learn two functions ZC and SC for instanceOf
classification and subClassOf classification respectively: (1) ZC (rj) — {+1,—1}, i€ RA +1
denotes articleOf 7§ is a correct instanceOf and -1 not. (2) SC(r§) — {+1, -1}, r§ € RE, +1
denotes subCategoryOf 15 is a correct subClassOf and -1 not.

4. Methodology

We conduct taxonomy derivation in three steps: (1) Network cleanup, a pre-processing step to
filter out meta-categories related to Wikipedia management; (2) Hypernymy classification, the
core step to learn both InstanceOf and SubClassOf classification; (3) Taxonomy induction, a
post-processing step to induce a globally-optimized taxonomy.

For network cleanup, we follow [9] to use several light-weighted rules. For taxonomy induction,
we follow [12] to use greedy selection strategies. These two steps are not our focus and will not
be unfold in this paper due to space limit.

For Hypernymy Classification, as shown in Figure 2, we learn three sub-tasks Knowledge
Embedding, InstanceOf Classification and SubClassOf Classification simultaneously in a multi-
task learning framework to fully incorporate the connections among instances and classes. For
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Figure 2: The overall framework.

Knowledge Embedding, we introduce an external knowledge graph with rich semantic relations
among instances. For InstanceOf and SubClassOf classification, they follow the same learning
process and model architecture. Specifically, we pretrain a coarse classifier based on the raw WCN
and a negative sampling strategy. According to the output of the classifier, we split the training
data into a reliable set and an unreliable set. Then, we use adversarial learning to iteratively
distill the two training sets and refine the classifier (i.e., the discriminator) through a min-max
game between the discriminator and sampler. In Section Coarse Pretraining and Adversarial
Refining, we take SubClassOf Classification as a representative to introduce the details. In
Section Multi-task Learning, we introduce the overall learning objective in the multi-task learning

framework.

4.1. Coarse Pretraining
The coarse pretraining aims to learn a coarse classifier to predict whether each relation in WCN

is a hypernymy.



4.1.1. Category Encoding

Firstly, we capture the semantics for each category from its word sequence. Specifically, given
the word sequence {wy, - - , w‘cj|} of category c; € C, we represent all words with their word
embeddings {wy, ..., Wi, | }, and then feed the embeddings into a neural encoder to obtain the
category representation c;. Without loss of generality, we select convolutional neural networks
(CNN) [29] as the neural encoder.

4.1.2. Hypernymy Encoding

Next, we encode each category pair in WCN to get the representations of hypernymy candidates.
Given arelation (c;, ¢i) € RC, we take their difference as the relation embedding T, c,- Formally,
we calculate the relation embedding with equation v, ., = ¢j — ci'.

4.1.3. Hypernymy Scoring

Finally, we learn a scoring function to predict whether a subCategoryOf relation is a correct
subClassOf. Given (cj, cx) € R, we measure its possibility of subClassOf relation by

S(Cj> cr) = U(er,Ck : rc)- (1)

where o (-) is the sigmoid function. . is a vector which is randomly initialized and to be learned.

We observe that most of subCategoryOf are correct subClassOf and most of subClassOf
are already contained in subCategoryOf. Due to the lack of supervised labels, we assume the
equivalence between the subClassOf set and subCategoryOf set to coarsely train our classifier,
and then enhance it in a finer granularity by multi-task adversarial learning which will be explained
in the following.

Specifically, let 2/(+) and 2/(~) be the positive and negative sample sets of the subClassOf
classifier. We have Ut) = RC and U7) = {(c¢;, cx)|cj, ek € C, (cj,cx) ¢ RE}. As there are
a huge amount of negative samples and most of them can be easily recognized, we design an
efficient negative sampling strategy to sample the most informative ones from /(~). Specifically,
for each category pair (cj, cx) € U (+), we choose (1) one reverse hypernymy pair for predicting
the directionality of hypernymy; (2) one co-hypernymy pair for distinguishing hAypernymy from
semantic relatedness relations; (3) one randomly corrupted pair for distinguishing hypernymy
from other relations. The loss function of coarse pretraining is:

Lo=— Z log (S(cj, ck))

(cjrcn)eU®)

- Z log (1 — S(¢j, ck)).

(Cj,ck)el/{(*>

2

"For InstanceOf Classification, given a relation (a;, cx) € RZ, the relation embedding Taje, = MLP(aj) — cy
where a; is the instance embedding initialized by Knowledge Embedding as will be introduced in Section Multi-
task Learning and M LP(-) is a multilayer perceptron to project the instance embedding to the space of category
embedding.



4.2. Adversarial Refining

The 2(+) and 2/(~) mentioned in the above section are coarse-grained because a critical mass of
samples are placed into the mistaken set. Inspired by [30, 31], we apply adversarial training to
iteratively distill &/(*) and 24(~) and refine the classifier.

According to the predicted score in Eq. (1), we choose the samples in /(*) whose scores are
higher than a threshold 7 to construct a reliable set u (H, and the remaining samples in U/ (+) and

2 to construct an unreliable set I/ (_). As shown in Figure 2, we design a discriminator and a

sampler to conduct an adversarial min-max game. Given a sample (c;, ¢ ), the discriminator aims
(+) or Z;{(*)

learns a probability P, (c;, c) for each sample of u (7), representing its chance of being a false

to learn a score function D(c;, ¢;;) to judge whether it is from u , while the sampler

negative. According to P, we select the most confusing negative samples from U =) to cheat
the discriminator. During training, the generator provides large amounts of latent noisy samples
to enhance the discriminator, and the discriminator influences the generator to select the more
informative samples. We also dynamically select the most informative and reliable samples from
the unreliable set to the reliable set. During the adversarial refining process, we can enhance the
classification capability of the discriminator. Formally, the objective of the min-max game can be
expressed as

min max(E

ninmax(E e [legD(cj ci)]

+ E(c‘j,ck)NPu [ZOg(l - D(ij Ck))])
Discriminator is transferred from the coarsely trained hypernymy classifier in Eq. 1:
D(cj,c) = U(’I‘C].’Ck . rc). 4

which will be further refined with adversarial loss.
Sampler aims to select samples from /" ° to cheat the discriminator according to P,, which is
calculated as,

3)

Q(cj7 Ck) =m:- er,ck + d7
exp (q(cj, cx)) )
2(05701;)65,(—) exp (q(cj, 7))

P,(cj,cr) =

where m and d are parameters.
By unfolding the min-max objective in Eq. 3, the adversarial loss for the discriminator is as
follows:

1
Lp=-— Z W log D(c;j, cx)
erenei® U]
(6)
- Z Pu(cjy ) log (1 — D(cj, cx))-
(cj-,ck)EZ:l(7>

And the adversarial loss for the sampler is:

Lg=— Z P,(cj, ci)log D(cj, ci). @)
(Cj,ck)EZ:{(i)



As we treat instanceOf and subClassOf separately, and adopt adversarial training for both of
them, the holistic adversarial training loss functions for instanceOf and subClassOf are:

£h=ch + ML 2§ =25+ 2\°c§. (8)

[,fj and E% are the discriminator loss functions for instanceOf and subClassOf respectively.
Similarly, L'é and L’g denote the sampler loss functions. A’ and A are the weighting factors.

4.3. Multi-task Learning

Besides distilling the training data and refining the classifiers through adversarial learning, we
further incorporate multi-task learning to enhance the hypernymy classifiers. The main idea is
that (1) InstanceOf Classification and SubClassOf Classification can mutually enhance each other
because instances and classes are highly correlated; (2) relational facts about instances provide
rich semantics which benefits Hypernymy Classification. Specifically, we learn three sub-tasks,
Knowledge Embedding, InstanceOf Classification, and SubClassOf Classification simultaneously
to integrate the instance-instance, instance-class and class-class information flow.

For Knowledge Embedding, we introduce a knowledge graph G, which expresses data as a
directed graph G = {Z,P, T }. Z, P and T indicate the sets of instances, predicates and triples
respectively. A score function K (h, p, t) is learned to measure the plausibility of (h, p,t) being
a legal triple, where h,t € Z,p € P. In this paper, we utilize TransE [32] as a representative,
whose scoring function is K (h,p,t) = —||h 4+ p — t|| where h, p, t are embeddings of instances
and predicates. We utilize a hinge loss function L, which is calculated as,

L = Z(h,p,weg Z(f"ufa,img

- ©)
max (0,7 + K (h, p,t) — K (h, . 1))
where 7 is a hyper-parameter denoting the margin.
Finally, the overall loss of multi-task learning is formalized as
L=Lyx+ oLl +arL§. (10)

Here, o1 and a» are two weighting factors. Specifically, instance embeddings are shared by
Knowledge Embedding and InstanceOf Classification. Class embeddings are shared by In-
stanceOf Classification and SubClassOf Classification. By jointly optimizing the shared pa-
rameters, we can fully integrate the connections among instances and classes and enhance the
hypernymy classifiers.

4.4. Model Training

First, we optimize the loss function L¢ in Eq. (2). Then, we use the coarsely trained model and

hyper-parameter 7 to construct u ) and U =) for adversarial training. In practice, we share
the parameters of the classifier (Eq. (2)) and discriminator (Eq. (6)) to warm up the adversarial
training process. Then, we optimize the multi-task learning loss function in Eq. (10). LE and E{g
are optimized alternately, with A\ integrated into the learning rate of ﬁg to avoid adjusting. L’%
and Eg take the similar optimization strategy. Instead of directly updating £, we optimize L,
£{4 and Ei alternatively.



Table 1
The statistics of Wikipedia dump and evaluation datasets.

Language Article Category ArticleOf SubCategoryOf

Wikipedia dump

English 5,139,414 13,80,351 25,841,897 3,416,766
French 2,033,360 372,208 6,661,384 814,539
[talian 1,406,807 361,728 2,394,169 683,477
Spanish 1,483,920 365,611 4,566,147 815,055
Evaluation datasets

ENT5k 5,989 5,983 27,696 19,857
French 200 187 862 430
Italian 200 184 1225 382
Spanish 200 200 706 438

Table 2
P* of the original WCN.

Language articleOf  subCategoryOf

English 97.0% 75.2%
French 72.0% 78.8%
ltalian 74.5% 76.2%
Spanish 81.4% 80.9%

5. Experiments

5.1. Datasets

As far as we know, previous datasets for TDWCN are all small datasets. For example, as shown
in Table 1, the datasets in MultiTax contain only about 200 articles and 200 categories. For better
evaluation, we create a large-scale English evaluation dataset ENTSk. Specifically, we use a 2018
snapshot of Wikipedia, select 7,000 articles and 7,000 categories from its WCN and then annotate
whether articleOf and subCategoryOf of sampled WCN are hypernymy or not. Each articleOf or
subCategoryOf is allocated to 5 highly-educated crowd-workers”. Only the ones consented by
more than 4 crowd-workers are kept to assure quality. Instead of selecting categories randomly,
we consider both the abstract ones such as “(Learning, Education)” and the specific ones such
as “(American Male Painters, American Painters)”, and select categories to cover diverse areas
such as people, society, geography, etc. Finally, ENT5k contains 5,989 articles, 5,983 categories,
27,696 articleOf and 19,857 subCategoryOf. As for the annotated results, for articleOf, the
incorrect relations make up 3.0% and for subCategoryOf, the incorrect make up 24.8%.

Inter-annotator agreement (Cohen’s Kappa) is 0.72



5.2. Baselines

As far as we know, our model is the first weakly-supervised method. We compare our method
with the following rule-based and supervised methods:

Heads [11], a rule-based method only designed for English.

MENTA [13], a rule-based method, links WordNet and Wikipedia of different languages into
a single taxonomy using heuristic rules.

MultiWiBi [10], a rule-based method, induces taxonomies for English, and then transfers
them to other languages using heuristic rules and inter-language links.

MultiTax [12], a supervised method, given an English taxonomy as a source taxonomy, first
constructs a supervised dataset for the target language using inter-language links and then trains
binary classifiers. MultiTax is not designed for inducing English taxonomy. Instead, it takes the
existing English taxonomy as input.

5.3. Model settings and Evaluation Metrics

We use pretrained 50-dimensional Glove [33] for English and 300-dimensional fasttext [34]
for other languages. For knowledge graph in Lx (Eq. (9)), we employ Wikidata [35] which is
closely related to WCN. The optimizer is selected through a grid search over { Adam, Adagrad,
SGD}. The learning rate is selected over {0.1, 0.01, 0.001}. The threshold 7¢ for subClassOf
and instanceOf are selected over {0.1, 0.2, - - -, 0.9}. The margin for Knowledge Embedding is
selected over {0.5, 1.0, 2.0, 3.0, 4.0, 5.0}. Finally, the optimizers for £§, £S, £L,, £L and L
are Adam, Adam, Adagrad, Adagrad and SGD respectively. The learning rate for them are 0.001,
0.001, 0.01, 0.01 and 0.1 respectively. The threshold 7C for subClassOf and instanceOf are both
0.9. The margin v for Knowledge Embedding is 1.0. The hidden size and sliding window size
for CNN are 50 and 3 respectively. MultiWiBi for non-English languages, MENTA and MultiTax
results are evaluated by [12]. Theoretically, for comparison on English for MultiWiBi and Heads,
it is best that we use the evaluation dataset of the corresponding old version. However, 2012
and 2015 snapshots of Wikipedia are not available (e.g., https://dumps.wikimedia.org/enwiki/
does not maintain the old versions of Wikipedia.). Therefore, it is a compromise that Heads
and MultiWiBi for English are evaluated based on ENT5k and their published taxonomies. For
French, Italian and Spanish, we use the small datasets with only 200 articles by [12]. For English,
we use ENTSk. The results of MENTA and MultiTax are not evaluated for English because: (1)
MultiTax is not designed for English. (2) For MENTA, the codes are not public and we can not
reproduce them because lots of details are missing in the papers.

For a fair comparison with the baselines, we follow the evaluation metrics used in Multi-
WiBi [10]: (1) Macro-precision (P*), the average ratio of the correct hypernyms to the total
number of hypernyms returned (per node in taxonomies); (2) Recall (R*), the ratio of the nodes
for which at least one correct hypernym is returned; (3) Coverage (C), the ratio of the nodes with
at least one hypernym returned irrespective of its correctness. Note that (1) P*, R* are different
from the conventional precision and recall; (2) F1 calculation of P* and R* is meaningless; (3)
The R* and C of the original WCN are 100%. The P* of the raw WCN is shown in Table 2
according to the annotated evaluation datasets.
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Table 3
Precision (P*), recall (R*) and coverage (C) scores. The top 2 results are in bold. The best
among ours and rule-based methods are also underlined.

Language Methods instanceOf subClassOf
p* R* C pP* R* C
English Heads 219 520 698 440 60.8 537
MultiwiBi  84.1 794 926 394 639 71.7
Ours 97.6 97.6 100 85.5 85.5 100
MENTA 814 488 59.8 826 55.0 657
French MultiwiBi 845 809 94.1 80.7 80.7 100
Ours 84.6 84.0 100 94.1 94.1 100

MultiTax 88.0 917 100 939 95.1 100

MENTA 79.7 532 66.7 771 254 328
Italian MultiwiBi  80.1 794 963 89.7 89.0 992

Ours 832 832 100 849 849 100
MultiTax 926 972 100 89.2 90.9 100

MENTA 81.0 429 527 805 542 664
Spanish MultiwiBi 87.0 82.0 93.7 848 844 100

Ours 85.7 857 100 949 949 100
MultiTax 934 963 100 929 95.1 100

5.4. Overall Performance

Table 3 shows the overall performance. From the table, we can observe that:

(1) For English, our model distinguishes the non-hypernymy from the original WCN and
improves P* by a large margin. It also surpasses Heads and MultiWiBi significantly, which
indicates that our neural model can outperform the rule-based method.

(2) For the non-English languages, our method significantly outperforms the rule-based models.
Even compared with the supervised model, our weakly-supervised model provides comparable
performance. Especially for subClassOYf, it even outperforms MultiTax slightly in French and
Spanish, indicating that weakly-supervised methods are promising and worth exploring in the
future.

(3) Our model performance for instanceOf is worse than that for subClassOf. A possible
reason is that infrequent instances cannot learn a good representation due to data sparsity. As
described in Section Coarse Pretraining, categories are represented by a textual encoder, but
most of the instances (e.g., “Donald Duck") are named entities whose semantics are beyond
the word sequence can describe. Instead, instance embeddings are randomly initialized and
further learned from the knowledge graph K by Knowledge Embedding. However, as previous
study shows [36, 37], the frequency of instances follows a pow-law distribution and most of the
instances are infrequent, which cannot learn a good representation and further harm InstanceOf



Classification. A reasonable solution is to utilize instance descriptions, which will be our future
work.

As shown in Table 2, the original WCNs for different languages vary a lot. For French, only
72.0% articleOf are correct, yet for English, 97% are correct. For English, improving InstanceOf
Classification is not easy but necessary because more than 25 million articleOf exist in WCN
and the number of invalid articleOf is 750k, which will harm SubClassOf Classification due to
error propagation.

Note that we propose the language-independent method to avoid excessive manual rules and
corpus labeling in the language-dependent method. Our focus is on reducing costs and improving
generalization ability, rather than claiming that our experimental results are definitely better than
theirs. Therefore, in the experiment, compared to language-dependent methods (which are based
on manual rules or corpus annotations), our model can achieve comparable results and be applied
generally to different languages without rules or annotations, showing the benefits of our method.

5.5. Ablation Study

In this section, we conduct ablation study to further investigate the proposed adversarial training
strategy and multi-task learning framework. Without loss of generality, we investigate the
subClassOf results on ENT5k. We refer to the coarsely trained classifier as BASE, the classifier
with adversarial training as BASE+ADYV, and the classifier with both adversarial training and
multi-task learning as BASE+ADV+MT. Further, we denote the BASE+ADV+MT model without
Knowledge Embedding as BASE+ADV+MT ™.

We use a variant of precision (P), recall (R), F1 score (I:“vl) and Area Under Curve (A/ITC) for
evaluation. Specifically, since we expect our model to find out as many true negatives as possible,

we employ P = (TNTEFN), R = (TNTJF\IFP), where TN, FN and FP denote true negative, false

negative and false positive results respectively. AUC is the area under the P-R curve. The overall
results are shown in Table 4.

The reasons that different metrics are used in the overall performance evaluation and the
ablation study are as follows: (1) the overall performance evaluation is to measure the quality of
taxonomy, while the ablation study is to investigate the effectiveness of hypernymy classification.
(2) the quality of our taxonomy is not merely determined by hypernymy classification, because
we conduct taxonomy derivation in three steps: network cleanup, hypernymy classification and
taxonomy induction. Therefore, in the ablation study, we use the precision, recall and F1 measures
for the classification model. While in the overall performance evaluation, we follow previous
work and use P*, R* and C. -

Effect of Adversarial Training. When we apply adversarial training, F'1 is improved by 3.6%

and AUC is improved by 3.9%, which indicates that adversarial training improves classification
performance and generalization ability.

We further conduct an in-depth study of the sampler. Examples in Table 5 show that, given a
hyponym and multiple candidate hypernyms, the sampler can reasonably calculate the probability
distribution and distinguish informative candidates from noisy ones. The informative data from
the sampler can further help to boost the performance of the discriminator, which explains the
improvement of BASE+ADV over BASE.



Table 4
Results of ablation study. From BASE to BASE+ADV, from BASE+ADV to BASE+ADV+MT~ and

from BASE+ADV+MT~ to BASE+ADV+MT, both F1 and AUC improvements were found to be
statistically significant using a two sample t test with p < 0.01.

Method P R F1 AUC
BASE 256 78.6 38.6 28.7
BASE+ADV 30.7 67.3 42.2(+3.60) 32.6(+3.90)

BASE+ADV+MT~ 295 80.7 43.2(+1.00) 34.8(+2.20)
BASE+ADV+MT  40.1 53.8 45.9(+2.70)  39.3(+4.50)

Table 5

The scores of hypernymy candidates for one hyponym by the sampler. Take “Royal families” as
an example. According to the sampler, the most informative candidate hypernym is “Political
families” and the most noisy one is “Oligarchs”, which is reasonable.

Royal families | Feminists

Political families  0.27 People by political orientation 0.24
Noble families 0.22 | People associated with identity politics  0.22
Monarchy 0.19 | People associated with feminism 0.21
Royalty 0.16 | Feminist movement 0.20
Oligarchs 0.16 | Feminism 0.13

Table 6
The comparison on the rank of candidate hypernyms between BASE+ADV and BASE+ADV+MT.
GT means ground truth.

BASE+ADV BASE+ADV+MT
Category GT | Category GT
Open-source movement
Collaboration x | Social movements v
Criticism of intellectual property x | Criticism of intellectual property X
Social movements v | Sharing X
Sharing X Collaboration X
Treasure hunters
Treasure troves X People by occupations v
People by occupation v | Treasure troves X
Treasure X Treasure X

Effect of Multi-task Learning. When we compare BASE+ADV+MT~ with BASE+ADY, F1
and AUC is improved by 1.0% and 2.2% respectively, demonstrating that InstanceOf and Sub-
ClassOf classification mutually enhance each other. When introducing Knowledge Embedding,
we achieve the best F1 and AUC compared with all the other models. Specifically, when we com-
pare BASE+ADV+MT with BASE+ADV+MT™, F1 and AUC is increased by 2.7% and 4.5%



respectively. This shows the relational facts among instances benefit Hypernymy Classification.
All the results demonstrate the effectiveness of our multi-task learning framework.

To further show the effectiveness of multi-task learning, we conduct a case study by comparing
BASE+ADV+MT with BASE+ADV. From Table 6 we can see that BASE+ADV+MT can produce
more reasonable results.

6. Conclusion

In this paper, we propose a language-independent model for TDWCN, which (1) designs an
adversarial learning approach to distill hypernymy relations from noisy raw Wikipedia without
the limitation of language dependencies; (2) incorporates multi-task learning to integrate the
information flow among instances and classes. In addition, we contribute a large-scale evaluation
dataset with 27k articleOf and 19k subCategoryOf for TDWCN. Experimental results on 4
different languages demonstrate that our model can be applied generally to different languages
and achieve better or comparable performance compared with previous language-dependent
approaches. Future work includes investigating instance embeddings, deriving taxonomies for
more languages and extracting domain-specific taxonomies based on our approach.
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