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Abstract  
Computational intelligence methods are widely used to solve many complex problems, including, of 
course, traditional: Data Mining and such new directions as Dynamic Data Mining, Data Stream Mining, 
Big Data Mining, Web Mining, Text Mining, etc. In the paper was proposed new adaptive on-line methods 
of fuzzy robust clustering-segmentation of data streams based on probabilistic, possibilistic and 
credibilistic approaches. Using proposed approach, it’s possible to solve clustering task in on-line mode 
when data are fed to processing sequentially, possible in real time. 
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1. Introduction 

The current state of technological development is inextricably linked with the development of 
computerized tools, which, in turn, are dependent on the mathematical apparatus and practical 
algorithms that use it. The development of computer tools, in particular hardware, acts as a 
catalyst for the development of existing and the emergence of new scientific fields, such as Data 
Science. Modern capabilities of computing environments allow the implementation of 
algorithmically sufficiently complex methods that are the basis of intellectual analysis. And this 
should become an impetus for the development of new hardware and software systems based on 
the theoretical principles of artificial intelligence. 

Recently, in the tasks of analyzing and processing non-stationary signals of an arbitrary nature 
under conditions of uncertainty, computational intelligence methods are increasingly being used, 
among which hybrid neural networks can be distinguished.  

By the task of data segmentation, we will understand the division of the data sample into 
homogeneous homomorphic segments based on the analysis of changes in the internal properties 
of the data. Currently, several segmentation methods are known, namely using wavelet analysis 
[1], fractal-wavelet technologies [2], neuro-fuzzy technologies [3-5], etc.  

Depending on the specifics of the problem being solved, two main types of forecasting and 
segmentation methods can be applied: real-time and batch. 

Many neural network architectures, including hybrid structures, are used to solve this kind of 
problems, but these systems are either cumbersome in their architecture or not sufficiently 
adapted for real-time learning. In most cases, the activation functions of such networks are 
sigmoidal functions, splines, polynomials, and radial basis functions. 
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2. Credibilistic fuzzy clustering 

Traditionally, the initial information for the clustering problem is a sample of observations 
consisting of N n - dimensional feature vectors: 

{ }(1), (2),..., ( ),..., ( ) ,X x x x k x N=  ( )1( ) ( ),..., ( ) ,T n
nx k x k x k R= ∈  k = 1, 2, …, N, 

and the result of the algorithm is the distribution of the initial data set into m classes with a certain 
level wj(k) belonging to the k-th feature vector of the j-th cluster.  

At the same time, there is a wide class of problems when the initial information comes not in 
vector, but in matrix form, i.e. 

1 2
( ) { ( )};i ix k x k=  

where i1 = 1, 2, …, n1, i2 = 1, 2, …, n2, k = 1, 2, …, N. Such situation is characteristic, for example, 
in image processing [6], when the initial (N1 × N2)-matrix is divided into N = N1N2(n1n2)-1 (n1 × n2) 
fragment matrices that are subject to clustering, because of which the homogeneous in some 
sense segments of this image. Traditionally, this problem is solved by preliminary vectorization 
of fragments and the use of already known procedures, the most popular of which is the method 
of clustering fuzzy C-means [6, 7]. 

To process matrix data, it is necessary to introduce matrix methods of clustering-
segmentation, for which it is advisable to introduce into consideration the matrix method of fuzzy 
C - means, which is a generalization of FCM. This method will avoid unnecessary vectorization-
devectorization operations when processing data given in the form of two-dimensional arrays 
and provides information processing in online mode. 

So, let the sample of observations be given 
1 2

1 2
( ) { ( )} ,n n

i ix k x k R ×= ∈  1,2,...,k N= , 

at the same time, for the convenience of further processing, these data are pre-centered relative 
to the average: 

1

1 ( )
N

k
x x k

N =

= ∑                                                                             (1) 

and normalized to its spherical norm (Frobenius norm): 

( )( ) ( ) ( ) .Tx k Tr x k x k=                                                                (2) 

The matrix probabilistic criterion is used as the objective function of clustering: 

( )2

1 1 1 1
( ( ), ) ( ) ( ( ), ) ( ) ( ( ) )( ( ) ) ,

N m N m
T

j j j j j j j
k j k j

E w k c w k D x k c w k Tr x k c x k cβ β

= = = =

= = − −∑∑ ∑∑         (3) 

in presence of constraints 
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By introducing the Lagrange function: 
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where λ(k) – uncertain Lagrange multiplier, and solving the system of Kuhn-Tucker equations: 

1 2

1

1

( ( ), , ( ))
( ) ( ( ), ) ( ) 0;

( )
( ( ), , ( ))

( ) 1 0;
( )

( ( ), , ( ))
2 ( )( ( ) ) O,

( )

j j
j j

j

m
j j

j
jj

N
j j

j j
kj

L w k c k
w k D x k c k

w k
L w k c k

w k
k

L w k c k
w k x k c

c k

β−

=

β

=

∂ λ = β + λ =
∂


∂ λ = − =

∂λ
 ∂ λ  = − − =  ∂  

∑

∑

 

where 
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 Ο  – matrix of the same dimension formed by zeros, thus, we arrive at the 

final form of the algorithm: 

1
2 1

1
2 1

1

11
2 1

1

1

1

( ( ( ), ))
( ) ;

( ( ( ), ))

( ) ( ( ), ) ;

( ) ( )
.

( )

j
j m

l
l

m

l
l

N

j
k

j N

j
k

D x k c
w k

D x k c

k D x k c

w k x k
c

w k

−β

−β

=

−β

−β

=

β

=

β

=




=




     λ = − β       




=



∑

∑

∑

∑

                                                                 (5) 

The resulting system gives rise to a wide class of clustering procedures. Thus, if we set β = 2, 
we get a simple and effective matrix clustering algorithm [8], which is a generalization of the 
popular procedure of J. Bezdek [6]: 
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                                                    (6) 

where Tr  – matrix trace symbol. 
The main difference between probabilistic and possibilistic approaches is that probabilistic 

algorithms use relative similarities between objects and clusters, while probabilistic algorithms 
use absolute similarities. 

Instead of the fuzzy partition matrix in the fuzzy C-means algorithm, the possible C-means 
algorithm uses a ( )N m× - matrix of possibilities or typicality matrix T = {tj(k)}, where tj(k) ∈ [0, 
1] – the possibility that the object x(k) belongs to cluster j. 



The possibilistic matrix has only the following limitations: 
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=
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This means that an object can have a feature vector that contains only values close to zero 
(usually such objects are considered noise) or only ones. 

Krishnapuram, Keller et al proposed the probabilistic C-means (PCM) algorithm and two 
algorithms that combine probabilistic and possibilistic approaches: the probabilistic-possibilistic 
C-means algorithm (FPCM) and the possibilistic-probabilistic C-means algorithm (PFCM) [9-11]. 

In the PCM algorithm, formula (6) was replaced by the expression: 
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                                        (8) 

where γj > 0 – a constant determined empirically. It can be seen that the calculation of the 
cluster prototype in formulas (6) and (8) is identical, with the only difference that the matrix of 
fuzzy partitioning is changed to the matrix of possibilities. The calculation of the possibility of an 
object belonging to a cluster in formula (8) can be justified as a bell-shaped function presented in  
Figure 1. 

 
Figure 1: A bell function showing the dependence between membership distances  
 

Keller and Krishnapuram suggested choosing the parameter γj in the form: 
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where K > 0 (most often K = 1). But calculations γj by formula (9) requires memory to store the 



fuzzy partition matrix, as well as time for its use.  
The PCM algorithm does a good job of suppressing interference and can usually be applied 

when it is necessary to improve the results obtained with the help of other algorithms. Also, this 
algorithm can merge close clusters into one, from which it follows that the initial number of 
clusters that was set in advance is too large (at the same time, the PCM algorithm can merge 
clusters that should be separated). 

The FPCM and PFCM algorithms use both a fuzzy partition matrix and a feature matrix, trying 
to take advantage of both approaches. 

The FPCM algorithm uses the following formulas: 
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where η > 0 (in most cases η = 2).  
The FPCM algorithm uses the standard procedure for calculating the fuzzy partition matrix, 

but the possibility matrix is calculated using a new formula. Cluster prototypes are calculated 
using the sum of both matrices. 

The PFCM method uses a standard procedure for calculating the fuzzy partition matrix (as in 
formula (6)). The procedure for calculating the possibility matrix was taken from PCM (8) and 
slightly modified. Centroids are calculated as in the FPCM algorithm, but both matrices have their 
own weights: 
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where a > 0, b > 0. The constants a and b determine the relative importance of the fuzzy 



partition matrix and the capability matrix in the centroid calculation function. By setting a = 0, 
algorithm (11) goes to PCM, and by setting b = 0, algorithm (11) goes to FCM. 

Analyzing all the presented methods, several conclusions can be drawn. First, the membership 
function of the FCM algorithm with its limitations is too "strong", allowing outlier objects to be 
assigned to one or more clusters, which, in turn, can greatly affect the underlying structure of the 
data set. On the other hand, the PCM method's constraint on the features is too weak – it allows 
to refer to a cluster independently of the rest of the data. Also, PCM is very sensitive to the 
initialization of the capability matrix. The PFCM method is an efficient combination of the two 
approaches, and the clustering results depend on the parameter setting a, b, β, η. 

Algorithm (6) can be extended to the case when data for processing are received sequentially 
in on-line mode. To do this, by applying the Arrow-Hurwitz-Uzawa saddle point search procedure 
to the Lagrangian (4), when the (k+1)th observation is received, the estimates of the membership 
levels and centroids can be refined using recurrence relations [12] 
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for an arbitrary value of the fuzzifier β and 
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for β = 2. 
It is easy to see that the expression (13) is an adaptive version of the procedure (4), and (13) 

is, accordingly, (6). 
The matrix credibility criterion is used as the objective function of clustering:  
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in presence of constraints 
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where ( )jCred k  - level of observation ( )x k credibility.  
In the procedures of credibilistic fuzzy clustering, the level of membership is determined by 

the membership functions [13]: 

( )( ) ( )( ) ( ), ( ( ) )( ( ) )T
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where jϕ  - decreases monotonically on the interval [0, ]∞  and with condition 
(0) 1, ( ) 0j jϕ ϕ= ∞ → . 
It is easy to see that membership level (16) using the distance is based on similarity measure 

[14]. As such a measure in [15], it was proposed to use a function: 
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Thus, if the fuzzy clustering algorithm in a batch form can be written as [16]: 
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in the online mode this procedure (18) has the form (19): 
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or in case when 2β =   
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It is easy to see that the recurrent fuzzy clustering algorithm is not more complex than the 
online modifications of probabilistic, possibilistic, and robust procedures [17, 18]. 

3. Experimental research 

Digital images, including satellite images of the city of Kharkiv, were used to test the implemented 
matrix credibilistic modifications of the clustering algorithm. Samples have no missing attributes 
and are numeric.  

The result of the algorithm is the final fuzzy partition matrix for all sample objects and class 
prototypes. 

When processing digital images, objects (matrices or vectors of the same dimensions) are 
formed from fragments of this image, and each pixel from the RGB (Red-Green-Blue) color model 
is converted to the Grayscale model, where the brightness of a pixel is expressed as a scalar value 
from the interval [0,1]. The conversion from the RGB model to the Grayscale model is performed 
according to the formula: 

(0.299 0.587 0.114 ) / 255Y R G B= + + , 

where Y is the brightness of the pixel glow, R, G, B are the brightness of the glow of red, green, 
and blue tones, respectively, the values of which are in the interval [0, 255]. 

Observation sets formed from digital images are processed according to the same principle 
as standard quantitative samples. After image processing, each cluster is assigned the colors of 
the Grayscale model, and each object is colored in the color of the nearest cluster. 

To evaluate the quality of the algorithm, the following criteria were used: Partition 
Coefficient (PC), Classification Entropy (CE), Partition Index (PI) with the same initialized fuzzy 
partition matrix U0.  

Table 1 shows the results of the accuracy and speed of the clustering algorithms on the Iris 
sample, and Table 2 shows the results of the satellite digital image of the city of Kharkiv. The time 
given is an average for one iteration, considering the vectorization-devectorization operation.  

 
Table 1 
Results of cluster analysis on the Iris sample 

Methods PC CE PI Time (c) 
FCM 0.531 0.811 12.19 0.003 
Matrix method of FCM 0.531 0.811 12.19 0.0025 
Matrix method of credibilistic clustering 0.530 0.811 12.18 0.0022 

 
 



Table 2 
The results of the cluster analysis on the digital image 

Methods PC CE PI Time (c) 
FCM 0.697 0.419 8.23 1.9 
Matrix method of FCM 0.697 0.419 8.23 1.8 
Matrix method of credibilistic clustering 0.695 0.419 8.22 1.8 

 
On Figure 2 show the initial image, the resampled sample (20% of objects) and the result of 

the cluster analysis and the process of the algorithm. 

     
(a)      (b)      (c) 

Figure 2: The result of clustering: (a) - Initial digital image for clustering; (b) - Refined sample 
(20% of objects) for clustering; (c) - Output image of cluster analysis 

 
On Figure 3 shows the result of digital image clustering by the adaptive matrix mrthod of fuzzy 

credibilistic clustering. 

 
Figure 3: Output image after adaptive cluster analysis 
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