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Abstract 
An important problem that arises when processing large amounts of observations is data compression 
to highlight the most essential information and identify certain latent factors that implicitly determine 
the nature of the phenomenon being studied. One of the most effective approaches to solving this 
problem is the apparatus of factor analysis, which has found wide application in problems of processing 
empirical data in various fields. 
Fuzzy clustering is a popular approach for soft data partitioning, its use always encounters difficulties 
in solving the problems of processing high-dimensional real data with complex hidden distributions. 
This paper proposes a disclosure of a kind of stack fuzzy clustering method where the data is 
represented in a new feature space created by a staking neural network. This approach aims to 
overcome the challenges associated with processing complex data and can bring significant 
improvements in the quality of clustering. 
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1. Introduction 

Clustering is a technique in machine learning and data analysis that involves grouping a set of 
data points into subsets, or clusters, based on the similarity between them. Fuzzy clustering is a 
variation of traditional clustering methods that allows for more flexible and nuanced assignments 
of data points to clusters [1-5]. In contrast, fuzzy clustering allows data points to belong to 
multiple clusters simultaneously with varying degrees of membership. This reflects the inherent 
uncertainty or ambiguity present in real-world data. 

The Fuzzy C-Means (FCM) algorithm, proposed by James Bezdek in 1973, is a prominent 
method in fuzzy clustering [6]. FCM assigns membership degrees to data points, indicating the 
likelihood of each point belonging to different clusters. This flexibility makes fuzzy clustering 
particularly useful in scenarios where data points may exhibit overlapping characteristics or 
uncertainty in their categorization.  

Over the years, fuzzy clustering has found applications in diverse fields, including pattern 
recognition, image processing, and Data Mining. Researchers have developed various extensions 
and enhancements to the original FCM algorithm, addressing specific challenges and improving 
its adaptability to different data patterns. 

The validity of fuzzy clustering solutions became a key focus, leading to the introduction of 
indices to assess the quality of clustering results. These indices help researchers and practitioners 
evaluate the effectiveness of fuzzy clustering algorithms in capturing meaningful patterns within 
datasets. 

The evolution of fuzzy clustering has seen ongoing advancements, with researchers exploring 
sophisticated membership functions and integrating fuzzy clustering with other machine 
learning techniques. This integration has expanded the capabilities of fuzzy clustering, making it 
applicable to complex problems in large-scale data analysis. 
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The era of big data has significantly influenced the field of clustering, including traditional 
clustering methods and the development of fuzzy clustering techniques. Deep learning in big data 
represents a powerful combination that has transformed various fields by enabling more 
sophisticated analysis, pattern recognition, and decision-making capabilities. 

Recently, there has been significant research into leveraging deep learning to uncover 
meaningful data representations through neural networks. A notable area of exploration involves 
the integration of unsupervised clustering algorithms with stack neural networks. This synergy 
has become a vibrant field of research, aiming to jointly optimize the performance of deep 
learning models and clustering algorithms. 

The goal of the work is propose the stack neuro-fuzzy system for Data Stream Mining using 
credibilistic approach and designed to work both in batch and its recurrent online version. 

2. Neural Network Data Compression  

An important problem that arises when processing large amounts of observations is data 
compression to highlight the most essential information and identify certain latent factors that 
implicitly determine the nature of the phenomenon being studied. One of the most effective 
approaches to solving this problem is the apparatus of factor analysis [7], which has found wide 
application in problems of processing empirical data in various fields: psychology, sociology, 
technology, economics, medicine, criminology, etc. 

The basic idea of factor analysis, which allows for the presence of a priori unknown hidden 
factors, leads to the following informal task: by observing a large number of measured 
parameters (indicators), identify a small number of parameter-factors that mainly determine the 
behavior of the measured parameters, or in other words: knowing the values of a large number 
of measured functions parameters, set the appropriate values of the factor arguments common 
to all functions and restore the form of these functions. 

The initial information for factor analysis is the ( )N n×  observation matrix: 
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that formed by an array of N n-th dimensional vectors ( )1 2( ) , ,..., T
Nx k x x x=  and autocorrelation 
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vectors of measured indicators centered relative to the average of the data array. 
One of the most common and effective methods for finding factors is the principal component 

method or component analysis, which is widely used in problems of data compression, pattern 
recognition, coding, image processing, spectral analysis, etc. and known in pattern recognition 
theory as the Karhunen-Loeve transform. 

The task of component analysis is to project data vectors from the original n-dimensional 
space into a m-dimensional one ( )m n<  space of principal components and reduces to searching 
for a system 1 2, ,..., mw w w  orthonormal eigenvectors of the matrix ( )R N  such that 

1 11 12 1( , ,..., )T
nw w w w=  corresponds to the largest eigenvalue 1λ  matrix ( )R N , 2w  - second largest 

eigenvalue 2λ , etc. In other words, the problem comes down to finding solutions to the matrix 



equation: 
( )( ) 0j n jR N I wλ− =  

such, that 1 2 ... 0mλ λ λ ε≥ ≥ ≥ ≥ ≥  and 1jw = .  

The dimension of the space of principal components m is determined, as a rule, from 
empirical considerations and the required degree of compression of the data array.  

Thus, in algebraic terms, solving a factor problem is closely related to the problem of 
eigenvalues and finding the rank of the correlation matrix; in a geometric sense, this is the 
problem of moving to a lower-dimensional space with minimal loss of information; in a statistical 
sense, this is the problem of finding a set of orthonormal vectors in the input space that “accept” 
the maximum possible variation of the data, and finally, in an algorithmic sense, this is the 
problem of sequentially determining a set of eigenvectors 1 2, ,..., mw w w  by optimizing a set of local 
criteria that form a global objective function 
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by solving a nonlinear programming problem using uncertain Lagrange multipliers.  
However, if data processing must be carried out in real time, neural network technologies 

come to the fore, among which the self-learning rule and E. Oya’s neuron should be noted. 
It is with the help of Oya's rule in the form: 
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the first principal component can be isolated. 
Next, following the procedure of standard principal component analysis, from each vector 

( ),  1,2,...,x k k N=  its projection onto the first principal component is subtracted and the first 
principal component of the differences is calculated, which is the second principal component of 
the original data and the orthonormal first. The third principal component is calculated by 
projecting each original vector ( )x k  into the first two components, subtracting this projection 
from ( )x k  and finding the first principal component of the differences, which is the third principal 
component of the original data array. The remaining principal components are calculated 
recursively according to the described strategy.  

It is this idea of recursive calculation of principal components that forms the basis of the 
algorithm proposed by T. Sanger [8] and in a modified form having the form [9] 
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It is easy to see that the first principal component is calculated using the Oya algorithm, then 
the projection of the input vectors onto 1( )w k  are subtracted from the inputs and the differences 
are processed by the next neuron, etc.  

 

 
Figure 1: T. Sanger neural network 



In Fig. 1 shows a diagram of a modified artificial T. Sanger’s neural network, composed of  
E. Oya’s neurons and implementing the algorithm (6). 

The first layer of the network is formed by encoder neurons that pre-process signals by 
centering and normalizing them. Further signals 1 2( ), ( ),..., ( )nx k x k x k    are processed in the second 
hidden layer formed by E. Oya's neurons, after which they are sent to the output layer formed by 
elements with activation rectifier functions with a dead zone 
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which allows you to highlight informative signals ( )jy k  and filter out the noise. 
The Sanger neural network is an effective means of compressing information with minimal 

loss of accuracy, but its capabilities are limited by the fact that, implementing essentially the 
standard technique of factor analysis, it solves a linear problem, while the main advantage of 
neural network technologies is the ability to work in purely nonlinear situations. 

The problem of nonlinear factor analysis can be effectively solved using credibilistic theory 
and clustering analysis. 

3. Fuzzy credibilistic clustering 

Alternatively, to probabilistic and possibilistic procedures [10] it was introduced credibilistic 
fuzzy clustering approach using as its basis the credibility theory [11] and is largely devoid of the 
drawbacks of known methods. 

The most common approach within the framework of probabilistic fuzzy clustering is 
associated with minimizing the goal function [12-14].  
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Solution of nonlinear programming problem using the method of Lagrange indefinite 
multipliers leads to the well-known result [9, 11, 15]: 
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coinciding with 2β =  a popular method of Fuzzy C-Means of J. Bezdek (FCM) [6]. 
If the data are fed to processing sequentially, the solution of the nonlinear programming 

problem (8), (9) using the Arrow-Hurwitz-Uzawa algorithm leads to an online procedure: 
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The goal function of credibilistic fuzzy clustering has the form [6, 11] close to (8) 
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It should be noted that the goal functions (8) and (12) are similar and that there are no rigid 
probabilistic constraints in (13) on the sum of the membership in (9). 

In the procedures of credibilistic clustering, there is also the concept of fuzzy membership, 
which is calculated using the neighborhood function of the form: 

( )( )( ) ( ),q q qu k d x k cϕ=                                                              (14) 

monotonically decreasing on the interval [0, ]∞  so that (0) 1, ( ) 0.q qϕ ϕ= ∞ →   
Such a function is essentially an empirical similarity measure of [13, 15, 16] related to distance 

by the relation: 
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Note also that earlier it was shown in [14] that the first relation (10) for 2β =  can be rewritten 
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which is a generalization of the function (15) (for 2 1qσ =  (15) coincides with (17)) and satisfies 
all the conditions for (14). 



In batch form the algorithm of credibilistic fuzzy clustering in the accepted notation can be 
written as  
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and in the online mode, considering (16), (17): 
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From the point of view of computational implementation, algorithm (19) is not more 
complicated than procedure (11) and, in the general case, is its generalization to the case of 
credibilistic approach to fuzzy clustering. 

4. Experimental research 

Conducting experimental studies and comparative analysis of the quality of data clustering using 
various metrics allows you to objectively assess the effectiveness of the developed method in 
accordance with analogues. To estimate the quality of the method we used quality criteria 
partitioning into clusters such as [3, 6]:  

− Partition Coefficient (PC);  
− Classification Entropy (CE);  
− Partition Index (SC);  
− Separation Index (S); 
− Xie and Beni's Index (XB);  
− Dunn's Index (DI). 

Partition Coefficient (PC): measures the amount of "overlapping" between clusters. 
Classification Entropy (CE): it measures the fuzzyness of the cluster partition only, which is 

similar to the Partition Coefficient. 
Partition Index (SC): is the ratio of the sum of compactness and separation of the clusters. It is 

a sum of individual cluster validity measures normalized through division by the fuzzy cardinality 



of each cluster. SC is useful when comparing different partitions having equal number of clusters. 
A lower value of SC indicates a better partition. 

Separation Index (S): on the contrary of partition index (SC), the separation index uses a 
minimum-distance separation for partition validity. 

Xie and Beni's Index (XB): it aims to quantify the ratio of the total variation within clusters and 
the separation of clusters. The optimal number of clusters should minimize the value of the index. 

Dunn's Index (DI): this index is originally proposed to use at the identification of "compact and 
well separated clusters".  

So the result of the clustering has to be recalculated as it was a hard partition method. The 
specific information of the data sets is shown in Table 1.  

 
Table 1  
Information of the data dets 

Data set Observations Clusters 
Parkinson’s telemonitoring 5875 21 
Superconductor temperature prediction 10000 81 

 
Table 2  
Results of experiments for Parkinson’s telemonitoring data set 
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Table 3  
Results of experiments for Superconductor data set 

Methods CE SC S XB DI PC CE 

Online Stack Fuzzy Credibilistic Clustering for Data 
Stream Mining 
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Table 4 
A comparison of accuracy 

Data  Methods 
Accuracy 

Highest Mean 

Parkinson’s 
telemonitoring 

Online Stack Fuzzy Credibilistic Clustering 
for Data Stream Mining 

61.68 60.98 

SOM based on possibilistic fuzzy clustering 61.75 61.30 
SOM based on probabilistic fuzzy clustering 62.68 62.98 

Superconductor 
temperature 

prediction 

Online Stack Fuzzy Credibilistic Clustering 
for Data Stream Mining 63.27 58.45 

SOM based on possibilistic fuzzy clustering 64.68 55.55 
SOM based on probabilistic fuzzy clustering 65.45 57.33 

 
Table 5  
Comparative characteristics of the average error with different number of observations (%) 

Algorithm 50 t  100 t 150 t 
FCM 1.62 1.19 1.35 2.55 0.98 3.03 

SOM based on 
probabilistic fuzzy 

clustering 
1.66 1.62 1.32 2.72 0.99 3.12 

SOM based on 
possibilistic fuzzy 

clustering 
1.22 1.15 1.02 2.02 0.75 2.10 

Online Stack Fuzzy 
Credibilistic Clustering 
for Data Stream Mining 

0.68 1.00 0.45 1.25 0.12 1.33 

5. Discussions 

Upon analyzing the results acquired, it can be inferred that irrespective of the volume of the initial 
data provided, the processing through the proposed method exhibits comparable speed and 
clustering quality when contrasted with established clustering algorithms and methodologies. 

The obtained results confirm that the performance stack neuro-fuzzy system is better than 
other network structures, and it can be a viable structure for Data Stream Mining. 

The results of accuracy that demonstrated in Table 4 confirm that proposed method online 
stack fuzzy credibilistic clustering for Data Stream Mining time more superiority regardless of 
the number observations that are fed on clustering process.  

Based on the experimental findings, it is advisable to endorse the proposed system for 
practical application in addressing the challenges associated with automatic clustering of large 
datasets. 

6. Conclusion 

The problem of fuzzy clustering of data streams by stack neuro-fuzzy system is considered. In the 
paper was proposed the stack neuro-fuzzy system for Data Stream Mining using credibilistic 
approach and designed to work both in batch and its recurrent online version.  

The network shows that stack structures based on fuzzy models can be applicable in data 
clustering. The proposed stack neuro-fuzzy system is quite simple in numerical implementation 
and can use the well-known online fuzzy clustering methods intended for solving Data Stream 
Mining problems. 



Future research endeavors could explore the potential of employing stack neuro-fuzzy 
systems for fuzzy clustering of data streams, aiming to address the complexities inherent in 
automatic clustering of big data. 
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