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Abstract
Emerging trends are leveraging the potential of the edge-cloud continuum to foster the creation of smart
services capable of adapting to the dynamic nature of modern computing landscapes. This adaptation is
achievable through two primary methods: by leveraging the underlying architecture to refine machine
learning algorithms, and by implementing machine learning algorithms to optimize the distribution
of resources and services intelligently. This paper explores the latter approach, focusing on recent
advancements in pulverized architecture, collective intelligence, and many-agent reinforcement learning
systems. This novel trend, which we refer to as intelligent pulverized system (IPS), aims to create a new
generation of services that can adapt to the complex and dynamic nature of the edge-cloud continuum.
Our proposed learning framework integrates many-agent reinforcement learning, graph neural networks,
and aggregate computing to create intelligent services tailored for this environment. We discuss the
application of this framework across different levels of the pulverization model, illustrating its potential
to enhance the adaptability and efficiency of services within the edge-cloud continuum.
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1. Introduction

Recent technological developments are fostering a computational landscape that is increasingly
articulated and complex across various levels. The historical distinction between cloud, fog,
and edge computing is becoming progressively blurred, giving rise to what is known as the
edge-cloud continuum (ECC) [1, 2]. This shift is driven by the necessity for services developed
on these platforms to be highly opportunistic, capable of dynamically moving up and down the
continuum based on local needs and computational requirements.

The ECC is a valuable resource for creating intelligent services that leverage recent advance-
ments in machine learning [3]. These services must be able to utilize the continuum’s full
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potential by adapting to the changing conditions and demands of the environment. Furthermore,
making the continuum itself more intelligent is essential for developing complex applications,
particularly those that are collective in nature. Modern applications, such as those in perva-
sive [4], collective [5], and ubiquitous [6] computing, often require collective computations
rather than mere local computations. Examples include applications for crowd control, traffic
management, and energy monitoring [7, 8]. These scenarios highlight the need for a holistic
view of the system rather than just local optimizations.

This paper proposes a new vision of intelligent pulverized system (ISP) for creating a smarter
ECC by leveraging recent developments in many-agent reinforcement learning [9], pulveriza-
tion [10, 11], and macroprogramming [12]. Pulverization is a modern approach that describes
collective computations capable of being “broken down” and distributed across multiple hosts,
which is crucial for fully exploiting the continuum [10]. Additionally, we explore how macropro-
gramming approaches can effectively capture the collective aspect of these systems, providing
a comprehensive framework for intelligent service development within the ECC [12]. This
structured approach aims to enhance the intelligence of the ECC, enabling the development of
sophisticated, adaptive, and collective applications that can efficiently utilize the continuum’s
capabilities.

The rest of the paper is structured as follows: Section 2 provides an overview of the edge-
cloud continuum, its characteristics, and the concept of pulverization; Section 3 discusses the
integration of many-agent reinforcement learning, GNNs, and aggregate computing to develop
intelligent services; Section 4 details the application of intelligent collective services to various
levels of pulverization, including intelligent reconfiguration, adaptive communication, and
scheduling; and Section 5 summarizes our findings and outlines potential future directions for
research in this area.

2. Background

2.1. Edge-Cloud Continuum

The rapid adoption of cloud technologies was driven by the benefit of having high availability,
and scalability of computational resources. The rise of cloud computing has led to the prolifer-
ation of new applications involving smart devices; these applications are typically reified in
the Internet of Things (IoT) [13] and Cyber-Physical System (CPS) [14] domains. To meet the
increasing demand of low-latency and high-throughput of such applications, the edge comput-
ing [15] paradigm has been introduced, to bring computational resources closer to end users,
thus reducing latency and network traffic.

In this context, the highly distributed nature of such applications and the vast amount of
generated data have driven the shift from a centralized cloud computing paradigm to a more
distributed model, where the cloud is integrated with the edge. Such integration gave rise to a
new, hybrid paradigm, called edge-cloud continuum [1, 2]. Depending on the specific scenario
and scope, the Edge-Cloud Continuum (ECC) can have slightly different meanings [2]. Generally,
the ECC refers to a distributed computing environment that extends from the cloud to the edge,
where this continuum can be effectively leveraged to optimize metrics and quality of service.

This new paradigm is characterized by a high level of heterogeneity in terms of devices,



networks, and services. Consequently, various types of hardware devices are part of the
continuum, ranging from high-end servers to wearable or embedded devices equipped with
microcontrollers. Ideally, any devices equipped with a computational unit and a network
connection can be part of the continuum.

This paradigm includes diverse hardware and software stacks (e.g., Linux, embedded firmware,
Android Wear, Docker), and various network technologies (e.g., Ethernet, WiFi, ZigBee, LoRa,
5G/6G), making the ECC a highly heterogeneous and dynamic environment, challenging to
manage in terms of resource allocation and service deployment. While the continuum offers new
possibilities to optimize the performance of applications, the complexity of the environment
makes it difficult to fully exploit the full potential of the ECC, fostering the need for novel
intelligent solutions.

The rapid increase in data volumes from various applications is driving the evolution of
distributed digital infrastructures for data analytics and Machine Learning (ML). Traditionally
reliant on cloud infrastructures, the need for low-latency and secure processing has shifted
some processing to IoT edge devices, finding in the ECC a prominent solution for the distributed
intelligence [3].

2.2. Macroprogramming

When dealing with large-scale systems, such as ECC, it is helpful to shift the focus from
individual devices to the collective system, as the behavior of the system as a whole is more
important than the behavior of individual devices. Consider, for example, a crowd congestion
alarm system. In this case, each smartphone could be part of an ECC system aimed at identifying
crowded areas and intelligently guiding the crowd to disperse, thereby avoiding emergencies.
Programming such behavior with a device-centric view is complicated because the collective
paradigm is not incorporated at that level. In this direction, a modern area of research aims to
change the programmer’s focus from the device to the aggregate. This area of research is called
macroprogramming [12], which has its roots in Wireless Sensor Networks (WSN) [16] and has
evolved to be used in opportunistic edge computing contexts today [17].

The core of macroprogramming lies in identifying a collective abstraction that then becomes
a first-class citizen of the programming language. Various languages have been defined in this
scenario, but most of them are designed for specific applications (e.g., PyoT for IoT [18] and
Buzz [19] for robotics). A modern approach to macroprogramming is aggregate computing [20],
which is a functional top-down global-to-local paradigm that allows defining collective behaviors
through the manipulation of a distributed data structure called computational fields. This macro
view is then broken down into local executions of individual devices, which, by computing
iteratively and continuously, achieve the specified collective behavior.

Aggregate computing has been used in the context of ECC to create additive behaviors based
on devices’ location in space [12]. In this paper, however, we will focus on using this collective
abstraction to better guide machine learning in the ECC context. Indeed, aggregate computing
was shown to be a powerful tool to guide machine learning in the context of large-scale
distributed systems [21, 22, 23].
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Figure 1: Representation of the different levels of a pulverized system. On the left side, the three
abstraction levels: the logical layer, the physical layer, and the infrastructure layer. On the right side,
the logical device pulverized into the five subcomponents.

2.3. Pulverization

Pulverization [10, 11] is an approach to simplify the design and deployment of (collective)
distributed applications, by devising a peculiar partitioning into independently deployable
components. The main goal is to provide the developer with a way to specify the application
logic in a deployment-agnostic way, and let the platform/middleware take care of the deployment
and the communication between the components.

In this context, this approach mainly targets the deployment of collective applications,
where through macroprogramming, the application is designed as a composition of collective
components (collective layer depicted in Figure 1). To achieve this, the pulverization model
defines two main abstraction levels: the logical layer and the physical layer, as depicted in Figure 1.
The former is the level at which the developer reasons about the application logic, while the
latter is the level at which the specified application is deployed and executed.

System Model at the logical level, the developer specifies the application as an ensemble
of application-specific devices forming an arbitrary topology. An application-specific device
can be “pulverized” if it can be decomposed into pulverized components representing: a set of
sensors (𝜎), a set of actuators (𝛼), a state holding the device’s knowledge (𝜅), a communication
component to interact with other devices (𝜒), and a behavior component defining the device’s
logic (𝛽). The Figure 1 shows a logical device pulverized into the five subcomponents (right side
of the figure).

Typically, the logical layer is composed of several (hundreds or thousands) devices forming
a dynamic graph. Each logical device has a neighborhood with which it can interact. Such
neighbourhoods can vary over and the way the neighborhood is defined can be application-
specific (like proximity-based of based on physical connections). In pulverized system, the 𝜒
component is in charge of managing the communication between the devices, implementing
the neighborhood definition and the message exchange.



Execution Model the components interact with each other to perform a MAPE-K like loop:
the sensors (𝜎) collect data from the environment and the neighbour’s messages are received
by the communication component (𝜒), the behavior component (𝛽) applies the logic taking
as input the state (𝜅) and the data from the sensors (𝜎), and the neighbor’s messages. The
produced output contains the new state (𝜅), the messages to be sent to the neighbors via the
communication component (𝜒), and the prescriptive actions to be executed by the actuators (𝛼).

Notably, the flexibility of this model allows the implementation of such an interaction loop
in many ways. The most common way to implement this interaction is via a round-based
execution model, where each component at fixed intervals sends and/or receives messages
from the other components. However, more complex implementation can be devised, like a
pure reactive model where the components react to the messages received without a fixed
schedule; in this case, the 𝛽 component leads (intelligently) the interaction loop. Another way
to implement such a loop is to adopt a “best-effort” approach, where all components requiring
input from the other components compute their logic against the most recent available data.

Flexible pulverized Deployments for the ECC The pulverization approach is particularly
suitable for collective applications, enabling non-trivial deployments. When macroprogramming
like aggregate computing [20] are used, the pulverization model naturally integrates with them,
simplifying development, especially in ECC infrastructures. Otherwise, the pulverization can
be exploited to design custom systems with the pulverization in mind.

Whenever an application is pulverized, a deployment mapping must be provided between
the logical and the infrastructure levels. Typically, in this mapping, a logical device is typically
deployed on either multiple physical devices or a single one. A logical device is often associated
with an application-level physical device that needs to be managed or controlled (e.g., a sensor,
a drone, or a person equipped with wearables). However, the capabilities of that physical
device might not be enough to host all the components, and the pulverization might require
the deployment of the components on different physical devices, namely infrastructure-level
devices. The main advantage of pulverization is enabling many deployments without affecting
or changing the application logic. Thanks to this feature, a system can be deployed on arbitrary
infrastructural devices as long as they provide the required capabilities to host the components
(for example, a sensor component can be executed only on devices hosting the appropriate sen-
sors, and the behavior component can be allocated on that host having sufficient computational
power). In this sense, the ECC can be exploited to opportunistically allocate the components
making possible deployments otherwise impossible.

2.4. Machine Learning for ECC

The emergence of the edge-cloud continuum offers significant potential for the development of
new intelligent systems, particularly for applications that rely on machine learning techniques.
In the following, we provide the current state of the art in the field of machine learning for the
edge-cloud continuum.

ECC for ML Applications ECC has attracted significant attention from the ML community:
highly distributed networks composed of devices capable of generating a large amount of data



can provide new resources to enhance the quality of ML models. However, these devices often
have limited computing resources and latency constraints that prevent both local learning
and offloading learning tasks to cloud servers. Conversely, the ECC provides a great platform
with edge servers that add computational resources close to where the data is generated. In
recent years, several studies in the literature have proposed leveraging these new resources,
for instance: i) Real-time video streaming analysis for applications such as traffic control,
surveillance, security, and real-time object detection [24, 25, 26]; ii) Smart vehicular systems for
pedestrian recognition and crash detection [8, 27]; and iii) Smart cities for energy management
and fault detection [7, 28].

Machine Learning for ECC machine learning can be exploited to optimize the deployment of
services in the ECC, since leveraging its potential in real-life scenarios is a non-trivial task. The
devices are heterogeneous and have multiple constraints (e.g., energy, latency, computational
power). For this reason, it is essential to adapt the deployment dynamically and opportunisti-
cally. In the literature, several approaches based on heuristics and meta-heuristics have been
proposed [29, 30, 31]; nonetheless, these solutions are crafted for specific use cases and do not
adapt over time. In recent years, solutions based on supervised learning techniques [32, 33, 34]
have been proposed to predict the characteristics of microservices in order to find solutions that
meet various constraints such as quality of service and energy consumption. This approach
requires a vast amount of data that represents the various possible states of the system and
the possible actions to be taken, which is challenging given the complexity of these systems.
For these reasons, reinforcement learning techniques are emerging as a natural approach. This
paradigm allows the optimization of the decision-making process by observing the evolution
of the system over time, without the initial need to collect a large amount of data. In [35] the
authors introduce a solution based on deep reinforcement learning (specifically using a Dueling
DQN model [36]) to optimize the deployment of microservices. Initially, the global state of the
system is observed (i.e., CPU usage, memory, and network bandwidth). These observations are
then passed to the neural network, which predicts end-to-end latency and peak throughput for
each possible action, thereby defining a new resource partitioning. The work in [37], instead,
proposes a solution based on distributed deep reinforcement learning (using an actor-critic
model) to address the task offloading problem, i.e., deciding which available device will execute
a certain task. To achieve this, tasks are divided into three categories, namely: i) delay-sensitive
tasks; ii) energy-sensitive tasks; and iii) insensitive tasks. At this point, each device runs its
actor network to decide whether a task can be executed locally, on an edge server or in the cloud.
Finally, a centralized critic network evaluates the actions taken by the various devices, providing
feedback on their effectiveness. In addition to the aforementioned studies, other works leverage
reinforcement learning for various optimization tasks in the ECC. For instance, [38] employs
offline RL for task scheduling, [39] uses RL to optimize data caching in edge servers, and [40]
applies RL to enhance network resource allocation.



3. Intelligent Collective Services for ECC

The pulverization model proposes logical systems in which a series of logical entities form a
dynamic graph that exposes the following properties:

• large scale: an ECC system can be extensively scaled to encompass thousands of devices;

• locality: edge devices are spatially located, and their behavior may depend on their
location;

• partial observability: edge devices do not have a perception of the entire collective but
can perceive a certain neighborhood or aggregated information;

• heterogeneity: devices belonging to ECC are highly heterogeneous due to their diverse
nature.

Applying standard supervised learning techniques to ECC services is challenging because
it is difficult to determine the correct behavior a priori, given the highly dynamic nature of
these systems. Therefore, considering these properties, we argue that a combination of many-
agent reinforcement learning [9] (to encode large-scale dynamics), graph neural networks [41]
(to encode spatial relationships), and aggregate computing (to encode collective feedback and
observations) can be a suitable approach for developing intelligent services for ECC. In particular,
many-agent reinforcement learning plays a crucial role in ECC, as it enables scalable policy
learning and influences behavior through delayed collective feedback.

In the following, we introduce both many-agent reinforcement learning and graph neural
networks, and then discuss the proposed algorithm for developing intelligent services for ECC.

3.1. Formalization

Many-Agent Reinforcement Learning is an extension of reinforcement learning in which,
instead of having a single learning agent, there is an entire family of intelligent agents that learn
concurrently. They are referred to as “many-agent” to distinguish them from “multi-agent”,
as the number of devices can be extremely large, potentially involving thousands of devices.
Formally, a many-agent system can be modeled through a family of agent A = (𝒮,𝒪,𝒜,ℛ, 𝜋)
that lives and interact in an environment ℰ = (𝒫,A, 𝒯 , 𝜉) [42]. Particularly, the agent A is
defined by:

• 𝒮 , 𝒪, and 𝒜 represent the sets of local states, observations, and actions, respectively.

• ℛ : 𝒮 → R is the reward function, influenced by the environment.

• 𝜋 : 𝒪 → 𝒜 is the policy mapping observations to actions, which can be deterministic or
stochastic.

Where the environment ℰ is defined by:

• 𝒫 is the fixed population of agents.



• A is the agent prototype governing each agent in 𝒫 .

• 𝒯 : 𝒮 × 𝒜𝒫 × 𝒮 → R𝒫 is the global transition function influenced by agent actions,
yielding a collective reward.

• 𝜉 : 𝒮 → 𝒪𝒫 is the global observation model.

The system’s evolution over time can be captured as follows:

𝒜𝒫
𝑡 = 𝜋(𝜉(𝒮𝑡)), 𝒮𝑡+1 = 𝒯 (𝒮𝑡,𝒜𝑡)

At any given time 𝑡, the system can be represented as a graph 𝐺𝑡 = (𝑉 𝑡, 𝐸𝑡), where 𝐸𝑡 is
constructed from a neighborhood relationship. Each node has an associated local observation
𝑜𝑣𝑡 ∈ 𝒪. This graph representation is crucial for both computing computational fields and
serving as input for a GNN, as demonstrated in previous works [43, 44, 45, 21].

Graph Neural Network is a novel neural network model designed to process graph-
structured data [41]. Given a graph 𝐺 = (𝑉,𝐸), where 𝑉 is the set of nodes and 𝐸 ⊆ 𝑉 × 𝑉
represents the edges, each node 𝑣 ∈ 𝑉 has an associated feature set 𝑓𝑣 . The aim of a GNN is to
learn a node embedding ℎ𝑣 for each node 𝑣 ∈ 𝑉 by aggregating information from its neighbors
𝒩𝐺(𝑣) through a process known as message passing [46].

The process involves three main steps in each layer 𝑘 of the GNN:

m(𝑘)
𝑢𝑣 = 𝜓(𝑘)

(︁
h(𝑘−1)
𝑢 ,h(𝑘−1)

𝑣 , 𝑒𝑢𝑣

)︁
(1)

a(𝑘)𝑢 =

(𝑘)⨁︁(︁
{m(𝑘)

𝑢𝑣 : 𝑣 ∈ 𝒩𝐺(𝑢)}
)︁

(2)

h(𝑘)
𝑢 = 𝜑(𝑘)

(︁
h(𝑘−1)
𝑢 ,a(𝑘)𝑢

)︁
(3)

where m
(𝑘)
𝑢𝑣 is the message from node 𝑢 to node 𝑣 at layer 𝑘,

⨁︀
denotes the aggregation

function, and 𝜑(𝑘) is the update function. Initially, ℎ0𝑣 is set to the node’s feature vector 𝑓𝑣 .
GNNS enables the effective processing of graph-structured data by iteratively updating node
embeddings, capturing the local graph structure around each node. This formulation facilitates
the application of GNNs in various tasks within the ECC, where the spatial relationships between
devices are critical.

GNN (𝐺𝑓 ) = {h(𝑘)
𝑢 : 𝑢 ∈ 𝑉, 𝑘 ∈ N} (4)

Where 𝐺𝑓 is the graph with features 𝑓𝑣 for each node 𝑣 ∈ 𝑉 , formally: 𝐺𝑓 = (𝑉,𝐸, {𝑓𝑣 : 𝑣 ∈
𝑉 }). By leveraging the unique capabilities of GNNs, it is possible to develop more sophisticated
and adaptive services that can dynamically respond to the complex and distributed nature of
the ECC.



3.2. Contribution

In this section, we discuss an approach for performing many-agent reinforcement learning
leveraging GNN in pulverized systems. In this context, as in similar many-agent scenarios, we
apply the pattern known as centralized learning and distributed execution [47]. This is because,
at a large scale and with only partial observability, having a global view of the task helps in
better learning collective tasks.

Learning dynamics We base our approach on the model of pulverization, learning under
the assumption that there exists a set of components that can act according to local logics –
here, we are not concerned with the type of actions. Specifically, as described in Algorithm 1,
for each time step 𝑡, a graph 𝐺𝑡 represents the connectivity between devices. Each node in
the graph corresponds to a local device, and edges represent the communication or influence
between devices. Each node 𝑖 ∈ 𝐺𝑡, has an associated observation 𝑜𝑡𝑖 creating a decorated
graph 𝐺𝑡

𝑜 that represents. This same graph can be passed to a macro program 𝑃 (e.g., aggregate
computing) to encode global system information (e.g., areas of high consumption in the case
of energy distribution, areas of the system more allocated for task distribution). The macro
program aggregates local information to provide a global perspective, which is crucial for the
GNN to make informed decisions. Formally, an evaluation of a macro program 𝑃 with a graph
𝐺𝑡

𝑜 produces a new graph 𝐺𝑡
𝑚, where for each node, associate the previous local state and

the evolution of the macro program: 𝑚𝑡
𝑖 = (𝑜𝑡𝑖, 𝑃 (𝐺

𝑡
𝑜)). This graph is then passed to a GNN

that will compute the actions a𝑡𝑖 ∈ 𝒜𝒫 𝑡 to be taken. These actions will be executed in the
environment (i.e., the various logical components will execute what they need to), transitioning
to a new collective graph 𝐺𝑡+1

𝑜 and obtaining a reinforcement signal R𝒫 . The reinforcement
signal R𝒫 𝑡 can be split into local and global components. The local component is derived from
individual device metrics (e.g., battery consumption), while the global component is computed
from aggregate metrics (e.g., average consumption in a region) that can be also computed by
another macro program 𝑃R.

Algorithm 1 GNN-Based many-agent reinforcement learning in ECC
1: Initialize: Local device observations o0

2: for each time step 𝑡 do
3: Create decorated graph 𝐺𝑡

𝑜 with observations o𝑡

4: Apply macro program 𝑃 to 𝐺𝑡
𝑜 to produce aggregate observations 𝐺𝑡

𝑚

5: Input 𝐺𝑡
𝑚 into GNN to compute actions a𝑡𝑖 ∈ 𝒜𝑡

𝑖

6: Execute actions a𝑡 in the environment
7: Transition to new graph 𝐺𝑡+1

𝑜 and obtain reinforcement signal R𝑡

8: Calculate local and collective reinforcement signals
9: Update GNN with new graph 𝐺𝑡+1

𝑜 , observations o𝑡+1, and reinforcement signals R𝑡

10: end for

Implementation discussion This section proposes some hints for the future concrete im-
plementation of the algorithm described above and in Algorithm 1. First, it is worth noting



that the proposed solution is completely agnostic to the choosen many-agent reinforcement
learning algorithm. The only constraint is that such algorithm must support the centralized
learning and distributed execution model. On the one hand, a classic approach is to implement
the DQN algorithm [48] to approximate a function that, for each observation, provides the
most valuable action (i.e., value based methods). On the other hand, policy based algorithms
exists. For instance, PPO [49] is based on a simple actor and critic method. In this framework,
each agent has an actor network which is used to select the current action, while a central
entity has a critic network used to reward each action. Thus, this method fits the centralized
learning and distributed execution contraint. Moreover, a study shows the effectiveness of PPO
in multi-agent cooperative settings [50]. To avoid issues, such as the curse of dimensionality
and the exponential growth of interactions between agents, related to the large number of
agents present in the reference context, the described approaches can be integrated with modern
solutions that make learning more stable. For example, mean-field reinforcement learning [51]
integrates both DQN and actor-critic approaches by ensuring that each agent is influenced not
by the individual actions of neighbors but by their average. Additionally, also the GNN can be
distributed in the system in such a way that it can be executed in a distributed manner without
the need for a central cloud [43]. Furthermore, thanks to the new self-organizing approach of
the self-organising coordination regions [52] pattern, these learning points are not necessarily
known a priori and can also change over time, therefore enabling continual learning [53]. This
distributed approach is further enhanced by self-organizing patterns, allowing for dynamic
adaptation and continual learning in changing environments.

4. Intelligent Pulverized System

In this section, we explore how the concept of intelligent collective services can be applied to
various levels of pulverization, building upon the proposed model to enhance system efficiency
and adaptability. In particular, in the following, we focus on three main aspects: (i) reconfig-
uration: how reconfiguration policies can be used to optimize the deployment of pulverized
components at runtime; (ii) communication: how communication protocols can be learned
to optimize the exchange of information between devices; and (iii) scheduling: how adaptive
scheduling policies can be used to optimize the execution of pulverized components.

4.1. Reconfiguration

Discussion In the ECC, reconfiguration is a key component. Specifically, with pulverization,
reconfiguration allows for the offloading of one or more components of a logical device (right
side of Figure 1) from one host to another to meet certain constraints. These constraints can
be expressed through reconfiguration rules, which can be either local (e.g., the host’s battery
drops below a certain threshold) or global (e.g., defined via aggregate computing) to preserve
global coherence and prevent oscillatory conditions. While these approaches can be effective in
simple scenarios, they have limitations in more complex situations: (i) they can only represent
relatively simple rules; (ii) it is challenging to define all rules a priori, as they can be numerous
and complex; and (iii) the rules are fixed, so if the system changes over time, it cannot adapt.
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Figure 2: Representation of the main parts in which intelligence can support the pulverization model.
Intelligent Scheduling manage the intelligent execution of the behavior, Smart Communication supports
the 𝜒 component in efficient communication and neighborhood definition, and Intelligent Components
Reconfiguration manage the Intelligent and opportunistic relocation of the pulverized components,
improving the system’s performance.

Vision we believe that an interesting direction is to learn these rules through the proposed
many-agent reinforcement learning approach. Specifically, using online reinforcement learning
techniques can help manage potential changes or specific cases that were not captured before-
hand. In the literature, some works have attempted to explore this field [35, 54, 55]. However,
they focus on entire microservices. Our approach offers the following advantages:

1. it is possible to operate more granular, not being forced to relocate the entire logical
device, but rather being able to act at the level of individual components;

2. using macroprogramming and graph neural networks, it is possible to integrate neigh-
borhood information, thereby enriching the knowledge of individual devices regarding
the global state and objective of the system;

3. it is possible to define complex reconfiguration rules and to learn new rules not known at
design time.

4.2. Communication

Discussion in collective systems, communication represents a crucial aspect: thanks to
device communication and coordination, a global common goal can be achieved. In this sense,
the 𝜒 component of the pulverization model is responsible for managing the neighborhood-
based communication between devices. For this reason, understanding what, when, and with
whom communicate is crucial for effective and efficient coordination. Consequently, as shown
in Figure 2, supporting the 𝜒 component with intelligent communication can be a key aspect to
improve the system performance.

Learning communication protocols is a well-known problem in the literature. Initially,
approaches based on heuristics and meta-heuristics were proposed [56, 57]. However, they often
fail to guarantee scalability and adaptability over time, which are essential qualities for systems



operating in dynamic and large-scale environments. To overcome these limitations, there has
been a significant shift towards utilizing multi-agent reinforcement learning techniques. MARL
has shown promise in addressing the complexities associated with learning and optimizing
communication protocols among multiple agents [58, 59]. In addition to MARL, Graph Neural
Networks have been employed to capture relationships between neighboring agents [60, 61].

Vision we believe the proposed many-agent reinforcement learning approach, combined with
GNNs, holds great promise for learning communication protocols in the context of pulverized
systems. This approach allows for:

1. optimizing the amount of information exchanged in the network;

2. optimizing the set of neighbors to which a message is sent at a given time step;

3. optimizing the message exchange frequency.

Thus, avoiding large bandwidth consumption and energy waste for individual devices.

4.3. Scheduling

Discussion in the pulverization model, no fixed scheduling policy is generally predefined
for calculating the new state (i.e., executing the behavior). This approach allows developers
considerable flexibility in choosing how and when to execute the primary behavior. The
scheduling policy must be adaptable to the underlying infrastructure layer. For instance, when
computations are entirely offloaded to the cloud, there are no significant power constraints.
In contrast, when computations are performed on mobile devices like smartphones, power
consumption becomes a critical factor.

Beyond simple local rules (e.g., reducing evaluation frequency when battery power is low),
scheduling may also be influenced by the collective results of ongoing computations. For
example, in a crowd scenario, if the situation becomes less crowded, the overall frequency
of evaluations may be reduced. Early work in this area, such as programmable distributed
scheduling leveraging aggregate computing [62], involved defining scheduling rules based on
the collective outcome of computations. However, these approaches assumed a fixed scheduling
policy that did not adapt to changing environmental dynamics. Recent studies [23] have shown
that simple variations of Q-learning can improve collective computation by converging more
rapidly to collective structures. However, these methods relied on centralized learning and
Q-tables, making them unsuitable for scaling to the complexity of diverse scenarios.

Vision our vision of embracing many-agent reinforcement learning and graph networks
offers several advantages:

1. creating distributed global scheduling independent of the number of devices;

2. developing distributed policies influenced by global information or larger neighborhoods;

3. enabling more complex scheduling functions using neural networks instead of simple
tables.



We believe this is a promising direction, as recent work has successfully applied this approach
to specific task allocation problems [63]. Applying it to the pulverization model would enable
its use in various collaborative scenarios, opening the possibility of creating services that
intelligently optimize certain Quality of Service (QoS) metrics based on the collective layer
proposed by the model.

4.4. Applicability

Our approach comprehensively addresses the challenge of deploying and dynamically reconfig-
uring applications in the ECC injecting intelligence in these processes (cf. Section 4). Typically,
application scenarios in the context of the IoT, edge computing, and swarm robotics can take
advantages by their deployment in infrastructures like the ECC, improving both functional and
non-functional aspects.

For instance, in smart city and wearable technology scenarios, our system offers a dual
benefit: extending battery life and minimizing the overall power consumption of deployed
systems. Intelligent reconfiguration policies can be automatically devised and inferred to better
relocate the component’s execution over the infrastructure, extending the device’s battery life
and reducing the 𝐶𝑂2𝑒 of the system, otherwise difficult or even impossible with traditional
approaches like optimization algorithm or rule-based systems (cf. Section 4.1). Similarly,
determining the optimal execution policy for each component involves a complex interplay
of factors, including the target device, environmental conditions, and specific application
constraints. All these aspects may (and usually do) change frequently over time making it
difficult to predict a priori. In a rescue scenario, our intelligent system can dynamically adapt to
the emergency by increasing the computational frequency of the nearby devices, providing more
updated status about the emergency conditions, while reducing the computational frequency
on the farthest devices not close to the hot spot (cf. Section 4.3). Additionally, via the proposed
approach, intelligent communication patterns can be automatically envisioned determining
where the communication should occur (i.e., the physical place where the communication is
implemented), and who this communication should involve to effectively transfer the minimal
but effective information for the rescuers to promptly intervene in the emergency area (cf.
Section 4.2).

5. Conclusion

In this paper, we discussed a vision for creating and deploying intelligent services within
the Edge-Cloud Continuum (ECC). Specifically, we proposed an idea called intelligent pul-
verized systems (IPS), which combines the pulverization model with graph-based networks
and many-agent reinforcement learning. This solution possesses the necessary characteristics
to adapt to modern ECCs, including scalability, the ability to encode collective information,
and the definition of components in an architecture-agnostic manner. We believe that this
approach is essential for maximizing the potential of ECCs to create opportunistic and intelligent
applications.

In the near future, we plan to leverage state-of-the-art many-agent (like mean-field reinforce-
ment learning [51]) algorithms to effectively validate this approach in real-world scenarios,



such as smart cities and beyond. By doing so, we aim to demonstrate the practical applicability
and benefits of ISP in dynamically changing environments.
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